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Randomized Inner Product – Squared Two Norm
[Drineas, Kannan & Mahoney 2006]

Input: real vector a =
(
a1 . . . an

)T

probabilities pk > 0,
∑n

k=1 pk = 1
number c where 1 ≤ c ≤ n

Output: Approximation X to aTa

from c randomly sampled elements ak

X = 0
for t = 1 : c do

Sample kt from {1, . . . , n} with probability pkt

independently and with replacement

X = X +
a2
kt

c pkt

end for



Properties
[Drineas, Kannan & Mahoney 2006]

Unbiased estimator
E [X ] = aTa

Uniform probabilities: pk = 1/n, 1 ≤ k ≤ n

Absolute error bound
For every δ > 0 with probability at least 1 − δ

∣
∣
∣a

Ta − X
∣
∣
∣ <

n ‖a‖2
∞√

c

√

8 ln(2/δ)



Relative Error due to Randomization



Relative Error Bound

For every δ > 0 with probability at least 1 − δ

|X − aTa|
aTa

< ǫ

where

ǫ ≥ 1√
c δ

√
√
√
√

n∑

k=1

a4
k

pk ‖a‖4
2

− 1

Proof: Chebyshev inequality

Uniform probabilities pk = 1/n

ǫ ≥ 1√
c δ

√

n

(‖a‖4
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)4

− 1



Relative Error for Uniform Probabilities

n = 106, ak are independent uniform [0, 1]
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Chebyshev bound with probability .99



Relative Error for Uniform Probabilities

Uniform vectors

ak iid uniform [0, 1], n = 106

Relative error: 10−2 − 10−1

Weakly graded vectors

a =
(
1 2 . . . n

)

With probability 1 − δ: Relative error ≥ .8/
√

δ c

With 99 percent probability:

Relative error ≈ 10−8 for c ≥ 1020



Weakly Graded Vectors

a =
(
1 2 . . . n

)
, n = 104
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Strongly Graded Vectors

a =
(
1 2−1 . . . 2−n+1

)
, n = 104
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Non-Uniform Probabilities

Sample ak with probability pk = |ak |/‖a‖1

For every δ > 0 with probability at least 1 − δ

|X − aTa|
aTa

< ǫ

where

ǫ ≥ 1√
c δ

√

‖a‖1 ‖a‖3
3

‖a‖4
2

− 1

Smaller than relative error for uniform probabilities

Weakly and strongly graded vectors
Relative error ≥ .3/

√
δ c independent of n



Strongly Graded Vectors

a =
(
1 2−1 . . . 2−n+1

)
, n = 104

non uniform probabilities pk = |ak |/‖a‖1
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Relative Errors: Summary

Moderate dimensions
For n ≤ 106: relative error ≈ 10−2 − 10−1

Output of algorithm has 1-2 correct decimal digits

Larger dimensions
For relative error of 10−8 need dimension n ≥ 1020

Uniformly distributed and weakly graded vectors
Uniform probabilities suffice

Strongly graded vectors
Need non-uniform probabilities

Probability bounds
Hoeffding’s bound is tighter by only factor of 10
compared to Chebyshev bound



Repeated Sampling of Same Elements



Maximal Number of Times

Same Element Is Sampled

n = 103, ak iid uniform [0, 1], uniform probabilities
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Elements that are Repeatedly Sampled

Expected value of # distinct elements sampled more than once

n

(

1 −
(

1 − 1

n

)c−1 (

1 +
c − 1

n

))

≈ n − (n + c)e−c/n

≈ .27n for c = n
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Elements that are Never Sampled

Expected value of # elements never sampled

n

(

1 − 1

n

)c

≈ n e−c/n

≈ .37n for c = n
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No Repeated Sampling
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Repeated Sampling

Uniform probabilities

Number of times an element can be sampled increases with c

About 27% elements sampled more than once

About 37% elements never sampled

Repeated sampling does not seem to hurt accuracy

Non-uniform probabilities

Preliminary conjecture: repeated sampling occurs
at same rate as for uniform probabilities



“Stability” of Randomized Algorithm



What is Stability?

Stability of deterministic algorithms:

How does a perturbation of the input

change the output of the algorithm?

Difficulty with randomized algorithms:
We don’t know the output with certainty

Exception:
Constant vector ak = α, 1 ≤ k ≤ n

Uniform probabilities:

X =
n

c
α2 + · · · + n

c
α2

︸ ︷︷ ︸

c

= nα2 = aTa

Randomized algorithm gives exact result for any c



Stability of Randomized Algorithm

Relative perturbations of constant vector

ãk = α (1 + ǫ ρk)

0 < ǫ ≪ 1, ρk are iid random variables

Perturbed approximation

X̃ =
n

c

(
ã2
k1

+ · · · + ã2
kc

)

Algorithm is numerically stable if

∣
∣
∣
∣
∣

X̃ − nα2

nα2

∣
∣
∣
∣
∣

︸ ︷︷ ︸

forward error

= O(ǫ)



Forward Errors

α = 1, n = 104

Perturbations: ǫ = 10−14, ρk uniformly distributed in [0, 1]
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Forward errors bounded by ǫ ⇒ algorithm stable



Expected Value of Forward Error

First and second moments

Eρ[ρk ] = µ1 Eρ[ρ
2
k ] = µ2

Expected value of forward error

Eρ

[

X̃ − nα2

nα2

]

= 2ǫ µ1 + ǫ2 µ2

If perturbations ρk are iid uniform [β1, β2] then

Eρ

[

X̃ − nα2

nα2

]

= ǫ (β1 + β2) +
ǫ2

3

(
β2

1 + β1β2 + β2
2

)

Expected value of forward error is O(ǫ)



How Close is Forward Error To Expected Value?

Perturbations ρk are iid uniform [β1, β2]

Probability that

∣
∣
∣
∣
∣

X̃ − nα2

nα2
− Eρ

[

X̃ − nα2

nα2

]∣
∣
∣
∣
∣
< τ

is at least

1 − 2 exp

(

−τ2 c

2
(
ǫ (β2 − β1) + ǫ2 max{β2

1 , β2
2}
)2

)

Proof: Azuma’s inequality



Bound on Forward Error

Perturbations ρk are iid uniform [β1, β2]
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∣
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X̃ − nα2

nα2

∣
∣
∣
∣
∣
< ǫ (1 + |β1 + β2|) +

ǫ2

3

∣
∣β2

1 + β1β2 + β2
2

∣
∣

holds with probability at least 1 − δ for

c ≥ 2 ln

(
2

δ

)
(
(β2 − β1) + ǫ max{β2

1 , β2
2}
)2

Perturbations ρk are iid uniform [0, 1]
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< 3 ǫ

holds with probability at least .99 for c ≥ 22



Summary

Randomized algorithm for inner product aTa

from [Drineas, Kannan & Mahoney 2006]

Low relative accuracy
1-2 correct decimal digits for dimensions n ≤ 106

Repeated sampling of elements occurs frequently
but does not seem to hurt accuracy

Preliminary definition of numerical stability

Change in output when constant vector

perturbed by iid random variables

Randomized algorithm is stable w.r.t. perturbations
by iid uniform [β1, β2] variables


