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Overview

@ Model: New flexible mixed model for count data multinomial discrete
choice, endogenizing count intensities

o Key parameters interest: B ~ F(p), flexible distribution
o Other coefficients: 0,7 ~ MVN(b, X)

@ Application: supermarket choices of a panel of Houston households in
2004-2005, scanner data (Burda, Harding and Hausman 2008)

e f; : price, distance, their interaction
e 0; : store indicator variables
e 7 : demographic individual characteristics

@ Estimation: Bayesian MCMC with a trivariate Dirichlet Process prior

o Non-conjugate latent class sampling
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1. Motivation
[ J

Background: Popular Count Data Models

@ Base-case Poisson:

@ Mixed Poisson:

® exp (— k
=k = [ ZCN g0

o Negative Binomial: special case with A ~ gamma(J, 9)
(Hausman, Hall, and Griliches 1984)
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Background: Limits of a Continuous-time Poisson Process

@ The probability of a unit addition to the count process Y (t) within
the interval A is given by

P{Y(t+A)— Y(t) =1} = AA + o(A)
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1. Motivation
o

Background: Limits of a Continuous-time Poisson Process

@ The probability of a unit addition to the count process Y (t) within
the interval A is given by

P{Y(t+A)— Y(t) =1} = AA + o(A)

@ Allow for evolution of A over time to obtain the count process
intensity A(t) :

P{Y(t+A) = Y(t) =1} = A(t)A+ o(A)

@ By the Poisson independence assumption, obtain the integrated
intensity

yielding p.m.f. equivalent to the base-case Poisson.
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1. Motivation
(J

Background: Sub-divisibility of the Poisson pmf

@ The p.m.f. of a Poisson count variable Y whose counts ys are
observed on time intervals (as, bs] for s =1,..., T with
as < bs < asy1 < bsy1 is given by

r ex —_ — as s — as Ys
PUY, = y},) = Hl p (—=A(bs ys)!) [A(b )]
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Potential Continuous-time Utility

@ Application: household choice of supermarket chain and count of
monthly trips

@ Continuous-time joint decision process on store selection and trip
count intensity

@ Latent continuous-time potential utility of an individual / at time
instant T € (t — 1, t] derived from the alternative j :

Ui (T) = B Xigj (T) + 0:Dij (1) + &4 (7)

@ Xi:j - key variables of interest (price, distance, and their interaction)
@ Dj; - store indicator variables
e j€{1,...,J} - store alternatives

@ ¢ - disturbance with extreme value type 1 marginal density
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Linking Utility and Count Intensity

e Denote the potential utility of the preferred choice (subscript ¢) by

Use(v) = max { Uy (1)}
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Linking Utility and Count Intensity
e Denote the potential utility of the preferred choice (subscript ¢) by

Use(v) = max { Uy (1)}

@ The trip count intensity X,-tc('r) is linked by

Aiee (T) = h(Uitc (1))

~1 ~1 _
= V' Z(T) + w1iB; Xitc (T) + W2i0; Ditc (T) + w3€itc (T)
= 'Y/Zit(T) + ﬁ;Xitf-‘(T) + Q;DitC(T) + €itc (T)

for Aic(T) > 0.
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Linking Utility and Count Intensity
e Denote the potential utility of the preferred choice (subscript ¢) by
Uite(T) = max {Uitj(T)}

@ The trip count intensity X,-tc('r) is linked by

Aire (1) = h(Uie(1))
~ ~/ .
= V' Z(T) + w1iB; Xitc (T) + W2i0; Ditc (T) + w3€itc (T)
= V' Zie(T) + B Xitc(T) + 07 Diec (T) + €itc ()
for Aic(T) > 0.
o Higher ¢;(T) increases the probability of additional trip via increased

count intensity A (T)
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2. Model
o

Linking Utility and Count Intensity

e Denote the potential utility of the preferred choice (subscript ¢) by

Use(v) = max { Uy (1)}

@ The trip count intensity X,-tc('r) is linked by

Aiee (T) = h(Uitc (1))

~1 ~1 _
= V' Z(T) + w1iB; Xitc (T) + W2i0; Ditc (T) + w3€itc (T)
= 'Y/Zit(T) + ﬁ;Xitf-‘(T) + G;DitC(T) + €itc (T)

for Aic(T) > 0.

o Higher ¢;(T) increases the probability of additional trip via increased
count intensity /N\,-tj(“c)

@ Proportionality factors wi;, wy;, and ws; do not need to be separately
identified
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Integrated Count Intensity for Discrete Data

o For discrete y;; the realizations of Uy;(T) for T € (t — 1, t] are given
by
~ ~/ ~/ ~
Uitik = B Xitjk + 0;Ditji + €itji
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o For discrete y;; the realizations of Uy;(T) for T € (t — 1, t] are given
by
~ ~/ ~/ ~
Uitik = B Xitjk + 0;Ditji + €itji

@ Hence the integrated count intensity

t ~
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2. Model
o

Integrated Count Intensity for Discrete Data

o For discrete y;; the realizations of Uy;(T) for T € (t — 1, t] are given
by

~ ~/ ~/ ~
Uitik = B Xitjk + 0;Ditji + €itji
@ Hence the integrated count intensity
t ~
M = [ h(e(1)de
o Let
Aitck = max {0' /\thk}
ik = ¥ Zit + B Xitek + Oic Ditck + €itck
and approximate the intensity integral by
Aie = — Y Mk

= Y Zi 4 B Xite +0iDirc + Eirc
= Vitc + €jte
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Count Probabilities

@ Denote by ;s the fraction of time period t over which the alternative
J was maximizing the latent utility Ujj(T) among other alternatives
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2. Model
o

Count Probabilities

@ Denote by ;s the fraction of time period t over which the alternative
J was maximizing the latent utility Ujj(T) among other alternatives

@ The assumption of extreme value type 1 distribution on the residual
Eitjk In
~1 ~/ .
Uik = B Xitjk + 0, Digjkc + €k

= Vit + €itji

yields
exp (‘Z‘tc)

B Zszl exp <\7itj>
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2. Model
o

Count Probabilities

@ The joint conditional trip count and store choice probability:

exXp ( —ditcAite ) (5itc Aitc )yftc

P(Yitc = )/itc|5itc) = / | g()\itc)d()\itc)
Yitc:
with
B 1 Yitck
Ajte X Ejre = Eitck
Yitck k=1
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2. Model
o

Count Probabilities

@ The joint conditional trip count and store choice probability:

exXp ( —ditcAite ) (5itc Aitc )yftc

P(Yitc = )/itc|5itc) = / | g()\itc)d()\itc)
Yitc:
with
B 1 Yitck
Ajte X Ejre = Eitck
Yitck k=1

@ Each gjsck represents an J—order statistic (maximum) of Ejtjk With
mean Vg from utility maximization

@ The density of €;. is the convolution of vy densities of J—order
statistics (analytically intractable except for few special cases)
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2. Model
[ J

Likelihood Evaluation

@ The joint count probability of the observed sample y = {yj: } is
N T C,t

Y y :HHHP ylfC|5II’C>

i=1t=1c=
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@ The joint count probability of the observed sample y = {yj: } is
N T C,t
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i=1t=1c=
@ Partition
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2. Model
[ J

Likelihood Evaluation

@ The joint count probability of the observed sample y = {yj: } is
N T C,t

Y y :HHHP ylfC|5II’C>

i=1t=1c=
@ Partition

P(Yitc“sitc) = /].j/E.f()’it‘éitmVitc(g))g(gitc|7itc(g))dgitc g(vitc(g))dvitc

Eef (yie ‘V/rc @)

@ Evaluate analytically

o (-1
7 o — r+yi ! . \/
EEf(Yitc’VitC) - Z Ir 5:tc " 77y,-f+r(5itc, Vitc)
r—o Yit:lr ! ~_———
uncentered moments of €
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Likelihood Evaluation

@ The joint count probability of the observed sample y = {yj: } is
N T C,t

Y y :HHHP ylfC|5II’C>

1t=1c=
@ Partition

P(Yitc“sitc) = /].j/E.f()’it‘éitmVitc(g))g(gitc|7itc(g))dgitc g(vitc(g))dvitc

Eef (yie ‘V/rc @)

@ Evaluate analytically

_ , =

EEf()/itc’Vitc) = itc ;7y,-t+r(€"tf’ Vitc)
r=0 ! ~—_———

uncentered moments of €

e Obtain 17;““ recursively from the cumulant-gen. function of €;(s)
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Likelihood Evaluation
@ The joint count probability of the observed sample y = {yj: } is

N T C,t
Y y :HHHP ylfC|5II’C>
i=1t=1c=
@ Partition
P(Yitc“sitc) = /V/Ef()’it‘éitmVitc(g))g(gitc|7itc(g))dgitc g(vitc(g))dvitc
Eff(}’ir‘v/rc@))
@ Evaluate analytically
— 0 J—
EEf()/itc’Vitc) = itc 77;,it+r(gitc; Vitc)
r=0 ! ~—_———
uncentered moments of €
@ Obtain 17y ., recursively from the cumulant-gen. function of Eitc (S)

McFadden (1974) choice probabilities: 7,

M. Burda, M. Harding, J. Hausman Mixed Poisson August 2010 13 / 47



2. Model
[ J

Likelihood Evaluation
@ The joint count probability of the observed sample y = {yj: } is

N T C,t
Y y :HHHP ylfC|5II’C>
i=1t=1c=
@ Partition
P(Yitc“sitc) = /V/Ef()’it‘éitmVitc(g))g(gitc|7itc(g))dgitc g(vitc(g))dvitc
Eff(}’ir‘v/rc@))
@ Evaluate analytically
o0 + o
)/Itc ’ V/tc 5,rtcyltc 77;,it+r(gitc; Vitc)
~—

: ‘ — -
uncentered moments of €

@ Obtain 17y ., recursively from the cumulant-gen. function of Eitc (S)
e McFadden (1974) choice probabilities: 7,
e Sample ¢ = (v, B, 0) using Bayesian data augmentation
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2. Model
o

Recursive Updating: Example for y;; = 4

r g ] p:l 2 3 4 | 5 6 7 8
7 = = = T = T T = T T 1 = T T T 1 =
o o || x1(2)io Baoollo Baoollo  Baooio T Ba,1,070 17 Ba,2,0710 177 B4,3,070 TR B4,4,070
~ e = . ~ = f 9
U =i x@f  Baoilt  Bao1it ) T2 By 171 TR Ba,3,1771 TR Bya,171
_ = = ~ = f 9
U =iy x1@iy  Baooly | 7 ? ? By 22175 ? ? ? Ba,327]2 ? ? ? in Ba,4,21]2
_ . . .y f .y
o 3 =73 x1(0)s 7 B3l oy 5 Ba33s oy Baasi
0o 4 =7 iig i ijjg i ijji&l i
4 g 4‘2,4;: ke 4,3,4~;1 Rear ,4,4;1
15 5’\’1(5)7,5 0 q 54,3,5*1;3 0 ? ? 34,4‘515
26 =1 73 *1(8)7g a 234,4‘5’76
37 =1 qu(C)ﬁ%
4 8 =173

@ The weight terms in green are pre-computed and stored in a memory array before the MCMC run.
@ The one (first) cumulant term in violet is updated with each MCMC draw.
@ The scaled moment terms in red are computed by recursively summing up the columns.

@ Result: rapid likelihood evaluation for Markov chain!
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2. Model
[ J

Lemma (1)

Under our model assumptions, fmax(€itck ) is @ Gumbel distribution with
mean log(Vitck) where

J
Vieek () = ;exp [— (Vitek (§) — Vi (S))]

where Vieex = ' Zit + B Xitek + 0iDirckand & = (7, B, 6)
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Lemma (1)

Under our model assumptions, fmax(€itck ) is @ Gumbel distribution with
mean log(Vitck) where

J
Vieek () = ;exp [— (Vitek (§) — Vi (S))]

where Vieex = ' Zit + B Xitek + 0iDirckand & = (7, B, 6)
@ Use it to derive:

o Cumulant generating function K, , (s) and cumulants x, (€j:cx) of
Eitck
o Cumulant generating function Kg,_ (s) and cumulants &, (€jc) of

1w
Eitc = Vit Yeq Eitck
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2. Model

Lemma (1)

Under our model assumptions, fmax(€itck ) is @ Gumbel distribution with
mean log(Vitck) where

J
Vieek () = ;exp [— (Vitek (§) — Vi (S))]

where Vieex = ' Zit + B Xitek + 0iDirckand & = (7, B, 6)
@ Use it to derive:

o Cumulant generating function K, , (s) and cumulants x, (€j:cx) of
Eitck
o Cumulant generating function Kg,_ (s) and cumulants &, (€jc) of

— -1 i
Eite = Y~ LAty €itck
~/ — 7 .
@ Use these to evaluate tﬁe scaled moments 77r+y,'tc(€"tc’ Vitc) in the
expansion for E¢f (Y| Vitc)
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1. Motivation 2. Model

Theorem (1)

(o]

Esf (yitc|Viee) = Z (S%’t"échf [Q},T,.m,ﬁ;ih,,Q + r Yy (v;tc(ﬁ))ﬁ/y,ﬁ,,l}

r=0

1
Q%’zcvf,q = ﬁB}/,‘tc,hq forp S Yitc

1
— @) Byicra foryie <p<ryie—2
tetr—g—1
Vite +r — 1)! 1 Yite+r—q
s = (_1),(th|) <y't {(yite +r—q)
N Itc

forp=1,....r+yic and g =0, ..., r + yirc — 2, where {(j) is the
Riemann zeta function.
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2. Model

Lemma (2)
The series representation of Eqf (yjc|Viec) in Lemma 2 is absolutely
—r

summable, with bounds on numerical convergence given by O(y, ) as r
grows large.

o Useful fact: the RiemanQn zeta function is a well-behaved term
bounded with {(j) < % for j > 0 and with {(j) — 1 as j — co.

@ A number of explosive terms cancel out due to scaling by (yj.c!r!) 71,
convergence for r growing large

August 2010 17 / 47
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3. Bayesian Analysis
o

Bayesian Analysis: Background

@ All forms of uncertainty are expressed in terms of probability
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@ All forms of uncertainty are expressed in terms of probability

@ Random coefficient LDV models

o Rossi, Allenby and McCulloch (2005); Imai and van Dyk (2005); Athey
and Imbens (2007); Imai, Jain, and Ching (2009, ECTA)
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3. Bayesian Analysis
o

Bayesian Analysis: Background

@ All forms of uncertainty are expressed in terms of probability

@ Random coefficient LDV models

o Rossi, Allenby and McCulloch (2005); Imai and van Dyk (2005); Athey
and Imbens (2007); Imai, Jain, and Ching (2009, ECTA)

@ Dirichlet process prior

o Beginnings: Freedman (1963); Ferguson (1973); Blackwell and
MacQueen (1973).

o Recent applications: Hirano (2002); Chib and Hamilton (2002); Jensen
and Maheu (2007)
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3. Bayesian Analysis
o

Our Approach
"Random Effects" (deeper hierarchy)

@ B, ~ F (B) nonparametric (non-conjugate Dirichlet Process prior)

o Locally adaptive density estimation of F ()

o Focus on local details and uncovering clustering structures

e In our application on variables log price, log distance, and their
interaction

M. Burda, M. Harding, J. Hausman Mixed Poisson August 2010 20 / 47



3. Bayesian Analysis
o

Our Approach
"Random Effects" (deeper hierarchy)

@ B, ~ F (B) nonparametric (non-conjugate Dirichlet Process prior)

o Locally adaptive density estimation of F ()

o Focus on local details and uncovering clustering structures

e In our application on variables log price, log distance, and their
interaction

@ 0; ~ MVN(by, Xgy) parametric, with updates of by, Xg

e Controls for levels in 8; with flexible parsimonious parametrization
e In our application on store dummies
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3. Bayesian Analysis
o

Our Approach
"Random Effects" (deeper hierarchy)

@ B, ~ F (B) nonparametric (non-conjugate Dirichlet Process prior)

o Locally adaptive density estimation of F ()

o Focus on local details and uncovering clustering structures

e In our application on variables log price, log distance, and their
interaction

e 0; ~ MVN(by,Xg) parametric, with updates of by, Xg

e Controls for levels in 8; with flexible parsimonious parametrization
e In our application on store dummies

" Fixed Effects" (shallow hierarchy)

@ 7y without hyperparameters

o Not identified in a multinomial choice
o ldentified in the cross-section in likelihood for counts
e In our application on demographic variables

M. Burda, M. Harding, J. Hausman Mixed Poisson August 2010



3. Bayesian Analysis
o

Bayesian Parametric vs. Nonparametric Model
o Data: z={z}" , ; Parameters: p € ¥ C R
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3. Bayesian Analysis
o

Bayesian Parametric vs. Nonparametric Model
o Data: z={z}" , ; Parameters: p € ¥ C R
@ Parametric model:
e Prior: ¢ ~ Gop
e The joint distribution of z and :

QL9 Gop) < F (- 9)Gop
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3. Bayesian Analysis
o

Bayesian Parametric vs. Nonparametric Model

o Data: z={z}" , ; Parameters: p € ¥ C R
@ Parametric model:

e Prior: ¢ ~ Gop

e The joint distribution of z and :

QL ¢, Gop) < F () Gop

@ Nonparametric model:
e Priors: |G ~ G, G ~ DP(a, Gp)
o The joint distribution of z and :

Q1. 6) o [ F(5)d6(y)

o Gg baseline prior distribution - first choice in a parametric model

e G random measure, deviates stochastically from Gg

e & € Ry concentration of G around Gy, sampled within the system
@ & — 0 = kernel estimation (all weight on data)
@ & — 00 => G = Gy < parametric model (all weight on the prior)
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3. Bayesian Analysis
(J

Dirichlet Process prior

e DP(«, Gy) as a distribution over distributions:

o M(Y) : collection of all probability measures on ¥, endowed with the
topology of weak convergence.

o M(M(Y)) : collection of all probability measures on M ()

] GO S M(T), LS 1R+
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Dirichlet Process prior

e DP(«, Gy) as a distribution over distributions:

o M(Y) : collection of all probability measures on ¥, endowed with the

topology of weak convergence.
o M(M(Y)) : collection of all probability measures on M ()
o Gp e M(Y), » € R+

A Dirichlet Process on (¥, B) with a base measure Gy and a
concentration parameter «, denoted by DP(Gy, &) € M(M(V¥)), is a
distribution of a random probability measure G € M(¥) over (¥, B) such
that, for any finite measurable partition {"I’,-}f::l of the sample space ¥,
the random vector (G(¥1), ..., G(¥,)) is distributed as

(G(Y¥1),.... G(¥y)) ~ Dir(aGo(¥1),....aGo(¥)) where Dir(-) denotes
the Dirichlet distribution.
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3. Bayesian Analysis
[ J

Sampling Algorithm

Neal (2000), Algorithm 7: Let the state of the Markov chain consist of
c=(c1,....cn) and ¥ = (y.: ¢ € {c1,.... cn}). Repeatedly sample as
follows:

@ For i=1,..,n, update ¢; as follows: If ¢; is not a singleton (i.e. ¢; = ¢; for some
J # i), let ¢ be a newly created component, with .. drawn from Gg. Set the new
¢ to this ¢ with probability

a(cf, ¢j) = min {1, @ L(%F‘Z")}

n—1 L(vlz)

@ Fori=1,..,n:If ¢ is a singleton (i.e. ¢; # ¢; for all j # i), do nothing.
Otherwise, choose a new value for ¢; from {ci, ..., cp} using the following
probabilities:

n
P(ci=clc_j,yj,v.ci€{ct,....cn}) = b 7’; L(vclzi)

n
where b is the appropriate normalizing constant.

@ Forall c € {cy,...,cn} : Draw a new value from 7|z such that ¢; = c, or perform
some other update to 7. that leaves this distribution invariant.
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esian Analysis

Simulated Density Estimation
Densities of Marron and Wand, 1992

Dersiy

,000.

FIGURE 2. Lefi: DPM density estimate based on the sample in Figure 1, with 10,000 MC
steps. Right: A typical snapshot of latent class positions scaled by the class membership intensity,

M. Burda, M. Har J. Hausman
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FIGURE 4. a=10. Left: Evolution of the number of latent classes over the MC chain. Right:

Average number of latent class members, sorted by siz

Mixed Poisso

M. Burda, M. Harding, J. Hausman

August 201



3. Bayesian Analysis
o

Our Model: Priors and Posterior Draws
@ Prior structure:

i~ N(py Zo)

o~ N(E,yr;"y)

Bily; ~ F(y;)
il ~ G
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3. Bayesian Analysis
o

Our Model: Priors and Posterior Draws

@ Prior structure:
i~ N(py Zo)
T N(E,yr;"y)

Bily; ~ F(y;)
il ~ G

@ Gibbs blocks:

o ;|- DP hyperparameters (Neal 2000)

o «|- DP concentration parameter (Escobar and West, 1995)

o f;|- for each i from K(B;|v,0.d,Z,X, D) Hthl ng(y,-t\V,-tC)k(Pl_(ﬁ)
e 6;|- analogously to B8; but with k(f)

7| from K(7v(B,6,6,Z, X, D) o ITILy TT{—y Eef (vie| Viee )k (7)

5|- as in Burda, Harding, and Hausman (2008)

Remaining hyperparameters (results A and B in Train, 2003, ch 12)

M. Burda, M. Harding, J. Hausman Mixed Poisson August 2010 26 / 47



Model Properties

@ lIdentification

@ Property of the likelihood function - same from classical or Bayesian
perspectives (Kadane 1974; Poirier 1998; Aldrich 2002)

o lIdentification in discrete choice models: Bajari, Fox, Kim and Ryan (2009),
Chiappori and Komunjer (2009), Lewbel (2000), Berry and Haile (2010),
Briesch, Chintagunta, and Matzkin (2010), Fox and Gandhi (2010), among
others

@ Proof of identifiability of infinite mixtures of Poisson distributions: Teicher
(1960), Sapatinas (1995)
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Model Properties

@ lIdentification

@ Property of the likelihood function - same from classical or Bayesian
perspectives (Kadane 1974; Poirier 1998; Aldrich 2002)

o lIdentification in discrete choice models: Bajari, Fox, Kim and Ryan (2009),
Chiappori and Komunjer (2009), Lewbel (2000), Berry and Haile (2010),
Briesch, Chintagunta, and Matzkin (2010), Fox and Gandhi (2010), among
others

@ Proof of identifiability of infinite mixtures of Poisson distributions: Teicher
(1960), Sapatinas (1995)

@ Consistency

o Under iid observations and identifiability, the posterior is consistent
everywhere except possibly on a null set with respect to the prior (Doob
1949)

@ In the non-parametric context such null set may include cases of interest
(Freedman 1963; Diaconis and Freedman 1986a,b, 1990)

o Posterior consistency for the Dirichlet process prior holds under very general
conditions (Ghosal 2008)
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3. Bayesian Analysis
L]

Posterior Consistency

Theorem (2)

Under our model assumptions, for the posterior K(B;|-) and an arbitrary
neighborhood Vj or the true posterior Ko(pB;|-) it holds that
P(K(B;|-) € Vo) — 0 as the sample size tends to infinity.

@ The proof is based on Ghosal (2009) and Schwartz (1965):

A: The prior probability mass assigned to a complement of the sieve space
implied by the model is exponentially small and the model sieve
approaches the true population value of the parameter as the sample
size grows without bound;

B: The model sieve satisfies an entropy condition binding the rate of
growth of the sieve space in terms of its log N(€/2)-covering number;

C: The model likelihood for §; is bounded in an appropriate sense;

D: The Kullback-Leibler positivity property of the prior is satisfied.
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4. Application
[

Outline

@ Motivation

@ Background on Count Data Models
@ Continuous-time Poisson Process

Q@ Model

@ Potential Continuous-time Utility

@ Linking Utility and Count Intensity

© Count Probabilities in a new Mixed Poisson Model
@ Efficient Likelihood Evaluation Algorithm

© Bayesian Analysis
@ Parametric vs Nonparametric Model
@ Dirichlet Process Prior

© Application

@ Data and Variables
@ Results

© Counterfactual Welfare Experiment
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4. Application
[ J

Data

N = 650 households in the Houston area

AC Nielsen store scanner data - we use 500K entries

T = 24 months during the years 2004 and 2005

Store chains: H.E. Butt, Kroger, Randall's, Walmart, PantryFoods, "other"

Trip count:

3000

2000

Frequency

1000

7 11 13 15 17 19 21 23 25
Manlhly trip count per household
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Variables
Q With B, ~ F(B) :

@ Price: based on a basket of goods in a given store-month

Product Category: Bread Butter and Margarine Canned Soup Cereal Chips
Weight: 0.0804 0.0405 0.0533 0.0960 0.0741
Product Category: Coffee Cookies Eggs Ice Cream Milk
Weight: 0.0450 0.0528 0.0323 0.0663 0.1437
Product Category: Orange Juice Salad Mix Soda Water Yogurt
Weight: 0.0339 0.0387 0.1724 0.0326 0.0379

Table: Construction of the price index.

@ Distance: estimated driving to supermarket
(GPS software to measure the arc distance from the centroid of the census tract in which a household lives to
the centroid of the zip code in which a store is located).

@ Interaction: In Pricejyx X In Distance;sjx

M. Burda, M. Hardir Hausman Mixed Poisson
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Variables
Q With B, ~ F(B) :

@ Price: based on a basket of goods in a given store-month

Product Category: Bread Butter and Margarine Canned Soup Cereal Chips
Weight: 0.0804 0.0405 0.0533 0.0960 0.0741
Product Category: Coffee Cookies Eggs Ice Cream Milk
Weight: 0.0450 0.0528 0.0323 0.0663 0.1437
Product Category: Orange Juice Salad Mix Soda Water Yogurt
Weight: 0.0339 0.0387 0.1724 0.0326 0.0379

Table: Construction of the price index.

@ Distance: estimated driving to supermarket
(GPS software to measure the arc distance from the centroid of the census tract in which a household lives to
the centroid of the zip code in which a store is located).

@ Interaction: In Pricejyx X In Distance;sjx

@ With 6; ~ MVN(bg, %) : Individual supermarket effects
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4. Application
L]

Variables
Q With B, ~ F(B) :

@ Price: based on a basket of goods in a given store-month

Product Category: Bread Butter and Margarine Canned Soup Cereal Chips
Weight: 0.0804 0.0405 0.0533 0.0960 0.0741
Product Category: Coffee Cookies Eggs Ice Cream Milk
Weight: 0.0450 0.0528 0.0323 0.0663 0.1437
Product Category: Orange Juice Salad Mix Soda Water Yogurt
Weight: 0.0339 0.0387 0.1724 0.0326 0.0379

Table: Construction of the price index.

@ Distance: estimated driving to supermarket
(GPS software to measure the arc distance from the centroid of the census tract in which a household lives to
the centroid of the zip code in which a store is located).

@ Interaction: In Pricejyx X In Distance;sjx

@ With 6; ~ MVN(bg, %) : Individual supermarket effects
@ With -y : Demographic individual characteristics
@ Singleton (1 member household), Children, Non-white, Hispanic, Unemployed,
Education (College +), Medium Age (>40 but <65 hshld head), High Age (>65),

Medium Income (25K to 50K), High Income (>50K), and interactions of these with
In Pricejgjx
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Price Index

'L»Save S

with SAFEWAY 9 Brands.

M. Burda, M. Harding, J. Hausman Mixed Poisson August 2010 32 / 47



4. Application
L]

Results
Selective Flexible Poisson Mixture Normal Poisson

Variable Mean Median S.D. 90% BCS Mean Median S.D. 90% BCS

Singleton 0.90 0.69 0.20 ( 0.64, 1.30) 1.89 1.92 0.25 (1.41,2.27)
Children 1.04 0.85 0.10 (0.88, 1.25) 0.24 0.23 0.36 (-0.35, 0.77)
Non-white 0.20 0.35 0.13 (-0.03, 0.41) -0.58 -0.64 0.38 (-1.17, 0.09)
Hispanic 0.98 0.41 0.28 (10.43,1.37) 1.33 1.32 0.31 (0.82,1.82)
Unemployed 0.66 0.46 0.20 (10.32,0.98) -0.61 -0.63 0.43 (-1.32, 0.15)
Education 0.81 0.68 0.15 (0.59, 1.11) 0.79 0.77 0.23 (10.40,1.18)
Middle Age 0.86 1.12 0.12 (0.68, 1.09) 1.56 1.62 0.30 (0.91, 1.98)
High Age 1.97 191 0.18 (1.67, 2.28) 2.67 2.63 0.46 (1.97, 3.42)
Middle Income 2.15 2.41 0.12 (11.95, 2.36) 1.08 1.06 0.25 (10.64, 1.46)
High Income 2.53 2.61 0.20 (2.20, 2.89) 1.33 1.36 0.19 (10.96, 1.62)
logP % Singleton -1.63 -1.84 0.42 (-2.36,-0.95) -3.01 -3.08 0.69 (-3.95,-1.91)
logP x Children -0.66 -0.45 0.44 (-1.35,-0.07) 1.14 1.09 0.70 (-0.24, 2.12)
logP x Non-white 0.01 0.24 0.37 (-0.42, 0.86) 4.93 5.51 1.24 (2.55, 6.43)
logP X Hispanic 0.78 0.76 0.28 (0.34,1.31) 0.97 1.06 0.51 (10.05, 1.69)
logP x Unemployed 1.92 1.36 0.44 (1.40, 2.67) 3.74 3.96 0.63 (2.39, 4.48)
logP x Education -1.16 -0.75 0.39 (-1.72,-0.60) -0.69 -0.86 0.61 (-1.58, 0.38)
logP x M Age 4.19 2.60 0.69 (/3.10, 5.15) -0.67 -0.97 0.92 (-1.77, 1.38)
logP x H Age 2.03 1.33 0.18 (1.68, 2.27) -3.39 -2.96 1.16 (-5.22,-1.97)
logPX M Income 0.02 0.44 051  (-0.88, 0.84) 1.66 1.66 045  (0.82, 2.48)
logP x H Income -0.30 -0.29 0.42 (-1.16, 0.34) 1.29 1.36 0.65 (10.09, 2.35)

Table: Coefficients o on demographic variables. logP denotes interaction term with price.
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4. Application
[ J

Results
Selective Flexible Poisson Mixture Normal Poisson
Variable Mean  Median  S.D. 90% BCS Mean  Median  S.D. 90% BCS
Singleton 0.33 0.31 0.13 (10.12,0.60) 0.85 0.85 0.18 (0.54,1.17)
Children 0.81 0.81 0.15 (10.55,1.05) 0.64 0.59 0.24 (0.27,1.06)
Non-white 0.20 0.20 0.12 (-0.02,0.43) 1.12 1.14 0.19 (0.76,1.39)
Hispanic 126 130 024 (0.74,158) 167 166 025 (1.252.08)
Unemployed 1.33 1.30 0.24  (0.97,1.79) 0.68 0.70 0.30  (0.14,1.14)
Education 0.41 0.39 0.17 (0.11,0.72) 0.55 0.54 0.17 (0.28,0.86)
Middle Age 231 230 020 (1.952.64) 1.32 133 016  (1.03,1.59)
High Age 2.67 2.66 0.17 (12.41,2.93) 1.50 1.50 0.19 (1.17,1.79)
Middle Income 2.16 2.16 0.17 (11.86,2.46) 1.65 1.66 0.20 (1.31,1.98)
High Income 2.42 2.44 0.15 (12.12,2.64) 1.78 1.85 0.23 (1.36,2.10)

Table: Marginal coefficients 7y on demographic variables.
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Results

Parameter Mean  Median  Std.Dev. 90% BCS

ber (HEB) 7672 7.708 0301 (7.093 8.112)
bgy (Kroger) 5.651 5.838 1.016 (13.931, 7.127)
bgs (Randalls) 8.225  8.365 0937  ( 6.607, 9.369)
bea (Walmart) 4830  4.915 0877  (3.380, 6.177)
bgs (Pantry Foods) ~11.79  11.681  0.486  (11.168,12.679)
bge (other) 4.6890  4.897 0.808  (3.331, 5.739)

Table: Hyperparameters by of store indicator variable coefficients.
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4. Application
o

Results

Parameter Mean Median  Std.Dev. 90% BCS

Yp101 (HEB) 2.205 2.199 0.142 ( 1.983, 2.450)
Y9102 (HEB & Kroger) -0.008 -0.009 0.084 (-0.146, 0.130)
Y9193 (HEB & Randalls) 0.594 0.594 0.101 (10.428, 0.763)
Yg104 (HEB & Walmart) 0.211 0.210 0.079 (10.078, 0.345)
29195 (HEB & Pantry Foods) -1.105 -1.090 0.144 (—1.366,—0.889)
Y9106 (HEB & other) -0.877 -0.872 0.109 (-1.067,-0.710)
Ygogo (Kroger) 1.992 1.988 0.134 (11.779, 2.224)
To03 (Kroger & Randalls) 0139  0.137 0.087  (-0.001, 0.283)
Xgog4 (Kroger & Walmart) 0.060 0.059 0.073 (-0.060, 0.180)
Xg2p5 (Kroger & Pantry Foods) -0.169 -0.168 0.087 (-0312,—0028)
Tgog6 (Kroger & other) 0.086 0.084 0.081 (-0.047, 0.221)
To303 (Randalls) 2209  2.200 0178  ( 1.933, 2.516)
29304 (Randalls & Walmart) -0.002 -0.003 0.076 (—0,126, 04125)
Zp3p5 (Randalls & Pantry Foods) 0.559 0.541 0.154 ( 0.341, 0862)
T35 (Randalls & other) 0392  0.391 0.096  (0.236, 0.555)
Y0404 (Walmart) 1.747 1.743 0.113 ( 1.569, 1.941)
Ygag5 (Walmart & Pantry Foods) 0.331 0.331 0.087 (10.186, 0.472)
Ygage (Walmart & other) 0.038 0.037 0.076 (-0.084, 0.162)
29595 (Pantry Foods) 2.311 2.303 0.154 ( 2.074, 2585)
20566 (Pantry Foods & other) -0.410 -0.409 0.096 (»0.572,—0.256)
Y606 (other) 2.180 2.173 0.138 (11.967, 2.421)

Table: Hyperparameters ¥4 of store indicator variable coefficients.
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betal beta2

Density

05

betas

Figure: Posterior density of draws of B; (logs price, distance, their interaction)
The Hausman test strongly rejects mean equivalence with the Normal counterparts
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b, (log distance)
o
|

b, (log distance) °™

n

A
b, (log price)

Figure: Joint posterior density of draws of ;
(logs price vs log distance)
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4. Application
o

b, (log price)
o
I

o
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b, (log price)

€6) 10 -5 0 5 10
bq(log price *log distanc

Figure: Joint posterior density of draws of f;
(log price x log distance vs log price)
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(animation)
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4. Application

Densty
—

05

o5 o s ) o5 1 11 21 31 41 51 61 71 81 o1

Latentclass count Latentclass number

Figure: The number of latent classes density (left)
and ordered average latent class membership count (right)
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Outline

@ Motivation

@ Background on Count Data Models
@ Continuous-time Poisson Process

Q@ Model

@ Potential Continuous-time Utility

@ Linking Utility and Count Intensity

© Count Probabilities in a new Mixed Poisson Model
@ Efficient Likelihood Evaluation Algorithm

© Bayesian Analysis

@ Parametric vs Nonparametric Model
@ Dirichlet Process Prior

© Application

@ Data and Variables
@ Results

© Counterfactual Welfare Experiment
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5. Counterfactual
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Counterfactual Welfare Experiment

Increase Walmart prices by 10%, 20%, 30%
@ How much additional funding each i/, t needs to achieve the same
utility as before the price increase?
@ The difference in count intensities after the price increase:
J
D= 3 O E N V] — 3 S ENGVY
c=1 c=1

Solve for the fixed-point additional income that offsets Aj; in

—Ajy = Z 5new>~<E /\new* ”E’W* Z snew Anewyvrt‘zw]

itc itc /tc itc itc

@ Assume additional purchases split among alternatives by their

expected proportions d72"* where newx denotes the state with

additional income
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Counterfactual Welfare Experiment

Walmart price increase 10% 20% 30%
Variable Mean Normal Mean Mean Normal Mean Mean Normal Mean
Pooled sample 5.96 17.76 8.57 22.12 10.6 26.36
Singleton = 1 9.84 13.05 12.22 17.12 12.9 21.03
Singleton = 0 4.93 19.12 7.61 23.56 9.98 27.89
Children = 1 3.88 12.50 5.58 16.71 7.68 20.73
Children = 0 6.49 19.11 9.34 23.48 11.31 27.75
Non-white = 1 8.78 21.62 9.71 26.28 8.78 30.81
Non-white = 0 5.27 17.00 8.27 21.31 11.10 25.48
Hispanic = 1 3.70 12.76 7.35 16.33 12.49 20.16
Hispanic = 0 6.18 18.41 8.68 22.84 10.44 27.11
Unemployed = 1 8.22 14.80 7.76 19.21 3.86 23.25
Unemployed = 0 5.79 18.07 8.63 22.43 11.11 26.69
Education = 1 7.01 17.29 9.11 21.39 11.04 25.67
Education = 0 4.77 18.17 7.95 22.76 10.11 26.95
Med Age =1 5.31 18.17 7.41 22.57 8.96 26.77
Med Age = 0 6.71 17.05 9.93 21.36 12.67 25.67
High Age =1 9.37 15.40 13.0 19.98 16.35 24.72
High Age = 0 4.59 18.41 6.77 22.72 8.45 26.83
Med Income = 1 331 13.55 4.99 16.79 8.81 19.72
Med Income = 0 6.88 19.92 9.77 24.80 11.20 29.64
High Income =1 5.40 19.26 7.71 23.39 8.19 27.63
High Income = 0 6.64 16.18 9.63 20.78 13.61 25.02

Monthly compensating variation in dollar amounts. The sample monthly average grocery food expenditure is $170 of which $84
is spent in Walmart. The Hausman test strongly rejects mean equivalence with the Normal counterparts.
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Summary

@ New flexible mixed model for count data multinomial discrete choice,
endogenizing count intensities

@ Derivation of count probabilities via cumulant representations of scaled
moments

@ Efficient iterative updating scheme

@ Three types of parameters:

o Key parameters interest: B ~ F(B) (price, distance, their interaction)
o 0 ~ MVN(b,X) (store indicator variables)
e 7 (demographic individual characteristics)

@ Application: supermarket choices of a panel of Houston households in
2004-2005, scanner data
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