
Randomized Algorithms in Linear 
Algebra and Applications

To access my web page:

Petros DrineasPetros Drineas

Rensselaer Polytechnic Institute
Computer Science Department

drineas



Randomized algorithms

Randomization and sampling allow us to design provably accurate algorithms for 
problems that are:

 Massive 

(e.g., matrices so large that can not be stored at all, or can only be stored in slow, secondary 
memory devices)

 Computationally expensive or even NP-hard 

(e.g., combinatorial problems such as the Column Subset Selection Problem)



Mathematical background

Obviously,  linear algebra and probability theory. More specifically,

• Ideas underlying the design and analysis of randomized algorithms
E.g., the material covered in chapters 3, 4, and 5 of the “Randomized Algorithms” book of 
Motwani and Raghavan.

• Matrix perturbation theory
E.g., take a look at “Matrix Perturbation Theory” by Stewart and Sun, or “Matrix Analysis” 
by R. Bhatia.



Applying the math background

• Randomized algorithms
• By (carefully) sampling rows/columns/entries of a matrix, we can construct new matrices 
(that have smaller dimensions or are sparse) and have bounded distance (in terms of some 
matrix norm) from the original matrix (with some failure probability).

• By preprocessing the matrix using random projections (*), we can sample rows/columns/ 
entries(?) much less carefully (uniformly at random) and still get nice bounds (with some 
failure probability).

(*) Alternatively, we can assume that the matrix is “well-behaved” and thus uniform sampling will work.



Applying the math background

• Randomized algorithms
• By (carefully) sampling rows/columns/entries of a matrix, we can construct new matrices 
(that have smaller dimensions or are sparse) and have bounded distance (in terms of some 
matrix norm) from the original matrix (with some failure probability).

• By preprocessing the matrix using random projections, we can sample rows/columns/ 
entries(?) much less carefully (uniformly at random) and still get nice bounds (with some 
failure probability).

• Matrix perturbation theory

• The resulting smaller/sparser matrices behave similarly (in terms of singular values and 
singular vectors) to the original matrices thanks to the norm bounds.

In this talk, I will illustrate a few “Randomized Algorithms” ideas that have 
been leveraged in the analysis of randomized algorithms in linear algebra.



Interplay

Theoretical Computer Science 

Randomized and approximation 
algorithms

Numerical Linear Algebra

Matrix computations and Linear 
Algebra (ie., perturbation theory)

(Data Mining) Applications

Biology & Medicine: population genetics (coming up…)

Electrical Engineering:   testing of electronic circuits

Internet Data: recommendation systems, document-term data



Single Nucleotide Polymorphisms: the most common type of genetic variation in the 
genome across different individuals.

They are known locations at the human genome where two alternate nucleotide bases 
(alleles) are observed (out of A, C, G, T).

SNPs
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… AG CT GT GG CT CC CC CC CC AG AG AG AG AG AA CT AA GG GG CC GG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG …

… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CT AA GG GG CC GG AA GG AA CC AA CC AA GG TT AA TT GG GG GG TT TT CC GG TT GG GG TT GG AA …

… GG TT TT GG TT CC CC CC CC GG AA AG AG AA AG CT AA GG GG CC AG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG …

… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CC GG AA CC CC AG GG CC AC CC AA CG AA GG TT AG CT CG CG CG AT CT CT AG CT AG GT GT GA AG …

… GG TT TT GG TT CC CC CC CC GG AA GG GG GG AA CT AA GG GG CT GG AA CC AC CG AA CC AA GG TT GG CC CG CG CG AT CT CT AG CT AG GG TT GG AA …

… GG TT TT GG TT CC CC CG CC AG AG AG AG AG AA CT AA GG GG CT GG AG CC CC CG AA CC AA GT TT AG CT CG CG CG AT CT CT AG CT AG GG TT GG AA …

… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA TT AA GG GG CC AG AG CG AA CC AA CG AA GG TT AA TT GG GG GG TT TT CC GG TT GG GT TT GG AA …

Matrices including thousands of individuals and hundreds of thousands if SNPs are available.

Human genetics



HGDP data

• 1,033 samples

• 7 geographic regions

• 52 populations

Cavalli-Sforza (2005) Nat Genet Rev

Rosenberg et al. (2002) Science

Li et al. (2008) Science

The Human Genome Diversity Panel (HGDP)
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We will apply SVD/PCA 
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direction of maximal variance,
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singular vector

2nd (right) singular vector:

direction of maximal variance, after 
removing the projection of the data
along the first singular vector.

The Singular Value Decomposition (SVD)
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Singular values

1: measures how much of the data variance 
is explained by the first singular vector.

2: measures how much of the data variance 
is explained by the second singular vector.

1

2

Principal Components Analysis (PCA) is done via the 
computation of the Singular Value Decomposition 
(SVD) of a (mean-centered) covariance matrix.

Typically, a small constant number (say k) of the 
top singular vectors and values are kept.



HGDP data

• 1,033 samples

• 7 geographic regions

• 52 populations

Cavalli-Sforza (2005) Nat Genet Rev

Rosenberg et al. (2002) Science

Li et al. (2008) Science

The International HapMap Consortium 
(2003, 2005, 2007), Nature

Matrix dimensions:

2,240 subjects (rows)

447,143 SNPs (columns)
The Human Genome Diversity Panel (HGDP)

ASW, MKK, 
LWK, & YRI

CEU

TSI
JPT, CHB, & CHD

GIH

MEX

HapMap Phase 3 data

• 1,207 samples

• 11 populations

HapMap Phase 3

SVD/PCA 
returns…



Africa

Middle East

South Central 
Asia

Europe

Oceania

East Asia

America

Gujarati 
Indians

Mexicans

• Top two Principal Components (PCs or eigenSNPs)
(Lin and Altman (2005) Am J Hum Genet)

• The figure renders visual support to the “out-of-Africa” hypothesis.

• Mexican population seems out of place: we move to the top three PCs.

Paschou, Lewis, Javed, & Drineas (2010) J Med Genet



Africa
Middle East

S C Asia & 
Gujarati Europe

Oceania

East Asia

America

Not altogether satisfactory: the principal components are linear combinations 
of all SNPs, and – of course – can not be assayed!

Can we find actual SNPs that capture the information in the singular vectors?

Formally: spanning the same subspace.

Paschou, Lewis, Javed, & Drineas (2010) J Med Genet



Issues

• Computing large SVDs: computational time
• In commodity hardware (e.g., a 4GB RAM, dual-core laptop), using MatLab 7.0 (R14), the 
computation of the SVD of the dense 2,240-by-447,143 matrix A takes about 20 minutes.

• Computing this SVD is not a one-liner, since we can not load the whole matrix in RAM 
(runs out-of-memory in MatLab).

• We compute the SVD of AAT.

• In a similar experiment, we computed 1,200 SVDs on matrices of dimensions (approx.) 
1,200-by-450,000 (roughly speaking a full leave-one-out cross-validation experiment).
(Drineas, Lewis, & Paschou (2010) PLoS ONE, in press)

• Obviously, running time is a concern.

• We need efficient, easy to implement, methods.



Issues (cont’d) 

• Selecting good columns that “capture the structure” of the top PCs

• Combinatorial optimization problem; hard even for small matrices. 

• Often called the Column Subset Selection Problem (CSSP).

• Not clear that such columns even exist.



SVD decomposes a matrix as…

Top k left singular vectors

The SVD has strong 
optimality properties.

 It is easy to see that X = Uk
TA.

 SVD has strong optimality properties.

 The columns of Uk are linear combinations of up to all columns of A.



The CX decomposition
Drineas, Mahoney, & Muthukrishnan (2008) SIAM J Mat Anal Appl
Mahoney & Drineas (2009) PNAS

c columns of A

Carefully 
chosen X

Goal: make (some norm) of A-CX small.

Why?

If A is an subject-SNP matrix, then selecting representative columns is 
equivalent to selecting representative SNPs to capture the same structure 
as the top eigenSNPs.

We want c as small as possible!



CX decomposition

c columns of A

Easy to prove that optimal X = C+A. (C+ is the Moore-Penrose pseudoinverse of C.)

Thus, the challenging part is to find good columns (SNPs) of A to include in C.

From a mathematical perspective, this is a hard combinatorial problem, closely 
related to the so-called Column Subset Selection Problem (CSSP).

The CSSP has been heavily studied in Numerical Linear Algebra.



Our perspective

The two issues are connected

• There exist “good” columns in any matrix that contain information about the 
top principal components.

• We can identify such columns via a simple statistic: the leverage scores.

• This does not immediately imply faster algorithms for the SVD, but, combined 
with random projections, it does!

Key mathematical apparatus: approximating matrix multiplication.



Approximating Matrix Multiplication …
Frieze, Kannan, & Vempala (1998) FOCS, (2004) JACM
Drineas, Kannan, & Mahoney (2006) SICOMP

Problem Statement

Given an m-by-n matrix A and an n-by-p matrix B, approximate the product A·B,

OR, equivalently,

Approximate the sum of n rank-one matrices.

Each term in the 
summation is a 
rank-one matrix

i-th column of A i-th row of B



…by sampling

Algorithm

1. Fix a set of probabilities pi, i=1…n, summing up to 1. 

2. For t=1 up to s, 

set jt = i, where Pr(jt = i) = pi;

(Pick s terms of the sum, with replacement, with respect to the pi.)

3. Approximate the product AB by summing the s terms, after scaling. 

i-th column of A i-th row of B



Sampling (cont’d)

i-th column of A i-th row of B

Keeping the terms 
j1, j2, … js.



The algorithm (matrix notation)

Algorithm

1. Pick s columns of A to form an m-by-s matrix C and the corresponding 
s rows of B to form an s-by-p matrix R.

2. (discard A and B) Approximate A · B by C · R.

Notes

3. We pick the columns and rows with non-uniform probabilities.

4. We scale the columns (rows) prior to including them in C (R).



The algorithm (matrix notation, cont’d)

• Create C and R by performing s i.i.d. trials, with replacement.

• For t=1 up to s, pick a column A(jt) and a row B(jt) with probability

• Include A(jt)/(spjt
)1/2 as a column of C, and B(jt)/(spjt

)1/2 as a row of R.



Simple Lemmas …

• The expectation of CR (element-wise) is AB.

• Our adaptive sampling minimizes the variance of the estimator.

• It is easy to implement the sampling in two passes.



Error Bounds

For the above algorithm,

Tight concentration bounds can be proven via a martingale argument.



Special case: B = AT

If B = AT, then the sampling probabilities are

Also, R = CT, and the error bounds are



Special case: B = AT (cont’d)
Rudelson and Virshynin (2007) JACM

A stronger result for the spectral norm is proven by M. Rudelson and R. Vershynin. 

Assume (for normalization) that ||A||2 = 1. If

then for any 0 <  < 1



Special case: B = AT (cont’d)
Rudelson and Virshynin (2007) JACM

• Uses a beautiful result of M. Rudelson for random vectors in isotropic position and Talagrand’s
measure concentration results.

• Similar results can also be proven using recent results on matrix-valued Chernoff bounds.

See Ahlswede and Winter (2001), Recht (2009), Oliveira (2010).

A stronger result for the spectral norm is proven by M. Rudelson and R. Vershynin

Assume (for normalization) that ||A||2 = 1. If

then for any 0 <  < 1
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Approximating singular vectors
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Approximating singular vectors (cont’d)
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A

The fact that AAT – CCT is small will imply that A-CC+A is small as well.

CC+A



Proof (spectral norm)

Using the triangle inequality and properties of norms,



Proof (spectral norm, cont’d)

Using the triangle inequality and properties of norms,

projector matrices



Proof (spectral norm), cont’d

We can now use our matrix multiplication result:

(We could also have applied the Rudelson-Virshynin bound.)

Important: selecting the columns in this setting is trivial and can be 
implemented in a couple of (sequential) passes over the input matrix.



Is this a good bound?

Problem 1: If s = n, we still do not get zero error.

That’s because of sampling with replacement. 
(We know how to analyze uniform sampling without replacement, but we have no bounds on 
non-uniform sampling without replacement.)

Problem 2: If A had rank exactly k, we would like a column selection procedure 
that drives the error down to zero when s=k.
This can be done deterministically simply by selecting k linearly independent columns.

Problem 3: If A had numerical rank k, we would like a bound that depends on 
the norm of A-Ak and not on the norm of A.
Such deterministic bounds exist when s=k and depend (roughly) on (k(n-k))1/2 ||A-Ak||2



Relative-error Frobenius norm bounds
Drineas, Mahoney, & Muthukrishnan (2008) SIAM J Mat Anal Appl

Given an m-by-n matrix A, there exists an O(mn2) algorithm that picks

at most O( (k/ε2) log (k/ε) ) columns of A

such that with probability at least .9



The algorithm

Sampling algorithm

• Compute probabilities pj summing to 1

• Let c = O( (k/ε2) log (k/ε) ).

• In c i.i.d. trials pick columns of A, where in each trial the j-th column of A is picked with 
probability pj.

• Let C be the matrix consisting of the chosen columns

Input: m-by-n matrix A, 

0 < ε < .5, the desired accuracy

Output: C, the matrix consisting of the selected columns



Subspace sampling (Frobenius norm)

Remark: The rows of Vk
T are orthonormal vectors, but its columns (Vk

T)(i) are not.

Vk: orthogonal matrix containing the top 
k right singular vectors of A.

S k: diagonal matrix containing the top k 
singular values of A.



Subspace sampling (Frobenius norm)

Remark: The rows of Vk
T are orthonormal vectors, but its columns (Vk

T)(i) are not.

Subspace sampling in O(mn2) time 

Vk: orthogonal matrix containing the top 
k right singular vectors of A.

S k: diagonal matrix containing the top k 
singular values of A.

Normalization s.t. the 
pj sum up to 1



Subspace sampling (Frobenius norm)

Remark: The rows of Vk
T are orthonormal vectors, but its columns (Vk

T)(i) are not.

Subspace sampling in O(mn2) time 

Vk: orthogonal matrix containing the top 
k right singular vectors of A.

S k: diagonal matrix containing the top k 
singular values of A.

Normalization s.t. the 
pj sum up to 1

Leverage scores
(many references in the 
statistics community)



Computing leverage scores efficiently
Problem 

We do not know how to do it without computing the SVD: computationally 
expensive.

Open question: can we approximate the leverage scores efficiently?

Solution 1

Preprocess the matrix and make those scores uniform! Then sample uniformly at 
random. 

We borrow ideas from the JL-transform literature: COMING UP.

Solution 2

Use volume sampling-based methods to identify O(k2 log k /ε2) columns in O(mnk2) time.
See Deshpande and Vempala (2006) RANDOM.



SNPs by chromosomal order
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BACK TO POPULATION GENETICS DATA
Selecting PCA SNPs for individual assignment to four continents 

(Africa, Europe, Asia, America)

Paschou et al (2007; 2008) PLoS Genetics

Paschou et al (2010) J Med Genet, in press

Drineas et al (2010) PLoS One, in press
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An interesting observation
Sampling w.r.t. to leverage scores results in redundant columns being selected.

This is not surprising, since (almost) identical columns have (almost) the same leverage scores 
and thus might be all selected, even though they do not really add new “information.”

First Solution:

Apply a “redundancy removal” step, by running some deterministic algorithm for the CSSP on 
the sampled columns.

This works very well empirically, and even naïve CSSP algorithms (such as the pivoted QR 
factorization) return excellent results. 

Conjecture:

The “leverage scores” filter out relevant columns, thus allowing deterministic methods to do a 
better job later.
See Paschou et al. (2008) PLoS Genetics for applications to population genetics.
See Boutsidis et al. (2009, 2010) SODA, ArXiv for theoretical foundations.



An interesting observation

Second Solution:

We can apply clustering to the sampled columns and then return a representative column from 
each cluster.

Very useful for SNP data since it permits clustering of SNPs that have similar functionalities 
and thus allows better understanding of the proposed ancestry-informative panels.
See Paschou et al (2010) J Med Genet.

Third Solution:

The (theoretically optimal) volume-sampling approach with marginal probabilities.

Some of its variants are based on random projections and seem useful for massive data.
See Deshpande and Rademacher (2010) ArXiv.



Random projections: the JL lemma

Johnson & Lindenstrauss (1984)



Random projections: the JL lemma

Johnson & Lindenstrauss (1984)

• We can represent S by an m-by-n matrix A, whose rows correspond to points.

• We can represent all f(u) by an m-by-s Ã. 

• The “mapping” corresponds to the construction of an n-by-s matrix R and computing 

Ã = AR
(The original JL lemma was proven by projecting the points of S to a random k-dimensional subspace.)



Different constructions for R
• Frankl & Maehara (1988): random orthogonal matrix

• DasGupta & Gupta (1999): matrix with entries from N(0,1), normalized

• Indyk & Motwani (1998): matrix with entries from N(0,1)

• Achlioptas (2003): matrix with entries in {-1,0,+1}

• Alon (2003): optimal dependency on n, and almost optimal dependency on 

Construct an n-by-s matrix R such that:
Return:

O(mns) = O(mn logm / ε2) time computation



Fast JL transform
Ailon & Chazelle (2006) FOCS, Matousek (2006)

Normalized Hadamard-Walsh transform matrix
(if n is not a power of 2, add all-zero columns to A)

Diagonal matrix with Dii set to +1 or -1 w.p. ½.



Applying PHD on a vector u in Rn is fast, since:

• Du : O(n), since D is diagonal,

• H(Du) : O(n log n), using the Hadamard-Walsh algorithm,

• P(H(Du)) : O(log3m/ε2), since P has on average O(log2n) non-zeros per row 
(in expectation). 

Fast JL transform, cont’d



Back to approximating singular vectors

Let A by an m-by-n matrix whose SVD is: Apply the (HD) part of the (PHD) transform to A.

Observations:

1. The left singular vectors of ADH span the same space as the left singular vectors of A.

2. The matrix ADH has (up to log n factors) uniform leverage scores .
(Thanks to VTHD having bounded entries – the proof closely follows JL-type proofs.)

3. We can approximate the left singular vectors of ADH (and thus the left singular vectors of A) 
by uniformly sampling columns of ADH.

orthogonal matrix



Back to approximating singular vectors

Let A by an m-by-n matrix whose SVD is: Apply the (HD) part of the (PHD) transform to A.

Observations:

1. The left singular vectors of ADH span the same space as the left singular vectors of A.

2. The matrix ADH has (up to log n factors) uniform leverage scores .
(Thanks to VTHD having bounded entries – the proof closely follows JL-type proofs.)

3. We can approximate the left singular vectors of ADH (and thus the left singular vectors of A) 
by uniformly sampling columns of ADH.

4. The orthonormality of HD and a version of our relative-error Frobenius norm bound (involving 
approximately optimal sampling probabilities) suffice to show that (w.h.p.)

orthogonal matrix



Running time

Let A by an m-by-n matrix whose SVD is: Apply the (HD) part of the (PHD) transform to A.

Running time:

1. Trivial analysis: first, uniformly sample s columns of DH and then compute their product with A. 

Takes O(mns) = O(mnk polylog(n)) time, already better than full SVD.

2. Less trivial analysis: take advantage of the fact that H is a Hadamard-Walsh matrix

Improves the running time O(mn polylog(n) + mk2polylog(n)).

orthogonal matrix



Conclusions

• Randomization and sampling can be used to solve problems that are massive and/or 
computationally expensive.

• By (carefully) sampling rows/columns/entries of a matrix, we can construct new 
sparse/smaller matrices that behave like the original matrix.

• Can entry-wise sampling be made competitive to column-sampling in terms of accuracy and speed? 
See Achlioptas and McSherry (2001) STOC, (2007) JACM.
• We recently improved/generalized/simplified it .
See Nguyen, Drineas, & Tran (2010), Drineas & Zouzias (2010).
• Exact reconstruction possible using uniform sampling for constant-rank matrices that satisfy 
certain (strong) assumptions.
See Candes & Recht (2008), Candes & Tao (2009), Recht (2009).

• By preprocessing the matrix using random projections, we can sample rows/ columns much 
less carefully (even uniformly at random) and still get nice “behavior”.
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