Statistical Inference for Networks

Stanford, June 2010

Peter Bickel

Statistics Dept. UC Berkeley

(Joint work with Aiyou Chen, Bell Labs, E. Levina, U. Mich)

Outline

- * 1 Networks: types/Examples
- * 2 Networks: questions
 - a) Descriptive
 - b) Quantitative
- * 3 Modularities
 - 4 Statistical issues and selected models
 - 5 A nonparametric model for infinite networks and asymptotic theory
 - 6 Consistency of modularities and efficient estimation
 - 7 The asymptotics of degree distribution and empirical moments
 - 8 Some examples and discussion.

References

- 1. M.E.J. Newman (2010) Networks: An introduction. Oxford
- 2. Fan Chung, Linyuan Lu (2004) Complex graphs and networks. CBMS # 107 AMS
- 3. Eric D. Kolaczyk (2009) Statistical Analysis of Network Data
- 4. Bela Bollobas, Svante Janson, Oliver Riordan (2007) The Phase Transition in Random Graphs. Random Structures and Algorithms, 31 (1) 3-122
- 5. B. and A. Chen (2009) A nonparametric view of network models and Newman-Girvan and other modularities, PNAS

Note: We will not discuss dynamically generated models

Examples: Technological Networks

Figure: Internet (The OPTE Project)

Examples: Social Networks

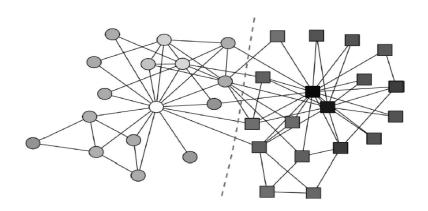


Figure: Karate Club (Newman, PNAS 2006)

Examples: Biological Networks

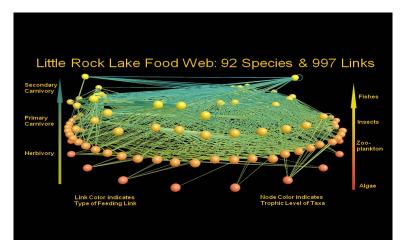


Figure: Food web (Neo Martinez, Berkeley)

Examples: Metabolic Web

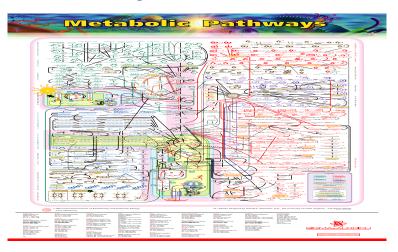


Figure: Metabolic Pathways (IUBMB-Nicholson)

Examples: Information Networks

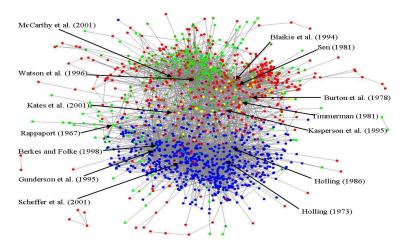


Figure: Paper networks (Marco A. Janssen, ASU)

A Mathematical Formulation

- G = (V, E): undirected graph
- $\{1, \dots, n\}$: Arbitrarily labeled vertices
- A: adjacency matrix
- $A_{ij} = 1$ if edge between i and j (relationship)
- $A_{ij} = 0$ otherwise

Implications of Mathematical Description

- Undirected: Relations to or from not distinguished.
- Arbitrary labels: individual, geographical information not used.

Descriptive Statistics for Graph Structures

Centrality

• Def: Degree $D_i = \sum_{i \neq i} A_{ij}$

Statistics

• Relative degree $\frac{n}{2L}D_i$: "centrality of vertex"

$$L \equiv \frac{1}{2} \sum_{i \neq j} A_{ij} = \#$$
 of edges

Average degree: "centrality of graph"

$$c = \frac{2L}{n}$$

Graph Structures

Cohesiveness

Def:

- Clique: Maximal fully connected subgraphs
- k-core: Maximal subset of vertices such that each is connected to at least k other members of subset.

Statistics:

- Size of cliques
- Number of k-cores

Clustering

- Transitivity: If i is related to j and j is related to k, then it is likely that i is related to k.
- Global Clustering Coefficient:

$$C = \frac{3 \times \# \text{ of } \triangle}{\# \text{ of } \triangle + \# \text{ of } \vee}$$

Chain Structure

Def:

- (Geodesic) Path between i, j: (shortest) set of edges (i, i_1) (i_1, i_2) ... (i_k, j) .
- Connected component: Maximal set such that all pairs of vertices are connected by path in set.

Statistics:

and size of connected components.

Network	Type	n	nt	c	S	E	α	C	Cws	r	Ref(s).
Film actors	Undirected	449 913	25 516 482	113.43	0.980	3.48	2.3	0.20	0.78	0.208	16,323
Company directors	Undirected	7 673	55392	14.44	0.876	4.60	_	0.59	0.88	0.276	88,253
Math coauthorship Physics coauthorship Biology coauthorship Telephone call graph	Undirected	253 339	496 489	3.92	0.822	7.57	-	0.15	0.34	0.120	89,146
	Undirected	52 909	245 300	9.27	0.838	6.19	-	0.45	0.56	0.363	234, 236
	Undirected	1520251	11803064	15.53	0.918	4.92	-	0.088	0.60	0.127	234, 236
	Undirected	47 000 000	80 000 000	3.16			2.1				9,10
Email messages	Directed	59812	86 300	1.44	0.952	4.95	1.5/2.0		0.16		103
Email address books	Directed	16881	57 029	3.38	0.590	5.22	-	0.17	0.13	0.092	248
Student dating	Undirected	573	477	1.66	0.503	16.01	-	0.005	0.001	-0.029	34
Sexual contacts	Undirected	2810					3.2				197, 198
WWW nd. edu	Directed	269 504	1 497 135	5.55	1.000	11.27	2.1/2.4	0.11	0.29	-0.067	13,28
WWW AltaVista	Directed	203 549 046	1 466 000 000	7.20	0.914	16.18	2.1/2.7				56
WWW AltaVista Citation network Roget's Thesaurus	Directed	783 339	6716198	8.57			3.0/-				280
Roget's Thesaurus	Directed	1.022	5 103	4.99	0.977	4.87	_	0.13	0.15	0.157	184
Word co-occurrence	Undirected	460 902	16 100 000	66.96	1.000		2.7		0.44		97,116
Internet	Undirected	10 697	31992	5.98	1.000	3.31	2.5	0.035	0.39	-0.189	66,111
Power grid	Undirected	4 941	6.594	2.67	1.000	18.99	_	0.10	0.080	-0.003	323
Train routes	Undirected	587	19 603	66.79	1.000	2.16	_		0.69	-0.033	294
Power grid Train routes Software packages Software classes Electronic circuits	Directed	1 439	1723	1.20	0.998	2.42	1.6/1.4	0.070	0.082	-0.016	239
Software classes	Directed	1 376	2 213	1.61	1.000	5.40		0.033	0.012	-0.119	315
Electronic circuits	Undirected	24 097	53 248	4.34	1.000	11.05	3.0	0.010	0.030	-0.154	115
Peer-to-peer network	Undirected	880	1 296	1.47	0.805	4.28	2.1	0.012	0.011	-0.366	6,282
Metabolic network	Undirected	765	3 686	9.64	0.996	2.56	2.2	0.090	0.67	-0.240	166
Protein interactions	Undirected	2 1 1 5	2 240	2.12	0.689	6.80	2.4	0.072	0.071	-0.156	164
Marine food web	Directed	134	598	4.46	1.000	2.05	_	0.16	0.23	-0.263	160
Protein interactions Marine food web Freshwater food web	Directed	92	997	10.84	1.000	1.90	-	0.20	0.087	-0.326	209
Neural network	Directed	307	2 359	7.68	0.967	3.97	_	0.18	0.28	-0.226	323,32

Table 8.1: Basic statistics for a number of networks. The properties measured are: type of network, directed or undirected; total number of vertices in; total number of edges m; mean degree c; fraction of vertices in the largest component S (or the largest weakly connected component in the case of a directed network); mean geodesic distance between connected vertex pairs C; exponent a of the degree distribution if the distribution follows a power law (or "--" if not; in/out-degree exponents are given for directed graphs); clustering coefficient C from Eq. (7.41); catchering coefficient C_{wp} from the alternative direction of the degree correlation coefficient r from Eq. (7.82). The last column gives the citation(s) for each network in the bibliography. Blank entries indicate unavailable data.

Newman (2010) Notworks: an introduction Oxford

Community Identification

- $V = V_1 \cup \cdots \cup V_K$
- V_i : communities, $i = 1, \dots, K$, where K is known. V_i highly interiorly, low exteriorly connected.
- Problem: Determine V_j using only A

Approaches to Sub-community Identification: Maximize

Modularities

- Newman-Girvan modularity (Phys. Rev. E, 2004) $\mathbf{e} = (e_1, \dots, e_n)$: $e_i \in \{1, \dots, K\}$ (community labels)
- The modularity function:

$$Q_N(\mathbf{e}) = \sum_{k=1}^K \left(\frac{O_{kk}(\mathbf{e},A)}{D_+} - \left(\frac{D_k(\mathbf{e})}{D_+} \right)^2 \right),$$

where

$$O_{ab}(\mathbf{e},A) = \sum_{i,j} A_{ij} \mathbf{1}(e_i = a, e_j = b)$$

= $(\# \text{ of edges between } a \text{ and } b) \quad a \neq b$
= $2 \times (\# \text{ of edges between members of } a), \quad a = b$
 $D_k(\mathbf{e}) = \sum_{l=1}^K O_{kl}(\mathbf{e},A)$

$$= \text{sum of degrees of nodes in } k$$

$$D_{+} = \sum_{k=1}^{K} D_{k}(\mathbf{e}) = 2 \times (\# \text{ of edges between all nodes})$$

Issues

- In principle NP hard
- A relaxation for K = 2 leads to method like spectral clustering
- How to compare performance

Stochastic Models

The Erdős-Rényi Model

- Probability distributions on graphs of n vertices.
- P on {Symmetric $n \times n$ matrices of 0's and 1's}.
- E-R (modified): place edges independently with probability c/n ($\binom{n}{2}$ Bernoulli trials). $c \approx E(\text{ave degree})$

Qualitative Features of Empirical Graphs vs Qualitative Features of E-R

	E-R	Empirical
Small world	Yes	Yes
Giant component	Yes	Yes
Power-law degree distribution	No	Yes
Communities	No	Yes

Block Models (Holland, Laskey and Leinhardt 1983)

Probability model:

- Community label: $\mathbf{c} = (c_1, \dots, c_n)$ i.i.d. multinomial $(\pi_1, \dots, \pi_K) \equiv K$ "communities".
- Relation:

$$\mathbb{P}(A_{ij}=1|c_i=a,c_j=b) = P_{ab}.$$

A_{ii} conditionally independent

$$\mathbb{P}(A_{ij}=0) = 1 - \sum_{1 \leq a,b \leq K} \pi_a \pi_b P_{ab}.$$

• K = 1: E-R model.

Nonparametric Asymptotic Model for Unlabeled Graphs

Given: P on ∞ graphs

Aldous/Hoover (1983)

$$\mathcal{L}(A_{ij}:i,j\geq 1) = \mathcal{L}(A_{\pi_i,\pi_j}:i,j\geq 1),$$

for all permutations $\pi \iff$

$$\exists g: [0,1]^4 \rightarrow \{0,1\} \text{ such that } A_{ij} = g(\alpha,\xi_i,\xi_j,\eta_{ij}),$$

where

$$\alpha, \xi_i, \eta_{ij}$$
, all $i, j \geq i$, i.i.d. $\mathcal{U}(0,1)$, $g(\alpha, u, v, w) = g(\alpha, v, u, w)$, $\eta_{ii} = \eta_{ii}$.

Ergodic Models

 \mathcal{L} is an ergodic probability iff for g with g(u, v, w) = g(v, u, w) $\forall (u, v, w)$,

$$A_{ij}=g(\xi_i,\xi_j,\eta_{ij}).$$

 \mathcal{L} is determined by

$$h(u,v) \equiv \mathbb{P}(A_{ij} = 1 | \xi_i = u, \xi_j = v),$$

$$h(u,v) = h(v,u).$$

Notes:

- 1. K-block models and many other special cases
- Model (also referred to as threshhold models) also suggested by Diaconis, Janson (2008)
- 3. More general models (Bollobás, Riordan & Janson (2007))

"Parametrization" of NP Model

- *h* is not uniquely defined.
- $h(\varphi(u), \varphi(v))$, where φ is measure-preserving, gives same model.
- But, $h_{\text{CAN}} = \text{that } h(\cdot, \cdot)$ in equivalence class such that $P\left[A_{ij} = 1 \middle| \xi_i = z\right] = \int_0^1 h_{\text{CAN}}(z, v) dv \equiv \tau(z)$ with $\tau(\cdot)$ monotone increasing characterizes uniquely.

Asymptotic Approximation

As given

Ave. degree
$$\frac{E(D_+)}{n} = \rho_n(n-1)$$

Broader Approach

$$\begin{split} &h_n(u,v) = \rho_n w_n(u,v) \\ &\rho_n = \mathbb{P}[\mathsf{Edge}] \\ &w(u,v) du dv = \mathbb{P}\left[\xi_1 \in [u,u+du], \xi_2 \in [v,v+dv] | \mathsf{Edge}\right] \\ &w_n(u,v) = \min\left\{w(u,v), \rho_n^{-1}\right\} \\ &\frac{E(D_+)}{n} \equiv \lambda_n = \rho_n(n-1). \end{split}$$

Approximation

Block model:
$$\{\rho_n, \pi, W/S\}$$

$$\pi \equiv (\pi_1, \dots, \pi_K)^T$$
 $W_{ab} \equiv \mathbb{P}\left[\xi_1 \in a, \xi_2 \in b | \mathsf{Edge}\right]$
 $S_{ab} \equiv \frac{\mathbb{P}\left[\mathsf{Edge} | \xi_1 \in a, \xi_2 \in b\right]}{\mathbb{P}\left[\mathsf{Edge}\right]}$
 $W = \pi^D S \pi^D$

where
$$\pi^D \equiv \mathrm{diag}(\pi)$$

Asymptotic Interpretation h_{CAN}

Suppose $\hat{F}(x) = n^{-1} \sum_{i=1}^{n} \mathbf{1}(nD_i/L \le x)$.

Theorem 1

- a) (Bollobas et al) If $c = n\rho_n = E(\text{Ave. Degree}) = O(1)$, then $\hat{F} \stackrel{\text{a.s.}}{\Rightarrow} F$, $Z \sim F$ is d.f. of a mixture of Poisson variable with mixing measure $\tau(\xi)$, $\xi \sim U(0,1)$.
- b) If $c \to \infty$, then $\hat{F}^{-1}(u) \to \tau(u)$, a.e. u in probability, and therefore $\hat{F} \Rightarrow \mathcal{L}(\tau(\xi))$

Practical Interpretation

We can replace ξ by $\tau(\xi)$ and think of D_i as measure of "how well i makes friends" (see for example, "Visualizing head-to-tail affinities in large networks", Dyer and Owen 2010).

"Asymptotic" Models: Examples

In spirit of Bollobas et al, Chung and Lu etc

- 1) Block models
- 2) w(u,v) = a(u)a(v) $a(u) \propto \int_0^1 w(u,v)dv$

$$\therefore$$
 can take $a(u) = \tau(u) \uparrow$.

3)
$$w(u, v) = \sum_{j=1}^{p} w_j \phi_j(u) \phi_j(v)$$

 $|\phi_j| = 1, \phi_j \perp \phi_k, j \neq k.$

Which Quantitative Properties Can Be Deduced?

- 1. Small world? Yes. (Bollobas et al for $c={\it O}(1)$, a fortiori in general)
- 2. Giant component? Yes. with probability $\to 1$ if $c \to \infty$.
- 3. Degree distribution is approximately power-law? Depends on $\tau(\cdot)$. If $\tau(u) \sim (1-u)^{-\alpha}$, power law.

Community Identification

General Modularity:

- Given Q_n : $K \times K$ positive matrices $\times K$ simplex $\to \mathbb{R}^+$.
- $Q_n(\mathbf{e}, A) = F_n\left(\frac{O(\mathbf{e}, A)}{\mu_n}, \frac{D_+}{\mu_n}, f(\mathbf{e})\right).$ $O(\mathbf{e}, A) \equiv ||o_{ab}(\mathbf{e})||, \mathbf{f}(\mathbf{e}) \equiv (f_1(\mathbf{e}), \dots, f_K(\mathbf{e}))^T, f_j(\mathbf{e}) \equiv \frac{n_j}{n}.$ $\hat{\mathbf{c}} \equiv \arg\max Q_n(\mathbf{e}, A).$ $\mu_n = E(D_+) = (n-1)\lambda_n.$
- NG: $F_n \equiv F$.

Profile Likelihood

•
$$\rho > 0$$

$$F(M, r, \mathbf{t}) = \sum_{a,b} t_a t_b \tau \left(\frac{\rho M_{ab}}{t_a t_b}\right),$$

$$\tau(x) \equiv x \log x + (1 - x) \log(1 - x).$$
• $\rho \to 0$

$$F(M, \mathbf{t}) = \sum_{a,b} t_a t_b \sigma \left(\frac{M_{ab}}{t_a t_b}\right),$$

$$\sigma(x) = x \log x - x.$$

Conditions

- C1: a) The matrix S has no two rows equal and all elements > 0.
 - b) $\pi_i > 0$, i = 1, ..., K. (No two communities have same connection probabilities with others.)
- C2: $\mathcal{M} \equiv \{R : R_{ab} \geq 0, \text{ all } a, b, R^T \mathbf{1} = \pi\}.$ $Q(R) \equiv F(RSR^T, 1, R\mathbf{1}).$ $F : \mathcal{M} \times \mathbb{R}^+ \times S \mapsto \mathbb{R}, \ S \equiv \text{simplex, where } \mathbf{1} \equiv (1, 1, \dots, 1)^T.$ Then Q(R) is uniquely maximized over \mathcal{M} by $R = \pi^D \equiv \text{diag}(\pi)$ for all (π, S) in an open neighborhood Θ of (π_0, S_0) . (Unique population maximization)
- C3: a) F is Lipschitz in \mathcal{M} in all its arguments.
 - b) On Θ , F has continuous second directional derivatives and $\frac{\partial Q(\pi^D)}{\partial F^{a}} < 0$, all $(\pi, S) \in \Theta$. (Local maximization)

Global Consistency

Theorem 1

If C1–3 hold and
$$\frac{c_n}{\log n} \to \infty$$
, then
$$\limsup_n c_n^{-1} \log \mathbb{P}[\hat{\mathbf{c}} \neq \mathbf{c}] \le -s_O, \text{ with } s_O > 0.$$

Extension to $F_n \approx F$ requires simple condition. See also Snijders and Nowicki (1997) J. of Classification.

Corollary

Under the given conditions if

$$\hat{\pi}_a = \frac{1}{n} \sum_{i=1}^n 1(\hat{c}_i = a) \equiv \frac{\hat{n}_a}{n},$$

$$\hat{W} = \frac{O(\hat{c}, A)}{D_+},$$

then

$$\sqrt{n}(\hat{\pi} - \pi) \Rightarrow \mathcal{N}(\mathbf{0}, \pi^D - \pi \pi^T),$$

$$\sqrt{n}(\hat{W} - W) \Rightarrow \mathcal{N}(\mathbf{0}, \Sigma(\pi, W)).$$

These are efficient.

Properties of N-G Modularity

- 1) NG satisfies C2, C3 if ${\cal E}$ has all diagonal entries positive and all nondiagonal entries negative.
- 2) NG consistency may fail even though $W_{aa} > \sum_{b \neq a} W_{ab}$, $\forall a$.

Degree distributions

Definition

 $D_i^\ell \equiv \ell$ degree of i is the number of independent paths of length $\leq \ell$ starting at i.

The Operator

Corresponding to $w_{CAN} \in L_2(0,1)$ there is operator:

$$T: L_2(0,1) \to L_2(0,1)$$

$$Tf(\cdot) = \int_0^1 w(\cdot, v) dv$$

T- Hermitian

Note:
$$\tau(\cdot) = T(\mathbf{1})(\cdot)$$
.

Theorem 2

Let \hat{F}_{ℓ} be the empirical distribution of $(D_i, D_i^{(2)}, ..., D_i^{(\ell)})$ and F be the joint distribution of $(T(\mathbf{1})(\xi), T^2(\mathbf{1})(\xi), ..., T^{\ell}(\mathbf{1})(\xi))$ where ξ has a U(0,1) distribution.

Theorem 2

If
$$\rho = c/n$$
,

- 1. If c is bounded, then $\hat{F} \Rightarrow G$ in probability, where G is the distribution of a set of independent Poisson variables with parameters $T(\xi), T^2(\xi), \dots, T^I(\xi)$ given $\xi \sim U(0,1)$;
- 2. If $c \to \infty$, then $\hat{F} \Rightarrow F$ in probability, where F is the distribution of $(T(\xi), T^2(\xi), \dots, T'(\xi))$.

Identifiability of NP Model

Theorem 3

The joint distribution $(T(1)(\xi), T^2(1)(\xi), ..., T^m(1)(\xi), ...)$ where $\xi \sim U(0,1)$ determines P

Idea of proof: identify the eigen-structure of T.

Theorem 4

If T corresponds to a K-block model, then,

$$\left\{ E[T^k(1)(\xi_1)]^{\ell}: \ \ell = 1, ..., 2K - 1, \ k = 1, ..., K \right\}$$

determines (π,W) uniquely provided that the vectors π , $W\pi$, ..., $W^{K-1}\pi$ are linearly independent.

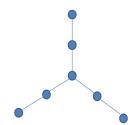
Method of "Moments"

 (k,ℓ) -wheel

- i) A "hub" vertex
- ii) I spokes from hub
- iii) Each spoke has k connected vertices.

Total # of vertices (order): $k\ell + 1$. Total # of edges (size): $k\ell$.

Eg: a (2,3)-wheel



Definitions

Notation:

- (i) If $R \subset F_n \equiv \{(i,j) : 1 \le i < j \le n\}$ $V(R) \equiv \{i : (i,j) \text{ or } (j,i) \in R, \text{ some } j\}$ E(R) = RA graph G and an edge set are identified if V(G) = V(R) and E(G) = R.
- (ii) If $R_1, R_2 \subset F_n$, $R_1 \sim R_2$ (isomorphism) iff $|V(R_1)| = |V(R_2)|$ and there exists $\pi: V(R_1) \to V(R_2)$, 1-1, onto, such that $E(R_2) = \{(\pi(i), \pi(j)) : (i, j) \in R_1, \text{ or } (j, i) \in R_1, \pi(i) < \pi(j)\}.$

Definitions

Given: $G \sim P$, $G \subset F_n$

For $R \subset F_n$, $\bar{R} \equiv$ complement of R in G,

$$P(R) = P[A_{ij} = 1, (i,j) \in R, A_{ij} = 0, (i,j) \in \overline{R}]$$

$$Q(R) \equiv P(A_{ij} = 1, (i, j) \in R).$$

Lemma

G generated according to h on F_n .

(1)
$$P(R) = E\left[\prod\{h(\xi_i, \xi_j) : (i, j \in R)\}\prod\{(1 - h(\xi_i, \xi_j)) : (i, j) \in \bar{R}\}\right]$$

(2)
$$P(R) = Q(R) - \sum \{Q(R \cup (i,j)) : (i,j) \in \overline{R}\}$$

 $+ \sum \{Q(R \cup \{(i,j),(k,l)\}) : (i,j) \neq (k,l) \in \overline{R}\}$
 $\cdots \pm Q(G)$

(3)
$$Q(R) = \sum \{P(S) : S \supset R\}.$$

\sqrt{n} Consistency/Asymptotic Normality of "Moments"

Theorem 5

For $R \subset F_n$, |V(R)| = p, G generated according to P, let

$$\hat{P}(R) = \frac{1}{\binom{n}{n}N(R)} \sum \mathbf{1}(S \sim R : S \subset G),$$

$$N(R) \equiv |\{S \subset F_n : S \sim R\}|,$$

$$\hat{Q}(R) \equiv \sum \{\hat{P}(S) : S \supset R\}.$$

Then

$$\sqrt{n}(\hat{Q}(R) - Q(R)) \Rightarrow N(0, \sigma^2(R, P)).$$

Multivariate normality holds as well.

Extensions

- |R| = p fixed
- $\rho \to 0$, $L \equiv \sum_{i,j} A_{ij}$
- $\tilde{Q}(R) \equiv \rho^{-p}Q(R) \rightarrow E\left(\Pi\left\{w(\xi_i, \xi_j) : (i, j) \in R\right\}\right)$
- $\hat{Q}(R) \equiv \left(\frac{L}{n^2}\right)^{-p} \hat{Q}(R)$
- Conclusion of Theorem holds for $\hat{\tilde{Q}}$, \tilde{Q} if $n^2\rho \to \infty$.

Connection With Wheels

Lemma 1

Let G be a random graph generated according to P,

$$|V(G)| = k\ell + 1$$
. Then if R is a (k,ℓ) -wheel,

$$Q(R) = E[T^k(1)(\xi_1)]^{\ell}$$

Fitting by degree distributions

Theorem 2 suggests that

- For block models: Do maximum likelihood for I degree
 distributions I = 1,..., K, treating them as independent each
 a mixture of Poisson with appropriate parameter;
- In general, T = T_θ, θ → T_θ smooth, Fit joint degree distribution as a sample from a mixture of Poisson as in Theorem 2.
- Conjecture: Leads to \sqrt{n} consistent estimates.

Pseudo likelihood

(Chen-Bickel'10, related to Newman-Leicht'07)

For block models:

 $c_1, \dots, c_n, \mathcal{M}(\pi_1, \dots, \pi_K)$ i.i.d. Given (c_1, \dots, c_n) , and degrees (d_1, \dots, d_n) , for each i, $\{A_{ij}, j \neq i\}$, $\mathcal{M}(\mu_a; d_i)$, if $c_i = a$, are independent, such that (μ_1, \dots, μ_K) satisfies the block structure and symmetry.

Optimization is carried out over (π, μ) .

Simulation

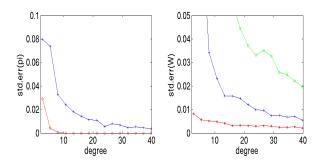
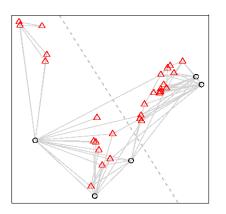


Figure: Estimation of π (left) and W (right) (K = 2, n = 1000)

Statistical Questions For Which These Results Can Be Used

- i) Checking "nonparametrically" with p moments whether 2 graphs are same (permutation tests used in social science literature for "block models", e.g., Wasserman and Faust, 1994).
- *ii)* Link prediction: predicting relations to unobserved vertices on the basis of an observed graph.
- iii) Model selection for hierarchies (block models).
- iv) Error bars on descriptive statistics.

Real Data: Zachary's Karate Club, K = 2



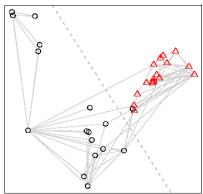
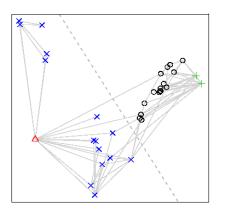


Figure: Left: profile likelihood. Right: Newman-Girvan

Real Data: Zachary's Karate Club, K = 4



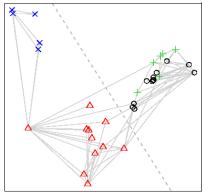


Figure: Left: profile likelihood. Right: Newman-Girvan

Real Data: Private Branch Exchange

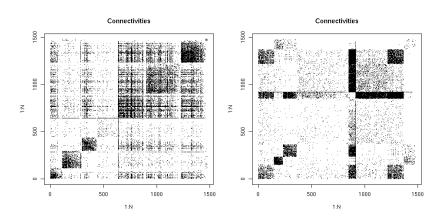


Figure: Different communities formed by NG and profile likelihood

Discussion

Extensions which are theoretically easy, in practice not so

- i) Directed graphs
- ii) Covariates (edge or vertex information)

Some extensions in progress

- iii) Computational issues
- iv) Relation of these models to dynamic ones etc. etc.