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Convex optimization

Convex optimization arises in control, signal processing,
machine learning, finance etc.

Several known algorithms such as gradient descent, Newton
method, interior point methods etc.

Upper bounds on computational complexities for specific
methods well-studied.

Relatively little research on fundamental hardness of convex
optimization.

Minimum computation needed by any algorithm to solve a
convex optimization problem.



A Motivating Example

Classical statistics studies sample complexity to obtain a
certain estimation error.

Example: binary classification using Support Vector Machines
(SVM).

Samples {(x1, y1), . . . , (xn, yn)} ∈ (Rd × {−1, 1})n drawn i.i.d..
Learn a mapping f : Rd 7→ {−1, 1} to predict y given x .

Predict using sign(wopt
T x).

Optimal wopt minimizes the criterion:

wopt = arg min
w∈Rd

1

n

n∑
i=1

max{0, 1− yiw
T xi}+

λ

2
‖w‖2.
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Estimation error vs. computational budget

Learning theory studies error bounds:

P(y 6= sign(wopt
T x)) ≤ 1

n

n∑
i=1

max{0, 1− yiw
T xi}+O

(√
ln 1/δ

n

)

with probability ≥ 1− δ.

Sample complexity natural when samples are few.

Often assumed that computation is abundant.

Given enough samples, wopt can be computed efficiently.
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Challenges with large datasets

Large and high-dimensional datasets shift bottleneck from
samples to computation.

wopt result of non-linear non-smooth optimization problem.

Interested in decay of estimation error with increasing
computational budget.

Algorithm independent understanding of computational
complexity.



Optimization for Estimation

Many estimators expressed as results of optimization
problems.

Most learning algorithms based on minimizing a convex
objective function.

Examples:

binary classification (e.g. SVM, logistic regression, boosting
etc.)
least squares regression (e.g. ridge, lasso etc.)
non-parametric estimation (kernel ridge regression, basis
pursuit etc.)

Complexity of optimization: essential for understanding
statistical complexity.



Convex Optimization setup

Optimization Problem: minx∈S f (x) = f (xf ).

S is a convex, compact set in Rd .

f is an (unknown) function picked from a class F .

We assume F is some subset of all convex functions.

Algorithm told S and F .

Goal: Find x such that f (x)− f (xf ) ≤ ε.

S

xf

f (x)



First-order oracle model of complexity

Work within oracle complexity model [NY’83].

Optimization proceeds in rounds t = 1, . . . ,T .

At time t, an algorithm M proposes xt as its guess for xf .

Oracle returns (f (xt),∇f (xt)).

∇f (x1)

xfx1

f (x)
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First-order oracle model of complexity

Work within oracle complexity model [NY’83].

Optimization proceeds in rounds t = 1, . . . ,T .

At time t, an algorithm M proposes xt as its guess for xf .

Oracle returns (f (xt),∇f (xt)).

Algorithms such as gradient descent, ellipsoid method,
quasi-Newton methods etc.

x2 xf

f (x)

x1 xT



Oracle model contd.

Optimization error: εT (M, f ) = f (xT )− f (xf ).

Oracle Complexity:
Smallest T (ε,M, f ) such that f (xT )− f (xf ) ≤ ε.

Minimax Complexity:
inf
M︸︷︷︸

Best algorithm

sup
f ∈F︸︷︷︸

worst function

T (ε,M, f ).

Equivalently, for a fixed T study infM supf ∈F εT (M, f ).

ε

xf

f (x)

xT



Stochastic first-order oracle model of complexity

At time t, an algorithm M proposes xt as its guess for xf .

Oracle returns (f̂ (xt), ẑ(xt)).

Unbiased function values: Ef̂ (xt) = f (xt).

Unbiased gradients: Eẑ(xt) = ∇f (xt).

Bounded variance: E‖ẑ(xt)‖21 ≤ σ2.

Algorithms such as stochastic gradient descent, mirror
descent, stocastic approximation procedures etc.



Stochastic Oracle model contd.

Optimization error: εT (M, f ) = Ef (xT )− f (xf ).

Oracle Complexity:
Smallest T (ε,M, f ) such that Ef (xT )− f (xf ) ≤ ε.

Minimax Complexity:
inf
M︸︷︷︸

Best algorithm

sup
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worst function
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Complexity lower bounds for convex, Lipschitz functions

Let Fcv(S, L) be the class of all convex functions f : S 7→ R
such that

|f (x)−f (y)| ≤ L‖x−y‖∞, equivalently ‖∇f (x)‖1 ≤ L ∀x , y ∈ S.

S f(x)

Theorem

No method can produce an ε-approximate optimizer for every

convex, Lipschitz function in fewer than O
(

rL2d
ε2

)
queries.

r is the radius of the largest `∞ ball contained in S.
Lower bound achieved by stochastic gradient descent.
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Complexity lower bounds for strongly convex functions

Let Fscv(S, L, γ) be the class of all functions f ∈ Fcv(S, L)
such that

f (x) ≥ f (y) + 〈∇f (y), x − y〉+
γ2

2
‖x − y‖22.

Functions with lower bounded curvature, widely studied in
optimization.

y

γ2

2 ‖x − y‖2

x

Theorem

No method can produce an ε-approximate optimizer for every

strongly convex, Lipschitz function in fewer than O
(

L2

γ2ε

)
queries.

Lower bound attained by stochastic gradient descent.
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Lower bounds for convex functions with sparse optima

Let Fsp(S, L, k) be the class of all convex functions f such
that xf has at most k non-zero entries and

|f (x)−f (y)| ≤ L‖x−y‖1, equivalently ‖∇f (x)‖∞ ≤ L ∀x , y ∈ S.

Theorem

No method can produce an ε-approximate optimizer for every

function in Fsp(S, L, k) in fewer than O
(

L2k2 log d
k

ε2

)
queries.

Much milder logarithmic dependence on dimension d .

Lower bound attained by the method of mirror descent
([NY’83], [BT’03]).
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Proof intuition

Proofs based on identifying a hard subset of functions.

Lower bound based on optimizing every function in hard
subset well.

Want a hard subset of functions with

Any two functions far enough so no algorithm can get lucky.

Large enough number of functions to force a lot of queries.

xf xg

ε

ε

g(xf )− g(xg ) ≤ ε

Large packing set of functions.
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The ρ semimetric

Definition

ρ(f , g) = inf
x∈S

[
f (x) + g(x)

]
− f (xf )− g(xg ).

ρ(f , g) ≥ 0, doesn’t obey triangle inequality.

ρ(f , g) = 0 if and only if xf = xg .

Measures how different f and g are for optimization.

∣∣x + ε
2

∣∣
ε

∣∣x − ε
2

∣∣

− ε
2

ε
2

∣∣x + 1
2

∣∣

−1
2

1
2

∣∣x − 1
2

∣∣

ρ(f , g) = ε ρ(f , g) = 1



Proof Outline

Design a ρ-separated subclass of F .

Algorithm needs to identify oracle’s f .

Stochastic first-order oracle corrupts (f (xt),∇f (xt)) with
noise.

Identifying f equivalent to estimating f from noisy samples.

Use sample complexity results for the estimation problem to
lower bound number of queries.



A ρ-separated subclass of Fcv

Let S = [−1/2, 1/2]d

Define f +
i (x) = |1/2 + x(i)|, f −i (x) = |1/2− x(i)|.

For α ∈ {−1, 1}d define

gα(x) =
1

d

d∑
i=1

(
1

2
+ αiδ

)
f +
i (x) +

(
1

2
− αiδ

)
f −i (x)

1
2−1

2
1
2−1

2

f +(x) f −(x)



Conclusions

Obtain tight minimax lower bounds on oracle complexity for
stochastic convex optimization.

Clean information theoretic proofs through reduction to a
parameter estimation problem.

Identify the ρ semimetric natural for optimization.

Bounds show optimality of stochastic gradient descent and
stochastic mirror descent for certain problems.
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