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Spectral Norm Reduction

Theorem 1. [Kashin—Tzafriri] Suppose the n columns of A have unit
¢> norm. There is a set T of column indices for which

n

|A|"

7| > and  ||A.| <C.

Examples:

&= A has identical columns. Then |7| > 1.

& A has orthonormal columns. Then |7| > n.
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Spectral Norm Reduction

Theorem 1. [Kashin—Tzafriri] Suppose the n columns of A have unit
¢> norm. There is a set T of column indices for which

n

|A|"

7| > and  ||A.| <C.

Theorem 2. [T 2007] There is a randomized, polynomial-time algorithm
that produces the set T.

Overview:

¢ Randomly select columns
¢ Remove redundant columns
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Random Column Selection: Intuitions

:¢ Random column selection reduces norms

@ A random submatrix gets “its share” of the total norm
« Submatrices with small norm are ubiquitous

8- Random selection is a form of regularization

s Added benefit: Dimension reduction
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Example: What Can Go Wrong

1 1
A — 1 1

1 1

- 1 —
1l W
A = 1
1

b 1 —

|A]| = ||A,]| = V2 — No reduction!
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The (00, 2) Operator Norm

Definition 3. The (o0, 2) operator norm of a matrix B is

|Bll o o = max{[|Bzxl|, : lz|, =1}

00,2

b

Proposition 4. If B has s columns, then the best general bound is
1Bl < Vs|IB|.
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Random Reduction of (oo, 2) Norm

Lemma 5. Suppose the n columns of A have unit {5 norm. Draw a
uniformly random subset o of columns whose cardinality

2n
5-
| A

o] =

Then
EAsl < CVlol.

s Problem: How can we use this information?
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Pietsch Factorization

Theorem 6. [Pietsch, Grothendieck] Every matrix B can be factorized
as B =TD where

¢ D is diagonal and nonnegative with trace(D?) = 1, and

# [Bllo o < Tl < vV7/2 Bl
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Pietsch and Norm Reduction

Lemma 7. Suppose B has s columns. There is a set T of column indices
for which

22 and Bl < V7

1
— | B :
75 1Bl

Proof. Consider a Pietsch factorization B = T'D. Select
T:{j:d?jSQ/S}.

. 2 y - . . .
Since ) d5; = 1, Markov's inequality implies |7 > s/2. Calculate

|B-| = |TD-|| < |T]| - [| D[] < V/7/2 | Bl 2 - V2/5.
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Proof of Kashin—T zafriri

: Suppose the n columns of A have unit {5 norm
& Lemma 5 provides (random) o for which

2n
A= M el <cvio

@ Lemma 7 applied to B = A, yields a subset 7 C ¢ for which

o] 1
7[> and B[ <7 1Bl oo 2
2 Valed ’
@ Simplify
n

« Note: This is almost an algorithm
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Pietsch and Eigenvalues

s Consider a matrix B with Pietsch factorization B = T'D
& Suppose |[T|| < «

:a Calculate

B=TD — | Bz|.=|TDz|; Ve
= |Bz|; < o* | Dzl v
— z*(B*B)x < o - x*D*x Vo
— z* |B*B — onDQ} x <0 Vo
— Amax(B*B — a®D?) < 0
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Pietsch is Convex

. Key new idea: Can find Pietsch factorizations by convex programming

min Amax(B*B — o*F)
subject to F diagonal, F >0, trace(F)=1

« |f value at F is nonpositive, then we have a factorization
B=(BF '/?).F!'? with [BF'?||<a
@ Proof of Kashin—Tzafriri offers target value for «

8 Can also perform binary search to approximate minimal value of «
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An Optimization over the Simplex

o Express F' = diag(f)
8 Constraints delineate the probability simplex:

A={f:trace(f) =1 and f >0}
:8 QObjective function and its subdifferential:
J(f) = Amax(B*B — o diag(f))
0J(f) = conv {—a2 lu|? : u top evec. B*B — o diag(f), |u|l, = 1}

:a Obtain
min J(f) subject to fea
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Entropic Mirror Descent

1. Intialize fV) «— s~ le and k — 1
2. Compute a subgradient: 8 € (‘3J(f("“))

3. Determine step size:
2log s

k|6]%

B

4. Update variable:

Flt1) %) o exp{—p 0}
trace( f(%) o exp{—03; 0})

5. Increment k «<— k + 1, and return to 2.

References: [Eggermont 1991, Beck—Teboulle 2003]
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Other Formulations

0 Modified primal to simultaneously identify «

min Amax(B*B — o*F) + o
subject to F diagonal, F >0, trace(F)

@ Dual problem is the famous MAXcuUT SDP:

max (B*B, Z) subject to diag(Z) = e,
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Related Results

Theorem 8. [Bourgain—Tzafriri 1991] Suppose the n columns of A
have unit {5 norm. There is a set T of column indices for which

cn

k(A.) < V3.
AP Ar) =V3

7| =

Examples:

&= A has identical columns. Then |7| > 1.

& A has orthonormal columns. Then |7| > cn.
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Related Results

Theorem 8. [Bourgain—Tzafriri 1991] Suppose the n columns of A
have unit {5 norm. There is a set T of column indices for which

cn

|T‘ > 5
| Al

k(A;) < V3.

Theorem 9. [T 2007] There is a randomized, polynomial-time algorithm
that produces the set T.
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To learn more...

E-mail:

‘& jtroppQacm.caltech.edu

Web: http://www.acm.caltech.edu/~jtropp
Papers in Preparation:

@ T, “Column subset selection, matrix factorization, and eigenvalue optimization”

@ T, “Paved with good intentions: Computational applications of matrix column
partitions”
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