Graph Sparsification by Effective Resistances

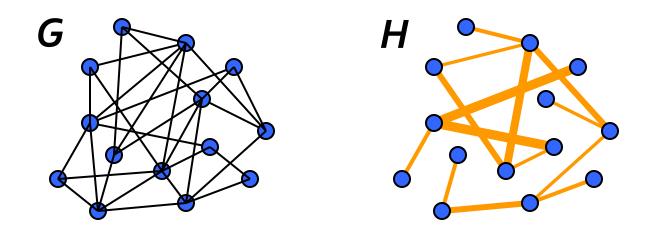
Daniel Spielman

Nikhil Srivastava

Yale

Sparsification

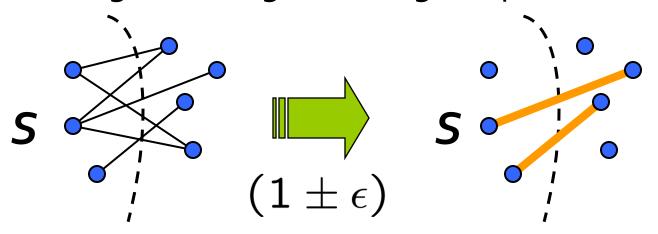
Approximate any graph **G** by a sparse graph **H**.



- Nontrivial statement about G
- H is faster to compute with than G

Cut Sparsifiers [Benczur-Karger'96]

H approximates G if for every cut $S^{1/2}V$ sum of weights of edges leaving S is preserved



Can find H with O(nlogn/ ϵ^2) edges in $\tilde{O}(m)$ time

The Laplacian (quick review)

$$L_G = D_G - A_G$$

Quadratic form

$$x:V\to\mathbb{R}$$

$$x^T L_G x = \sum_{uv \in E} c_{uv} (x(u) - x(v))^2$$

Positive semidefinite

 $Ker(L_G)=span(\mathbf{1})$ if \mathbf{G} is connected

Cuts and the Quadratic Form

For characteristic vector $x_S \in \{0,1\}^n$ of $S \subseteq V$

$$x_S^T L_G x_S = \sum_{uv \in E} c_{uv} (x(u) - x(v))^2$$

$$= \sum_{uv \in (S, \overline{S})} c_{uv}$$

$$= wt_G(S, \overline{S})$$

So BK says:

$$1 - \epsilon \le \frac{x^T L_H x}{x^T L_G x} \le 1 + \epsilon \quad \forall x \in \{0, 1\}^n$$

A Stronger Notion

For characteristic vector $x_S \in \{0,1\}^n, S \subseteq V$

$$x_S^T L_G x_S = \sum_{uv \in E} c_{uv} (x(u) - x(v))^2$$

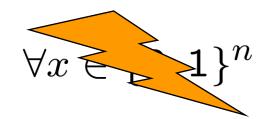
$$= \sum_{uv \in (S, \overline{S})} c_{uv}$$

$$= wt_G(S, \overline{S})$$

So BK says:

$$1 - \epsilon \le \frac{x^T L_H x}{x^T L_C x} \le 1 + \epsilon \quad \forall x \in \mathbb{N}^n$$

$$\forall x \in \mathbb{R}^n$$



Why?

1. All eigenvalues are preserved

By Courant-Fischer,

$$(1 - \epsilon)\lambda_i(G) \le \lambda_i(H) \le (1 + \epsilon)\lambda_i(G)$$

G and **H** have similar eigenvalues.

For spectral purposes, **G** and **H** are equivalent.

1. All eigenvalues are preserved

By Courant-Fischer,

$$(1 - \epsilon)\lambda_i(G) \le \lambda_i(H) \le (1 + \epsilon)\lambda_i(G)$$

G and **H** have similar equalities

For spectral purpo

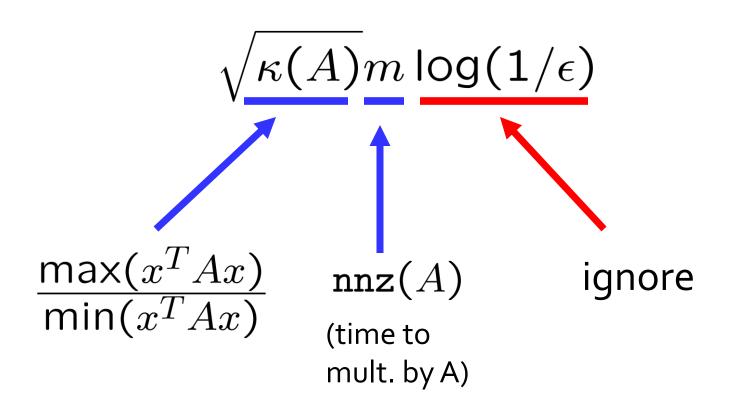
cf. matrix sparsifiers

[AMo1,FKVo4,AHKo5]

$$||L_G - L_H||_2 \le \epsilon$$

2. Linear System Solvers

Conj. Gradient solves Ax = b in



2. Preconditioning

Find easy B that approximates A . Solve $B^{-1}Ax=B^{-1}b$ instead.

$$\sqrt{\kappa(B^{-1}A)}(m+\operatorname{solve}(B))\log(1/\epsilon)$$

 $\frac{\max \frac{x^T A x}{x^T B x}}{\min \frac{x^T A x}{x^T B x}}$

Time to solve By = c (mult.by B^{-1})

2. Preconditioning

Find easy
$$E$$
 Solve B^{-1} Use $B=L_H$? Instead.
$$\sqrt{\kappa(B^{-1}A)(m+\operatorname{solve}(B))\log(1/\epsilon)}$$

$$\kappa=\frac{1+\epsilon}{1-\epsilon}=O(1)$$
 ?

2. Preconditioning

Find easy E Spielman-Teng Solve B[STOC '04] stead. Nearly linear time. $\kappa(B^{-1}A)(m+\mathtt{solve}(B))\log(1/\epsilon)$

$$\kappa = \log^{O(1)} n$$

 $O(m \log^{O(1)} n)$

Examples

Example: Sparsify Complete Graph by Ramanujan Expander

G is complete on n vertices. $\lambda_i(L_G) = n$

 $m{H}$ is d-regular Ramanujan graph. $\lambda_i(L_H) \sim d$ $\lambda_i(rac{n}{d}L_H) \sim n$

Example: Sparsify Complete Graph by Ramanujan Expander

G is complete on n vertices. $\lambda_i(L_G) = n$

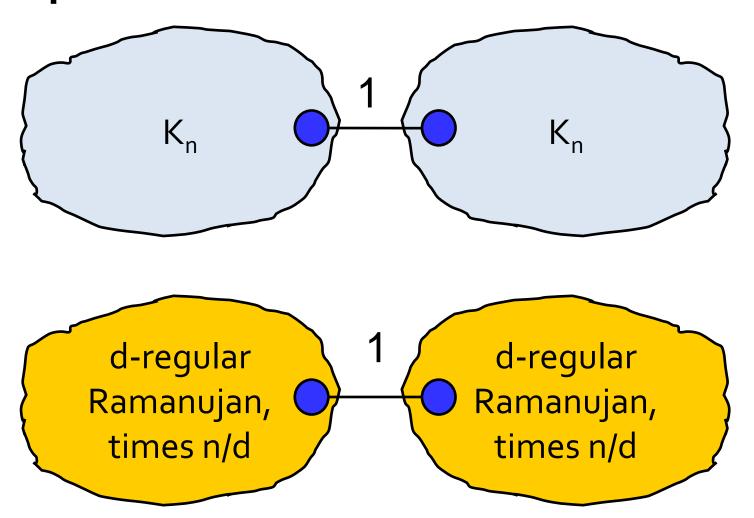
 $m{H}$ is d-regular Ramanujan graph. $\lambda_i(L_H) \sim d$ $\lambda_i(rac{n}{d}L_H) \sim n$

$$rac{x^T(rac{n}{d}L_H)x}{x^TL_Gx} \sim 1$$

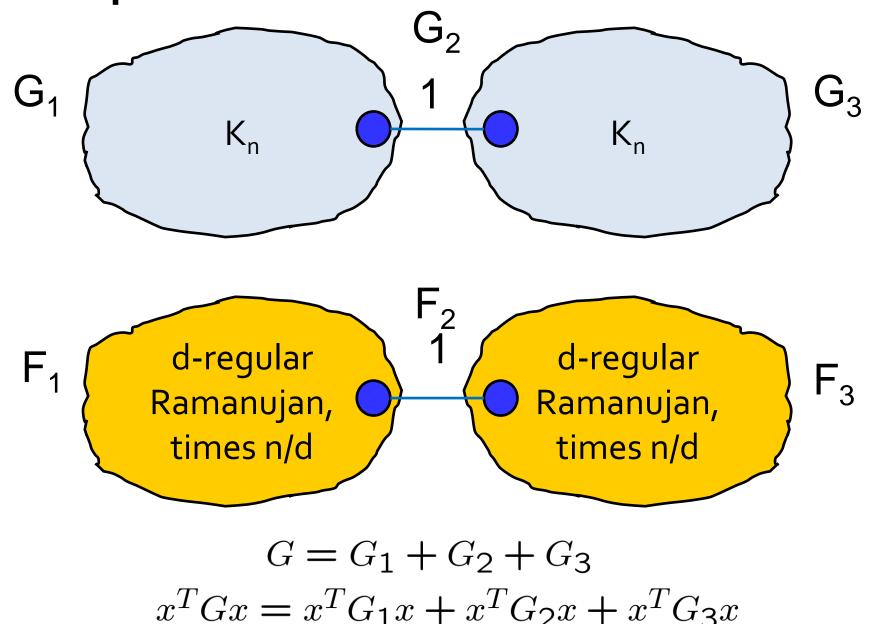
Each edge has weight (n/d)

So, $\frac{n}{d}H$ is a good sparsifier for \boldsymbol{G} .

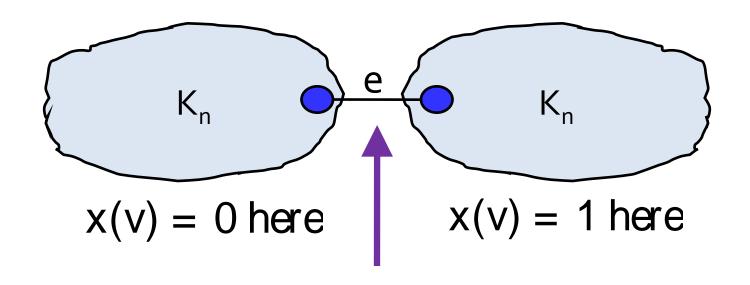
Example: Dumbell



Example: Dumbell



Example: Dumbell. Must include cut edge



Only this edge contributes to

$$x^{T}L_{G}x = c_{(u;v)}(x(u); x(v))^{2}$$
(u;v)2E

If e2H;
$$x^T L_H x = 0$$

Results

Main Theorem

Every G=(V,E,c) contains H=(V,F,d) with $O(nlogn/\epsilon^2)$ edges such that:

$$(1-\epsilon)x^TL_Gx \leq x^TL_Hx \leq (1+\epsilon)x^TL_Gx \quad \forall x \in \mathbb{R}^n$$

Main Theorem

Every G=(V,E,c) contains H=(V,F,d) with $O(nlogn/\epsilon^2)$ edges such that:

$$(1-\epsilon)x^TL_Gx \leq x^TL_Hx \leq (1+\epsilon)x^TL_Gx \quad \forall x \in \mathbb{R}^n$$

Can find \boldsymbol{H} in $\tilde{O}(m)$ time by random sampling.

Main Theorem

Every G=(V,E,c) contains H=(V,F,d) with $O(nlogn/\epsilon^2)$ edges such that:

$$(1-\epsilon)x^TL_Gx \leq x^TL_Hx \leq (1+\epsilon)x^TL_Gx \quad \forall x \in \mathbb{R}^n$$

Can find \boldsymbol{H} in $\tilde{O}(m)$ time by random sampling.

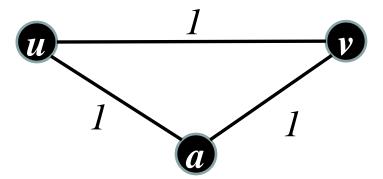
Improves [BK'96]
Improves O(nlog^c n) sparsifiers [ST'04]

How?

Electrical Flows.

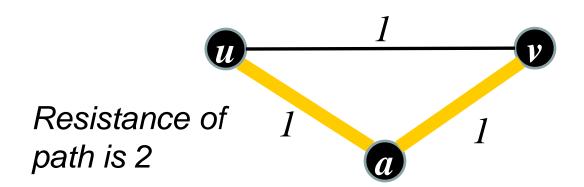
Identify each edge of G with a unit resistor

 $R_{\mathsf{eff}}(e)$ is resistance between endpoints of e



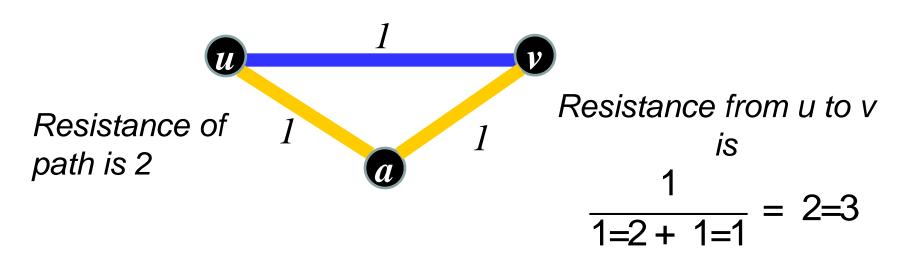
Identify each edge of G with a unit resistor

 $R_{\rm eff}(e)$ is resistance between endpoints of e



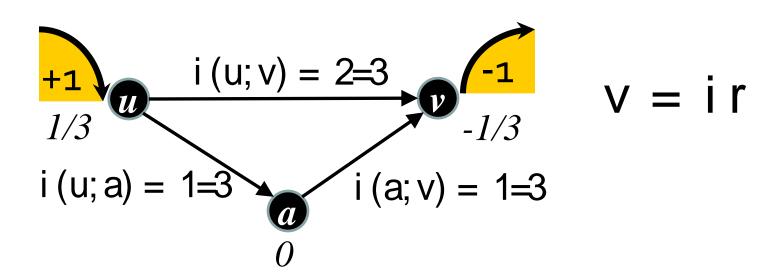
Identify each edge of G with a unit resistor

 $R_{\mbox{eff}}(e)$ is resistance between endpoints of e



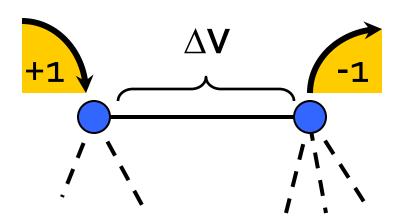
Identify each edge of G with a unit resistor

 $R_{\mbox{eff}}(e)$ is resistance between endpoints of e



Identify each edge of G with a unit resistor

 $R_{\rm eff}(e)$ is resistance between endpoints of e



 potential difference between endpoints when flow one unit from one endpoint to other

$$R_{\mathsf{eff}}(e) = \Delta v$$

$$R_{\text{eff}}(e) = \mathbb{P}_{\text{spanning }T}[e \in T]$$

$$R_{\mathsf{eff}}(uv) \propto \mathbb{E}_v T_u + \mathbb{E}_u T_v$$

[Chandra et al. STOC '89]

The Algorithm

Sample edges of G with probability

$$p_e \propto R_{\mathsf{eff}}(e)$$

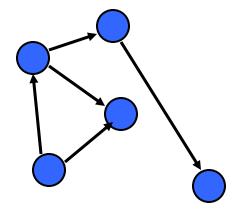
If chosen, include in H with weight $\frac{1}{p_e}$

Take $q=O(nlogn/\epsilon^2)$ samples with replacement

Divide all weights by q.

An algebraic expression for $R_{\mbox{eff}}$

Orient G arbitrarily.



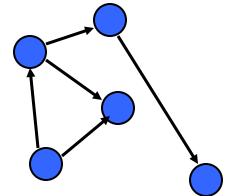
An algebraic expression for $R_{\mbox{eff}}$

Orient G arbitrarily.

Signed incidence matrix $B_{m \pounds n}$:

$$B(e,v) = \begin{cases} +1 & \text{if } v \text{ is head of } e \\ -1 & \text{if } v \text{ is tail of } e \\ 0 & \text{otherwise} \end{cases}$$

i.e.,
$$B(uv,\cdot) = \chi_u - \chi_v$$
.



An algebraic expression for $R_{\mbox{eff}}$

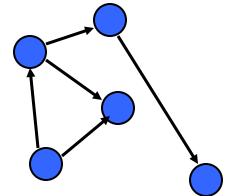
Orient G arbitrarily.

Signed incidence matrix $B_{m \pounds n}$:

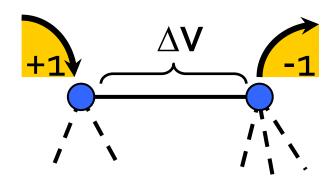
$$B(e,v) = \begin{cases} +1 & \text{if } v \text{ is head of } e \\ -1 & \text{if } v \text{ is tail of } e \\ 0 & \text{otherwise} \end{cases}$$

i.e.,
$$B(uv,\cdot) = \chi_u - \chi_v$$
.

Write Laplacian as $L = B^T B$



An algebraic expression for $R_{ m eff}$



$$R_{\text{eff}}(uv) = (\chi_u - \chi_v)^T L^{-1} (\chi_u - \chi_v)$$
$$= B(uv, \cdot) L^{-1} B(uv, \cdot)^T$$

An algebraic expression for $R_{
m eff}$

Let
$$\Pi = BL^{-1}B^T$$
.

Then

$$R_{\text{eff}}(e) = B(e, \cdot)L^{-1}B(e, \cdot)^{T}$$
$$= BL^{-1}B^{T}(e, e).$$

An algebraic expression for $R_{ m eff}$

Let
$$\Pi = BL^{-1}B^T$$
.

Then

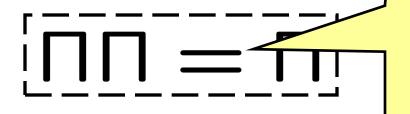
$$R_{\text{eff}}(e) = B(e, \cdot)L^{-1}B(e, \cdot)^{T}$$
$$= BL^{-1}B^{T}(e, e).$$

An algebraic expression for $R_{\mbox{eff}}$

Let
$$\Pi = BL^{-1}B^T$$
.

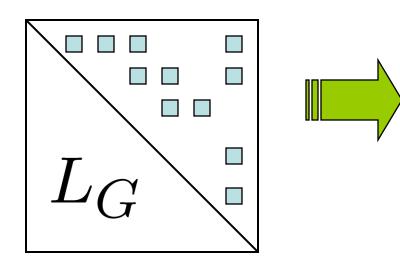
Then

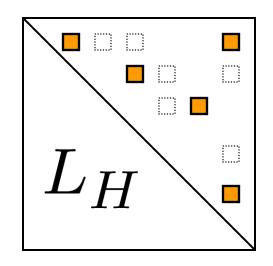
$$R_{\text{eff}}(e) = B(e, \cdot)L^{-1}B(e, \cdot)^{T}$$
$$= BL^{-1}B^{T}(e, e).$$

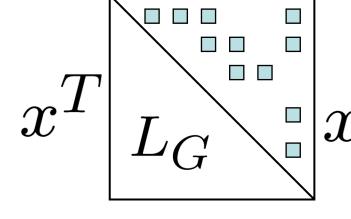


Reduce thm. to statement about II

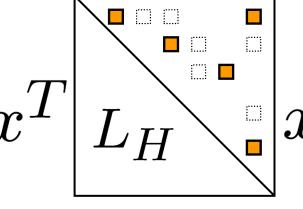
Goal



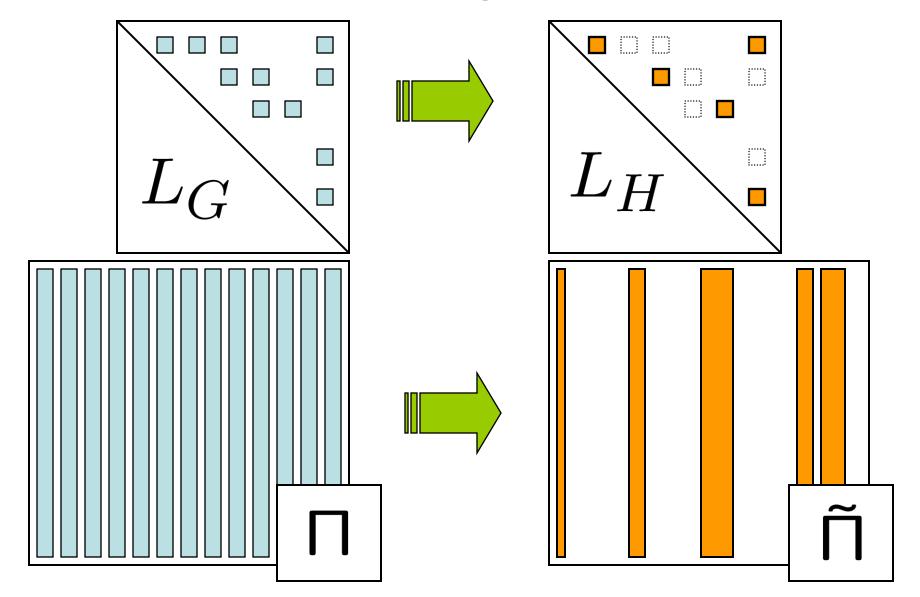




Want



Sampling in Π



Lemma.

$$1 - \epsilon \le \frac{x^T L_H x}{x^T L_G x} \le 1 + \epsilon \quad \forall x \in \mathbb{R}^n$$

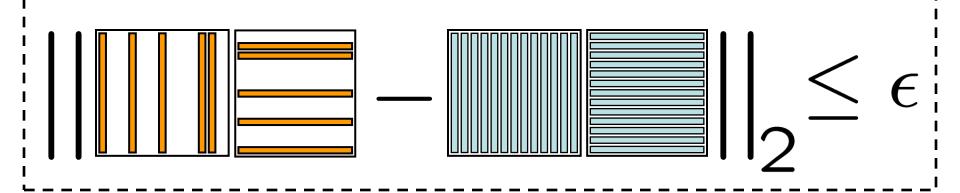
$$\iff \|\tilde{\Pi}\tilde{\Pi}^T - \Pi\Pi^T\|_2 \le \epsilon$$

New Goal

Lemma.

$$1 - \epsilon \le \frac{x^T L_H x}{x^T L_G x} \le 1 + \epsilon \quad \forall x \in \mathbb{R}^n$$

$$\iff \|\tilde{\Pi}\tilde{\Pi}^T - \Pi\Pi^T\|_2 \le \epsilon$$



Sample edges of *G* with probability

$$p_e \propto R_{\mathsf{eff}}(e)$$

If chosen, include in $\emph{\textbf{H}}$ with weight $\frac{1}{p_e}$

Take $q=O(nlogn/\epsilon^2)$ samples with replacement

Sample columns of Π with probability

$$p_e \propto R_{\mathsf{eff}}(e)$$

If chosen, include in $\overline{\Pi}$ with weight $\frac{1}{p_e}$

Take $q=O(nlogn/\epsilon^2)$ samples with replacement

Sample columns of Π with probability

$$p_e \propto \Pi(e,e)$$

If chosen, include in $\overline{\Pi}$ with weight $\frac{1}{p_e}$

Take $q=O(nlogn/\epsilon^2)$ samples with replacement

Sample columns of Π with probability

$$p_e \propto \Pi(e,e) = \frac{\|\Pi(\cdot,e)\|^2}{\|\cdot\|^2}$$

If chosen, include in $\overline{\prod}$ with weight $\frac{1}{p_e}$

Take $q=O(nlogn/\epsilon^2)$ samples with replacem

$$\Pi^T\Pi = \Pi$$

Sample columns of Π with probability

$$p_e \propto \Pi(e,e) = \frac{\|\Pi(\cdot,e)\|^2}{\|\cdot\|^2}$$

If chosen, include in $\overline{\prod}$ with weight $\frac{1}{p_e}$

Tales with replacement

cf. low-rank approx.

Di [FKV04, RV07]

$$\Pi^T\Pi = \Pi$$

A Concentration Result

Lemma.(Rudelson '99)

If we sample $n \log n/\epsilon^2$ cols of Π with $p_e \propto \|\Pi(\cdot,e)\|^2$, then

$$\mathbb{E}\|\tilde{\Pi}\tilde{\Pi} - \Pi\Pi\|_2 \leq \epsilon.$$

A Concentration Result

Lemma.(Rudelson '99)

If we sample $n \log n/\epsilon^2$ cols of Π with $p_e \propto \|\Pi(\cdot,e)\|^2$, then

$$\mathbb{E}\|\tilde{\Pi}\tilde{\Pi} - \Pi\Pi\|_2 \leq \epsilon.$$

So with prob. ½:

$$\left| \left| \left| \left| \left| \right| \right| \right| \right| = - \left| \left| \left| \left| \left| \right| \right| \right| \right| \right| = 2 \epsilon$$

A Concentration Result

Lemma.(Rudelson '99)

If we sample $n \log n/\epsilon^2$ cols of Π with $p_e \propto \|\Pi(\cdot,e)\|^2$, then

$$\mathbb{E}\|\tilde{\Pi}\tilde{\Pi} - \Pi\Pi\|_2 \leq \epsilon.$$

So with prob. ½:

$$x^T \downarrow_{L_G} x \sim x^T \downarrow_{L_H} x$$

Sample edges of G with probability

$$p_e \propto R_{\mathsf{eff}}(e)$$

If chosen, include in H with weight $\frac{1}{p_e}$

Take $q=O(nlogn/\epsilon^2)$ samples with replacement

Sample edges of G with probability

$$p_e \propto R_{\mathsf{eff}}(e)$$

If chosen, include in H with weight $\frac{1}{p_e}$

Take $q=O(nlogn/\epsilon^2)$ samples with replacement

$$R_{\text{eff}}(uv) = ||BL^{-1}(\chi_u - \chi_v)||_2^2$$

$$R_{\text{eff}}(uv) = ||BL^{-1}(\chi_u - \chi_v)||_2^2$$

So care about distances between cols. of **BL**⁻¹

$$R_{\text{eff}}(uv) = ||BL^{-1}(\chi_u - \chi_v)||_2^2$$

So care about distances between cols. of BL^{-1} Johnson-Lindenstrauss! Take random $Q_{logn\pounds m}$

$$\frac{(\log n \times n)}{Z}$$

$$R_{\mathsf{eff}}(uv) \sim \|Z(\chi_u - \chi_v)\|^2$$

Find **rows** of $Z_{log \, n \pounds n}$ by

$$\begin{bmatrix} \log n \times n \\ Z \end{bmatrix}$$

$$Z=QBL^{-1}$$

$$ZL=QB$$

$$z_i L = (QB)_i$$

$$R_{\mathsf{eff}}(uv) \sim \|Z(\chi_u - \chi_v)\|^2$$

Find rows of $Z_{\log n \pounds n}$ by

$$\begin{bmatrix} \log n \times n \end{bmatrix}$$

$$Z=QBL^{-1}$$

$$ZL=QB$$

$$R_{\mathsf{eff}}(uv) \sim \|Z(\chi_u - \chi_v)\|^2$$

$$z_i L = (QB)_i$$

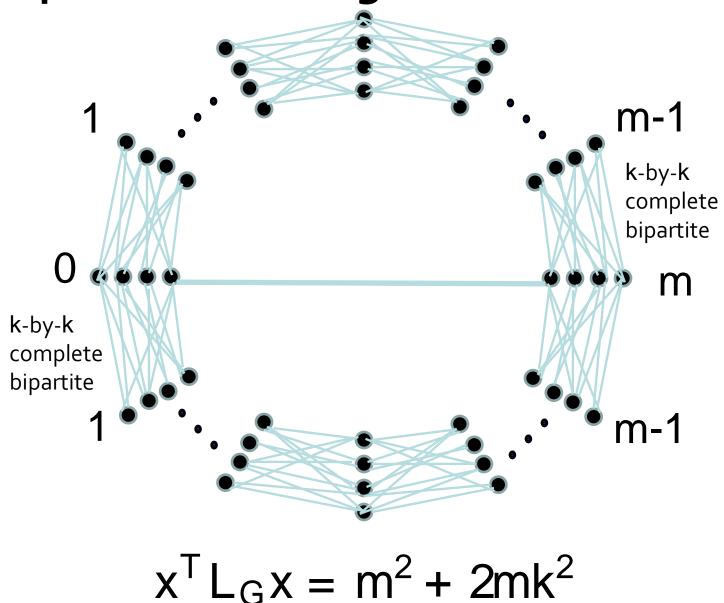
Solve *O(logn)* linear systems in *L* using Spielman-Teng '04 solver which uses combinatorial O(nlog^cn) sparsifier.

Can show approximate R_{eff} suffice.

Main Conjecture

Sparsifiers with O(n) edges.

Example: Another edge to include $(k^2 < m)$



The Projection Matrix Lemma.

1. Π is a projection matrix

$$\Pi\Pi = B^T L^+ B^T B L^+ B^T$$
$$= B L^+ L L^+ B^T$$
$$= B L^+ B^T$$

- 2. $im(\Pi)=im(B)$
- 3. $Tr(\Pi)=n-1$
- 4. $\Pi(e,e)=||\Pi(e,-)||^2$

$$\Pi S \Pi = \sum_{e} S(e, e) \Pi_e \Pi_e^T$$

$$\Pi S\Pi = \sum_{e} S(e, e) \Pi_{e} \Pi_{e}^{T}$$

$$= \sum_{e} \frac{(\text{\# times } e \text{ sampled})}{qp_{e}} \Pi_{e} \Pi_{e}^{T}$$

$$\begin{split} \Pi S \Pi &= \sum_{e} S(e,e) \Pi_e \Pi_e^T \\ &= \sum_{e} \frac{(\text{\# times } e \text{ sampled})}{q p_e} \Pi_e \Pi_e^T \\ &= \frac{1}{q} \sum_{e} (\text{\# times } e \text{ sampled}) \frac{\Pi_e}{\sqrt{p_e}} \frac{\Pi_e^T}{\sqrt{p_e}} = \frac{1}{q} \sum_{i=1}^q y_i y_i^T \end{split}$$

for y_i drawn i.i.d. from

$$y = \frac{\Pi_e}{\sqrt{p_e}}$$
 with prob. p_e

$$\begin{split} \Pi S \Pi &= \sum_{e} S(e,e) \Pi_e \Pi_e^T \\ &= \sum_{e} \frac{(\text{\# times } e \text{ sampled})}{q p_e} \Pi_e \Pi_e^T \\ &= \frac{1}{q} \sum_{e} (\text{\# times } e \text{ sampled}) \frac{\Pi_e}{\sqrt{p_e}} \frac{\Pi_e^T}{\sqrt{p_e}} = \frac{1}{q} \sum_{i=1}^q y_i y_i^T \end{split}$$

for y_i drawn i.i.d. from

$$y = \frac{\Pi_e}{\sqrt{p_e}}$$
 with prob. $p_e = \frac{R_{\text{eff}}(e)}{n-1}$.

since $\sum_{e} R_{eff}(e) = Tr(\Pi) = n - 1$.

We also have

$$\mathbb{E} y y^T = \sum_e p_e \frac{1}{p_e} \Pi_e \Pi_e^T = \Pi \Pi = \Pi$$

and

$$||y|| = \frac{1}{\sqrt{p_e}} ||\Pi_e|| = \sqrt{\frac{n-1}{R_{\text{eff}}(e)}} \sqrt{R_{\text{eff}}(e)}$$

since $||\Pi_e||^2 = \Pi(e,e)$.

Goal:
$$1 - \epsilon \le \frac{x^T L_H x}{x^T L_G x} \le 1 + \epsilon \quad \forall x \in \mathbb{R}^n$$

Goal:
$$1 - \epsilon \le \frac{x^T L_H x}{x^T L_C x} \le 1 + \epsilon \quad \forall x \in \mathbb{R}^n$$

Write

$$S(e,e) = d_e = \frac{\text{(\# times } e \text{ is sampled)}}{qp_e}$$

Then
$$L_H = B^T S B$$
.

Goal:
$$1 - \epsilon \le \frac{x^T L_H x}{x^T L_C x} \le 1 + \epsilon \quad \forall x \in \mathbb{R}^n$$

Write

$$S(e,e) = d_e = \frac{\text{(\# times } e \text{ is sampled)}}{qp_e}$$

Then $L_H = B^T S B$.

Goal:
$$1 - \epsilon \le \frac{x^T B^T S B x}{x^T B^T B x} \le 1 + \epsilon \quad \forall x \in \mathbb{R}^n$$

$$1 - \epsilon \le \frac{x^T B^T S B x}{x^T B^T B x} \le 1 + \epsilon \quad \forall x \in \mathbb{R}^n$$

$$1 - \epsilon \le \frac{x^T B^T S B x}{x^T B^T B x} \le 1 + \epsilon \quad \forall x \in \mathbb{R}^n$$

$$1 - \epsilon \le \frac{y^T S y}{y^T y} \le 1 + \epsilon \quad \forall y = B x, x \in \mathbb{R}^n$$

$$1 - \epsilon \le \frac{x^T B^T S B x}{x^T B^T B x} \le 1 + \epsilon \quad \forall x \in \mathbb{R}^n$$

$$1 - \epsilon \le \frac{y^T S y}{y^T y} \le 1 + \epsilon \quad \forall y = B x, x \in \mathbb{R}^n$$

$$-\epsilon \le \frac{y^T (S - I) y}{y^T y} \le \epsilon \quad \forall y \in \text{im}(B)$$

$$1 - \epsilon \le \frac{x^T B^T S B x}{x^T B^T B x} \le 1 + \epsilon \quad \forall x \in \mathbb{R}^n$$

$$1 - \epsilon \le \frac{y^T S y}{y^T y} \le 1 + \epsilon \quad \forall y = B x, x \in \mathbb{R}^n$$

$$-\epsilon \le \frac{y^T (S - I) y}{y^T y} \le \epsilon \quad \forall y \in \text{im}(B)$$

$$-\epsilon \le \frac{y^T \Pi (S - I) \Pi y}{y^T y} \le \epsilon \quad \forall y \in \text{im}(B) = \text{im}(\Pi)$$

$$1 - \epsilon \le \frac{x^T B^T S B x}{x^T B^T B x} \le 1 + \epsilon \quad \forall x \in \mathbb{R}^n$$

$$1 - \epsilon \le \frac{y^T S y}{y^T y} \le 1 + \epsilon \quad \forall y = B x, x \in \mathbb{R}^n$$

$$-\epsilon \le \frac{y^T (S - I) y}{y^T y} \le \epsilon \quad \forall y \in \text{im}(B)$$

$$-\epsilon \le \frac{y^T \Pi(S - I) \Pi y}{y^T y} \le \epsilon \quad \forall y \in \text{im}(B) = \text{im}(\Pi)$$

$$\left[\|\Pi S \Pi - \Pi \Pi\|_2 \le \epsilon \right]$$

Lemma.

$$1 - \epsilon \le \frac{x^T L_H x}{x^T L_G x} \le 1 + \epsilon \quad \forall x \in \mathbb{R}^n$$

$$\iff \|\tilde{\Pi}\tilde{\Pi}^T - \Pi\Pi^T\|_2 \le \epsilon$$

Proof. Π is the projection onto im(B).