Sequential Algorithms for Generating Random Graphs

Amin Saberi Stanford University

Outline

■ Generating random graphs with given degrees (joint work with M Bayati and JH Kim)

 Generating random graphs with large girth (joint work with M Bayati and A Montanari)

×

Problem

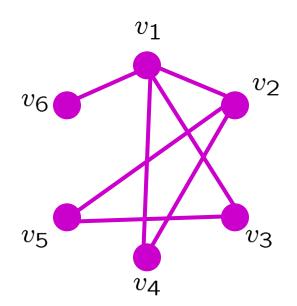
Given integers
$$d_1, \ldots, d_n$$

$$m = \frac{1}{2} \sum_{i=1}^{n} d_i$$

Generate a *simple* graph with that degree sequence chosen uniformly at random

Example

$$(d_1,\ldots,d_6)=(4,3,2,2,2,1)$$



Application

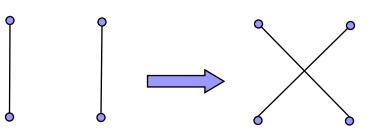
Generating large sparse graphs, with sparse (typically power-law) degree sequence

- Simulating Internet topology (e.g. Inet)
- Biological Networks (motif detection)motif: sub-networks with higher frequency than random
- Coding theory: bipartite graphswith no small stopping sets

Existing methods (Theory)

Markov Chain Monte Carlo method

■ The switch chain



It is "Rapidly mixing":

[Kannan-Tetali-Vampala 99]

[Cooper-Dyer-GreenHill 05]

[Feder-Guetz-S.-Mihail 07]

Running time at least O(n⁷)

Jerrum-Sinclair chain(Walk on the self-reducibility tree)

Running time at least $O(n^4)$

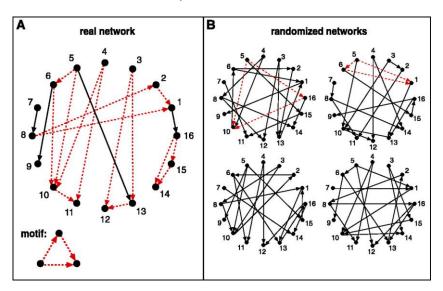
A month on Pentium 2 for n = 1000

Existing methods (Practice)

Lots of heuristics: INET, PEG, ...

Example: Milo et al., Science 2002; Kashtan et al. 2004

on Network Motifs



■ The heuristic used for generating random graphs has a substantial bias

New method: Sequential Importance Sampling

Very successful in practice:

Knuth'76: for counting self-avoiding random walks estimating the running time of heuristics

More recently for random graph generation: Chen-Diaconis-Holmes-Liu'05, Blitzstein-Diaconis'05

No analysis! (with the exception of this work and Blanchet 06)

Our Algorithm

Repeat

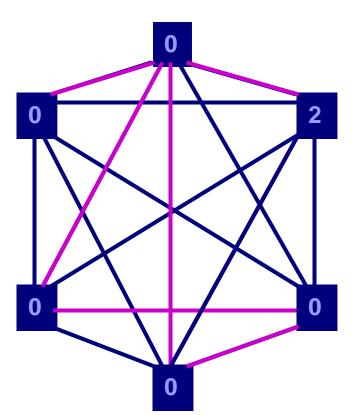
Add an edge between (i,j) with probab. $p_{ij} \propto \hat{d}_i \hat{d}_j (1 - \frac{d_i d_j}{4m})$.

remaining

degree

Until
$$m = \sum_{i=1}^{n} d_i/2$$
 edges are added

or there are no valid choices left



degree

Same calculation in

10 microseconds

failure

Analysis of the Algorithm

Theorem 1 (Bayati-Kim-S. 07):

The running time of the algorithm is $O(m d_{\text{max}})$.

Furthermore, if $d_{\text{max}} = O(m^{0.25-\tau})$

Or if the degree sequence is regular and $d = O(n^{0.5-\tau})$

Algorithm is successful with probability 1 - o(1)

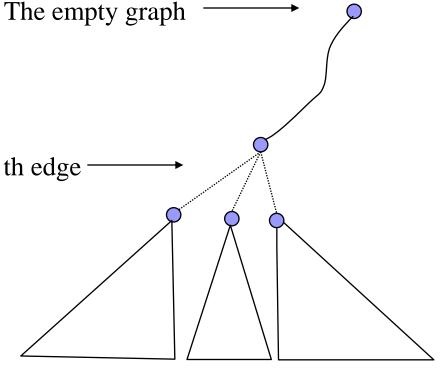
The probability of generating any graph is $\frac{1}{L}(1 \pm o(\frac{1}{\log m}))$ where L is the number of graphs

Basic Idea of $p_{ij} \propto \hat{d}_i \hat{d}_j (1 - \frac{d_i d_j}{4m})$.

The tree of execution

Choosing the k th edge

the prob. of choosing a sub-tree should be proportional to the number of valid leaves

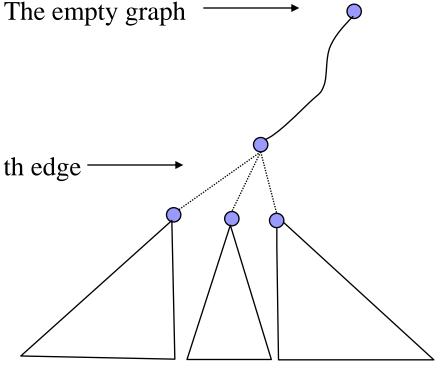


Basic Idea of $p_{ij} \propto \hat{d}_i \hat{d}_j (1 - \frac{d_i d_j}{4m})$.

The tree of execution

Choosing the k th edge

the prob. of choosing a sub-tree should be proportional to the number of valid leaves

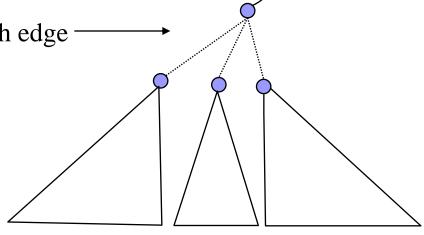


Basic Idea of $p_{ij} \propto \hat{d}_i \hat{d}_j (1 - \frac{d_i d_j}{4m})$.

The tree of execution

Choosing the k th edge

the prob. of choosing a sub-tree should be proportional to the number of valid leaves



Technical ingredient: concentration results on the

distribution of leaves in each sub-tree (improving Kim-Vu 06, McKay-Wormald 91)

The empty graph

Analysis of the Algorithm

Theorem 1 (Bayati-Kim-S. 07):

The running time of the algorithm is $O(m d_{\text{max}})$.

Furthermore, if $d_{\text{max}} = O(m^{0.25-\tau})$

Or if the degree sequence is regular and $d = O(n^{0.5-\tau})$

Algorithm is successful with probability 1 - o(1)

The probability of generating any graph is $\frac{1}{L}(1 \pm o(\frac{1}{\log m}))$ where L is the number of graphs

Sequential Importance Sampling

Consider a run of the algorithm

Let P_r be the probability of the edge chosen in step r

Define
$$X = \begin{cases} \frac{1}{\prod_{r=1}^{m} p_r} & \text{if Alg. is successful} \\ 0 & \text{if Alg. fails} \end{cases}$$

Crucial observation: $\mathbb{E}(X) = L$

X is an unbiased estimator for the number of graphs

Using SIS to get an FPRAS

By taking several samples of X, we can have a good estimate of L Then using the right rejection sampling:

Theorem 2 (Bayati-Kim-S. '07):

Can generate any graph with probability $1 \pm \epsilon$ of uniform.

In time
$$O(\epsilon^{-2} m d_{\text{max}})$$
.

An FPRAS for counting and random generation

Outline

■ Generating random graphs with given degrees (joint work with M Bayati and JH Kim)

 Generating random graphs with large girth (joint work with M Bayati and A Montanari)

Graphs with large girth

$$(0,1,0,1)$$
 $(0,1,0,1,0,1,0)$ Check bits

 x_1

 x_2

 $x_1 + x_4 + x_5 + x_6 = 0$

(mod 2)

 x_3

 x_4

 $x_2 + x_4 + x_5 = 0$

 x_5

 x_6

 $x_3 + x_4 + x_6 + x_7 = 0$

 x_7

Challenge:

Construct graphs with given degrees with no short cycles Amraoui-Montanari-Urbanke'06.

Example: Triangle free graphs.

Consider all graphs with n vertices and m edges.

Let G be one such graph chosen uniformly at random.

Can think of G as Erdös-Renyi graph
$$G(n,p)$$
 where $p = \frac{m}{\binom{n}{2}} \approx \frac{2m}{n^2}$.

 $n_3(G)$ = number of triangle sub-graphs of G.

$$\mathbb{P}(n_3(G) = 0) \approx e^{-n_3(G)} = e^{-\binom{n}{3}p^3} \to \begin{cases} 1 & \text{if } np \to 0\\ 0 & \text{if } np \to +\infty \end{cases}$$

Same phase transition holds when we need graphs of girth k.

Our Algorithm

Initialize G by an empty graph with vertices $V = (v_1, \dots, v_n)$.

Repeat

Choose a pair (v_i, v_j) with probability P_{ij} from the set of suitable pairs and set $G = G \cup \{(v_i, v_j)\}$.

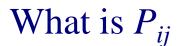
Until m edges are added or there are no suitable pair available (failure)

For a suitable P_{ij} and $m = O\left(n^{1 + \frac{1}{2k(k+3)}}\right)$ the output distribution of our algorithm is asymptotically uniform. i.e.

$$\lim_{n o \infty} d_{\mathsf{TV}}(\mathbb{P}_A, \mathbb{P}_U) = 0.$$
 Output dist. of algorithm Uniform probability

Furthermore, the algorithm is successful almost surely.

Remark: can be extended to degree sequences applicable to LDPC codes...



- Consider the partially constructed graph *G* with *t* edges.
- Let S be the n£n matrix of all suitable pairs.
- Let A, A^c be adjacency matrix of G and its complement.

$$P \propto S \odot \sum_{\ell=1}^{k} \left(A + \frac{m-t}{\binom{n}{2} - t} A^{c} \right)^{\ell}$$

Coordinate-wise multiplication

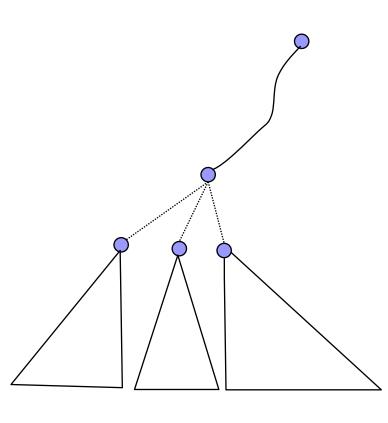
 \blacksquare P can be calculated quickly (e.g. with MATLAB)

Where does h come from?

The execution tree:

Problem: estimate the number of valid leaves of each subtree

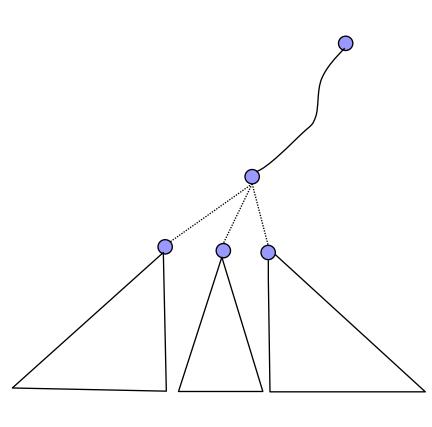
In other words
estimate the number of extensions of
the partial graph that do not have short
cycles



Where does h come from?

add the remaining m - k edges uniformly at random, and compute the expected number of small cycles Y.

Assuming the distribution of small cycles is Poisson, the probability of having no small cycles is e^{-Y}



Summary

- Random simple graphs with given degrees
- Random bipartite graphs with given degrees and large girth
- More extensive analysis of SIS?