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Outline

m Generating random graphs with given degrees
(Joint work with M Bayati and JH Kim)

m Generating random graphs with large girth
(Joint work with M Bayati and A Montanari)



Problem

Given integers dq,...,dn

Generate a simple graph with that degree sequence

chosen u

Example
(dq,...,
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niformly at random

de) = (4,3,2,2,2,1)

U6

U5

v2

v3



" A
Application

Generating large sparse graphs, with sparse (typically
power-law) degree sequence

m Simulating Internet topology (e.g. Inet)
m Biological Networks (motif detection)

motif: sub-networks with higher frequency than random

m Coding theory: bipartite graphs
with no small stopping sets
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Existing methods (Theory)

Markov Chain Monte Carlo method

B The switch chain

It 1s *"Rapidly mixing’’:
[Kannan-Tetali-Vampala 99]

[Cooper-Dyer-GreenHill 05]
[Feder-Guetz-S.-Mihail 07]

m Jerrum-Sinclair chain —

(Walk on the self-reducibility tree)

7/3/2008

Running time
at least O(n")

Running time at least O(n%)

A month on Pentium 2
forn = 1000



Existing methods (Practice)

Lots of heuristics: INET, PEG, ...
m Example: Milo et al., Science 2002; Kashtan et al. 2004
on Network Motifs | renewen ® eomastnomone

m The heuristic used for generating random graphs has a
substantial bias
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New method: Sequential Importance Sampling
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Very successful in practice:
Knuth’76: for counting self-avoiding random walks
estimating the running time of heuristics

More recently for random graph generation:
Chen-Diaconis-Holmes-Liu’05, Blitzstein-Diaconis’05

No analysis! (with the exception of this work and
Blanchet 06)



_____ Same calculation inJ

Our Algorithm remaining | 10 microseconds
degree degree
Repeat l l
Ly ~ d;d;
Add an edge between (i,j) with probab. p;; o< d;d;(1 — 2-2).

Until m = ) d;/2 edges are added
=1

or there are no valid choices left

fatlure
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"
Analysis of the Algorithm

Theorem 1 (Bayati-Kim-S. 07):
The running time of the algorithm is O(m dmax).

Furthermore, if dmax = O(m®2>~7)
Or if the degree sequence is regular and d = O(n®°—7)

Algorithm is successful with probability 1 — o(1)

1
logm

)

The probability of generating any graph is %(1 + o
where L is the number of graphs
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: ~ d;d;
Basic ldea of pij o« did;j(1 — 72).

The empty graph ——

The tree of execution

Choosing the k th edge e

the prob. of choosing a sub-tree
should be proportional to

the number of valid leaves
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Basic Idea of pi; o didf(1— %50 >

The empty graph ——
The tree of execution

Choosing the k th edge e

the prob. of choosing a sub-tree
should be proportional to

the number of valid leaves
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: ~ = d;d;
Basic ldea of pij o« did;j(1 — 72).
The empty graph ——
The tree of execution

Choosing the k th edge > 7

the prob. of choosing a sub-tree
should be proportional to
the number of valid leaves

Technical ingredient: concentration results on the

distribution of leaves in each sub-tree
(improving Kim-Vu 06, McKay-Wormald 91)
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"
Analysis of the Algorithm

Theorem 1 (Bayati-Kim-S. 07):
The running time of the algorithm is O(m dmax).

Furthermore, if dmax = O(m®2>~7)
Or if the degree sequence is regular and d = O(n®°—7)

Algorithm is successful with probability 1 — o(1)
The probability of generating any graph is %(1
where L is the number of graphs
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Sequential Importance Sampling

Consider a run of the algorithm
Let P, be the probability of the edge chosen in step r

( % if Alg. is successful

r=1 DPr

Define X =«

| O if Alg. fails

Crucial observation: E(X) = L
X 1s an unbiased estimator for the number of graphs
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"
Using SIS to get an FPRAS

By taking several samples of X, we can have a good estimate of L
Then using the right rejection sampling:

Theorem 2 (Bayati-Kim-S. °07):
Can generate any graph with probability 1 4 ¢
of uniform.

In tlme O (6_2 mdmax> .

[ An FPRAS for counting and random generation J

7/3/2008
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Outline

m Generating random graphs with given degrees
(Joint work with M Bayati and JH Kim)

m Generating random graphs with large girth
(Joint work with M Bayati and A Montanari)



Graphs with large girth

(0,1,0,1) (0,1,0,1,0,1,0)
%,—J

Check bits

x]
- (mod 2)

1 —|—:L‘4+:C5—|—:L'6=O
L3
T4 To+ x4 +25 =0
s

r3+2x4+26+27=0
L6
7

Challenge:

Construct graphs with given degrees with no short cycles
Amraoui-Montanari-Urbanke’06.
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Example: Triangle free graphs.

Consider all graphs with n vertices and m edges.

Let G be one such graph chosen uniformly at random.

. m o~ 2m
— T N NS

Can think of G as Erdds-Renyi graph G(n,p) where p @ 2

n3(G) = number of triangle sub-graphs of G.

1 ifnp—20

—0) e 13(G) — ~(B)P° _,
P (n3(G) = 0) m e 3(@) =~ ()7 {D if np — +oo

Same phase transition holds when we need graphs of girth k.
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"
Our Algorithm

Initialize G by an empty graph with vertices V = (v1,...,vpn).

Repeat

Choose a pair (v;,v;) with probability P;; from the set of

suitable pairsand set ¢ = g U {(% Uj)} .

Until m edges are added or

there are no suitable pair available (failure)

7/3/2008 19



Theorem (Bayati, Montanari, S. 07)

i 141
m For asuitable Pyand m = O (n +2’f(k+3>) the output

distribution of our algorithm is asymptotically uniform. i.e.

lim dTV(IP)AapU) = 0.

n—oo

\ Output dist. of algorithm ] . Uniform probabilityJ

Furthermore, the algorithm is successful almost surely.

Remark: can be extended to degree sequences applicable to
LDPC codes...
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What is P;,

m Consider the partially constructed graph G with t edges.
m Let S be the nEn matrix of all suitable pairs.

m Let A, A°be adjacency matrix of G and its complement.

k m — 1 ¢
P xS A+ A€
* QZ( (¢ )

\ Coordinate-wise multiplication J

m P can be calculated quickly (e.g. with MATLAB)

7/3/2008
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Where does h come from?

The execution tree:

Problem: estimate the number of valid
leaves of each subtree

T

In other words
estimate the number of extensions of

the partial graph that do not have short
cycles
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Where does h come from?

add the remaining m - k edges
uniformly at random, and compute
the expected number of small cycles

Y.

T

Assuming the distribution of small
cycles is Poisson, the probability of

having no small cycles is ey
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Summary

m Random simple graphs with given degrees

m Random bipartite graphs with given degrees and
large girth

m More extensive analysis of SIS?



