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Problem

Given integers

Generate a simple graph with that degree sequence 

chosen uniformly at random 

Example
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Application

Generating large sparse graphs, with sparse (typically 

power-law) degree sequence

 Simulating Internet topology  (e.g. Inet)

 Biological Networks (motif detection) 

motif: sub-networks with higher frequency than random

 Coding theory: bipartite graphs 

with no small stopping sets 
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Existing methods (Theory)

Markov Chain Monte Carlo method

 The switch chain 

It is ``Rapidly mixing’’: 

[Kannan-Tetali-Vampala 99]

[Cooper-Dyer-GreenHill 05]

[Feder-Guetz-S.-Mihail 07]

 Jerrum-Sinclair chain

(Walk on the self-reducibility tree) 

Running time 

at least O(n7)

Running time at least O(n4)

A month on Pentium 2 

for n = 1000
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Existing methods (Practice)

Lots of heuristics: INET, PEG, …

 Example: Milo et al., Science 2002; Kashtan et al. 2004

on Network Motifs 

 The heuristic used for generating random graphs has a 

substantial bias
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New method: Sequential Importance Sampling

Very successful in practice:

Knuth’76: for counting self-avoiding random walks

estimating the running time of heuristics 

More recently for random graph generation:

Chen-Diaconis-Holmes-Liu’05, Blitzstein-Diaconis’05

No analysis! (with the exception of this work and 

Blanchet 06)
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Our Algorithm

Repeat 

Add an edge between (i,j) with probab.

Until                          edges are added 

or there are no valid choices left 
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Same calculation in 

10 microseconds



Theorem 1 (Bayati-Kim-S. 07):

The running time of the algorithm is 

Furthermore, if 

Or if the degree sequence is regular and 

Algorithm is successful with probability

The probability of generating any graph is

where L is the number of graphs 
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Analysis of the Algorithm
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Basic Idea  of 

The tree of execution 

the prob. of choosing a sub-tree 

should be proportional to

the number of valid leaves

The empty graph

Choosing the k th edge
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Basic Idea  of 

The tree of execution 

the prob. of choosing a sub-tree 

should be proportional to

the number of valid leaves

Technical ingredient: concentration results on the

distribution of leaves in each sub-tree

(improving Kim-Vu 06, McKay-Wormald 91)

The empty graph

Choosing the k th edge
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7/3/2008 13

Analysis of the Algorithm



Consider a run of the algorithm 

Let Pr be the probability of the edge chosen in step r 

Define 

Crucial observation:

X is an unbiased estimator for the number of  graphs
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Sequential Importance Sampling
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Using SIS to get an FPRAS

By taking several samples of X, we can have a good estimate of L

Then using the right rejection sampling:

Theorem 2 (Bayati-Kim-S. ’07):

Can generate any graph with probability            

of uniform.

In time 

An  FPRAS for counting and random generation



 Generating random graphs with given degrees 

(joint work with M Bayati and JH Kim)

 Generating random graphs with large girth

(joint work with M Bayati and A Montanari)
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Graphs with large girth

Check bits
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Challenge:

Construct graphs with given degrees with no short cycles
Amraoui-Montanari-Urbanke’06.

(mod 2) 



Example: Triangle free graphs.

= number of triangle sub-graphs of G.

Consider all graphs with n vertices and m edges.

Let G be one such graph chosen uniformly at random.
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Can think of G as Erdös-Renyi graph                    where

Same phase transition holds when we need graphs of girth k.



Repeat 

Choose a pair                                                    from  the set of

suitable pairs and set 

Until m edges are added or 

there are no suitable pair available (failure) 

Initialize G by an empty graph with vertices
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Our Algorithm



Uniform probabilityOutput dist. of algorithm

Theorem (Bayati, Montanari, S. 07)

 For  a suitable Pij and                                          the output 

distribution of our algorithm is asymptotically uniform. i.e.

Furthermore, the algorithm  is successful almost surely. 
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Remark: can be extended to degree sequences applicable to 

LDPC codes…



What is Pij

 Consider the partially constructed graph G with t edges. 

 Let S be the n£n matrix of all suitable pairs.

 Let A, Ac be adjacency matrix of G and its complement.

 can be calculated quickly (e.g. with MATLAB)
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Coordinate-wise multiplication
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Where does h come from?

The execution tree:

Problem: estimate the number of valid 

leaves of each subtree

In other words

estimate the number of extensions of 

the partial graph that do not have short 

cycles
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Where does h come from?

add the remaining m - k edges 

uniformly at random, and compute 

the expected number of small cycles

Y. 

Assuming the distribution of small 

cycles is Poisson, the probability of 

having no small cycles is  e-Y



 Random simple graphs with given degrees 

 Random bipartite graphs with given degrees and  

large girth

 More extensive analysis of SIS?

Summary


