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More and more shapes around us are being 
digitized

shapes of manufactured objects (CAD 
models)
3-D scanning for acquired geometry
shapes of organs in our bodies
shapes of molecules (proteins)

We need tools for analyzing and processing 
digital geometry

images, audio → video → geometry data
With many acquisition technologies, the 
initial data is a point cloud (PCD)
We want to develop techniques for 
extracting structural regularities in such data

3D Digital Shape Modeling
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Symmetries and Regular Patterns In 
Natural and Man-Made Objects

“Symmetry is a complexity-reducing concept [...]; seek it everywhere.
Alan J. Perlis
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Point Cloud Data (PCD) Pose 
Particular Challenges

PCD = “point cloud data”
unorganized collection of points 
sampled from the surface (or interior) 
of an object, with noise added
typical output of a 3-D scanning 
process

no connectivity information or manifold or 
mesh structure hard to use geometric 
methods directly
no regular sampling

hard to use signal processing tools
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Distributed Data Sets

Data sets of interest 
may be distributed 
over a network
May be massive
May have different 
owners

How to decide when 
data sets should be, or 
can be, fused, 
compared, etc?
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Geometric Structure Extraction 
as a Paradigm for Data Analysis
All of science and engineering is becoming data rich

massive data coming from sensors
massive data coming from simulations

Such data from physical processes is often in the form of 
unorganized point clouds
Machine learning is fundamentally based on fitting functions 
to data (regression, classification)
An alternative approach can be comparing data to itself, or 
to other data of the same type

Physical Laws = Symmetries?



Computational Symmetry

I. Symmetry Extraction and 
Symmetrization

II. Distributed Congruence 
Discovery

III. Repeated Pattern Detection

Continuous Discrete

Geometry

Multiscale
Analysis
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Global Structure Discovery



I. Symmetry Extraction and
Symmetrization

[Mitra, G., Pauly, Siggraph ’06, Mitra , G., Pauly, Siggraph ’07]
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Partial/Approximate
Symmetry Detection

Given:
Object/shape (represented as point cloud, mesh, ... )

Identify and extract similar (symmetric) patches of 
possibly different sizes, across different resolutions

Goal:
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An Example:
Reflective Symmetry
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Reflective Symmetry : A Pair Votes

11



Reflective Symmetry : Voting 
Continues
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Reflective Symmetry : Voting 
Continues
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Reflective Symmetry : Largest 
Cluster

• Height of cluster→ size of patch

• Spread of cluster→ approximation level 14



A Typical Density Plot

height of cluster → extent of approximate symmetry

spread of cluster → deviation from exact symmetry
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Pipeline
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Pruning: Local Signatures

Local signature → invariant under transforms
Signatures disagree → points don’t correspond 

Use (κ1, κ2) for curvature based pruning
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Reflection: Normal-Based 
Pruning
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Point Pair Pruning

all pairs curvature based curvature + normal based
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Transformations

Reflection → point-pairs
Rigid transform → more information

Robust estimation of principal 
curvature frames 
[Cohen-Steiner et al. `03]
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Mean-Shift Clustering

Kernel:
Type → radially symmetric hat function
Radius
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Verification

Clustering gives a good guess of the dominant 
symmtries
Suggested symmetries need to be verified 
against the data
Locally refine transforms using ICP algorithm 
[Besl and McKay `92]
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Random Sampling

Height of clusters related to symmetric 
region size
Larger regions likely to be detected 
earlier
Output-sensitive ...
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Compression: Chambord
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Compression: Chambord

25



Opera
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Approximate Symmetry: Dragon

correction fielddetected symmetries
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• Invariance under  translation, rotation, reflection 
and scaling (Isometries of the ambient space)

• Invariance of geodesic distances under self-
mappings. For a homeomorphism 

Extrinsic vs. Intrinsic Symmetries

• Break under isometric deformations of the 
shape

• Persist under isometric deformations

• Introduced by Raviv et al. in NRTL 2007

Extrinsic symmetry Intrinsic symmetry



Global Intrinsic Symmetries
Signature space

For each point p define its signature s(p) [Rustamov, SGP 2007]

is the value of the i-th eigenfunction of the Laplace-
Beltrami operator at p
Invariant under isometric deformations

Main Observation: Intrinsic symmetries of the object become  
extrinsic  symmetries of the  signature space.

Positive Negative

[Ovsjanikov, Sun, G., SGP 2008]



Global Intrinsic Symmetries

30See MMDS poster on Friday



Partial Intrinsic Symmetries
One part of an object is isometrically mapped to another part
Use heat kernel

[Ovsjanikov, Sun, G., in prep. 2008]



Extrinsic Symmetrization
Goal: Symmetrize 3D geometry

Approach: Minimally deform the model in the spatial domain by 
optimizing the distribution in transformation space
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Cluster Enhancement and
Contraction
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Key Points and Issues

Capturing partial/approximate/intrinsic 
symmetries of 3D shapes can be done 
efficiently via a voting mechanism
Only transforms supported by the data 
are searched and larger symmetries are 
found with less work
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II. Distributed Congruence Discovery
[Pauly, Giesen, Mitra, G., SGP 2006]
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partial 
similarity

Probabilistic Fingerprints

probabilistic
fingerprint

probabilistic
fingerprint

comparecompact

independent

Shapes are never 
directly compared
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Insight 

Partial matching → difficult problem
Total matching → easy problem

Reduce partial matching →
many small total matching problems

Results in few false positives →
quick to verify and discard
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From document 
similarity to shape 
similarity: shingles 
and min-hashing



Input Shapes
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Sample Points
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Shingles: Overlapping Patches
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Shingles: Overlapping Patches
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Bag of Patches: Ordering 
Discarded
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... but with sufficient
ovelaps, can be recovered –
DNA whole genome
shotgun sequencing



Fingerprint Pipeline
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Pipeline: Uniform Sampling

Uniform spacing → use [Turk`92]
Sample spacing ≈ δ
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Pipeline: Shingle Generation

Shingles: overlapping, unordered patches
Shingle radius: ρ
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Pipeline: Signatures

Stable signatures wrt. sampling (continuity)
Invariant to rigid transforms

Spin-images [Johnson, Hebert 1999]

Shape →
unordered high-dimensional point set with rigid 
transform factored out
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Similarity/resemblance
Defined wrt. signatures

Compare two bags of points in a high-d 
space

No alignment required
Still, brute force evaluation impractical

Pipeline: Resemblance
Jaccard similarity measure
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How to Compare Point Sets

Compare two point sets → no need to align

But, we don’t have red and blue points together
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Reduce Sample Size

Randomly sample red points
Randomly sample blue points
still need to solve for correspondences

independently

We need consistent
sampling

49



Min-Hashing I: Using Random 
`Experts’

Each of m random ‘experts’
Has an ordering of space-boxes
Selects the point that lies in lowest ordered box

2 3

[Broder`97]
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Min-Hashing II

Each of m random ‘experts’
Has an ordering of space-box
Selects the point that lies in lowest ordered box

2 3

1 1

51



Pipeline: Min-Hashing

Feature selection by random experts
‘Features’ only useful for correspondence

Need not have any visual or semantic importance
Reduces set comparison to element-wise 
comparison
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Data Reduction

Shingles Signatures Descriptors Fingerprint

quantization min hashing

set size remains constant

100k 100k 100k 1k

set reduction
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Applications

• Resemblance 
between 
partial scans
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Applications

• Adaptive feature selection for stitching

55



Applications

• Multiple scans
• greedy alignment 

using priority queue
• fingerprint matching 

determines score
• advanced alignment 

method for 
verification

• merging fingerprints 
requires no re-
computation 56



Applications

• Shape distributions
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Key Points and Issues

• Resemblance defined as set operation on 
signature sets → quantization is crucial

• Random experts effectively extract consistent 
set of features → requiring no explicit 
correspondences

• Fingerprints do not preserve spatial relation of 
shingles → false positives are possible

• Few parameters that are easy to tune
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III. Repeated Pattern Detection

[Pauly, Mitra, Wallner. G., and Pottmann, Siggraph ’08]
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Structure Discovery

Discover regular structures in 3D 
data, without prior knowledge of 
either the pattern involved, or the 
repeating element

Algorithm has three stages:
Transformation analysis
Model estimation
Aggregation
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Regular structureChallenges: joint discrete and continuous
optimization, presence of clutter and outliers



Algorithm Overview

Regular structures:
rotation + translation + scaling → any commutative 
combinations in the form of 1D, 2D grid structures   

1D structures 2D structures
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Algorithm Overview
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Algorithm Overview

Transform Analysis
map to suitable transform space
goal: enhance and amplify regularity signal
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Similarity Sets
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Based on shape descriptors
alone

Pruned, after validation w.
geometric alignment

Compare all pairs of small patches, using local
shape descriptors



Transform Analysis

Commutative 1- and 2-parameter groups
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Match small local patches
of geometry

Patterns in 3D space
map to patterns in transform space



Algorithm Overview

Transform Analysis
map to suitable transform space

Model Estimation
under a suitable parametrization, all previous patterns 
correspond to 1- or 2-d grids
robust grid estimation with noisy/partial data in 
transform space
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Model Estimation
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Grid Fitting I
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X = grid
C = transform cluster

α β

Clusters in
transform space



Grid Fitting II
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Finding grids amidst clutter



Algorithm Overview

Transform Analysis
map to suitable transform space

Model Estimation
robust grid estimation with noisy/partial data

Aggregation
simultaneous optimization of regular structure + patch
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Aggregation
Once the basic repeated pattern is determined, we 
simultaneously (re-)optimize the pattern generators and 
the repeating geometric element it represents, by going 
back to the original 3D data
We inteleave

region growing
re-optimization of the generating transforms of the pattern by 
performing simultaneous registrations on the original geometry
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The Math
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We optimize a generating transform T
represented by 4x4 matrix H, by trying to 
improve the alignment of all patches
put into correspondence by T, using 
standard ICP techniques

→



Simultaneous Registration
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From grid
optimization

After aggregation



Scanned Building Facade

Output:

‐ Golden:  7x3 2D grid
‐ Blue:  5x3 2D grid 74



(Structural) Model Completion

Naïve reconstruction Reconstruction with 
structural constrains
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Back to Chambord
(30-100K Sample Points)
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Amphitheater
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Amphitheater

Output: 3 grids + associated patches
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Robustness to Missing Data

- More regular the structure →
more resilient  to missing data.

- Top row shows the corresponding grids in 
transform space plots.
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Structural + Geometric Edit

Original Edited
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Nautilus: Similarity Transform

Input: 72 registered laser scans
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Nautilus: Similarity Transform

Output: Detected structure + growth

Original Edited
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Key Points and Issues

Patterns in 3D data map into patterns in the space of 
locally aligning transforms
Grid fitting w. weights as optimization variables allows 
for missing data and outliers
The full geometry is exploited in detecting the optimal 
repeating element and pattern generator(s)
Related to non-local smoothing in images
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From 3-D to Any-D

Presented work on structure extraction for 
3-D data sets of scanned geometry
Can these techniques be applied to 
higher-dimensional settings (low-d data 
sets in high-d ambient space)?
I. How do we estimate good local descriptors 

for high-dimensional data?
II. What if the data is sparse?
III. Are there structure-preserving low-d 

projections and embeddings?
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