Detection of Symmetries and Repeated Patterns in 3D Point Cloud Data

Leonidas J. Guibas
Computer Science
Stanford University

3D Digital Shape Modeling

- More and more shapes around us are being digitized
 - shapes of manufactured objects (CAD models)
 - 3-D scanning for acquired geometry
 - shapes of organs in our bodies
 - shapes of molecules (proteins)
- We need tools for analyzing and processing digital geometry
 - images, audio → video → geometry data
- With many acquisition technologies, the initial data is a point cloud (PCD)
- We want to develop techniques for extracting structural regularities in such data

Symmetries and Regular Patterns In Natural and Man-Made Objects

"Symmetry is a complexity-reducing concept [...]; seek it everywhere.

Alan J. Perlis

Point Cloud Data (PCD) Pose Particular Challenges

- PCD = "point cloud data"
 - unorganized collection of points sampled from the surface (or interior) of an object, with noise added
 - typical output of a 3-D scanning process
- no connectivity information or manifold or mesh structure ⇒ hard to use geometric methods directly
- no regular sampling
 - ⇒ hard to use signal processing tools

Distributed Data Sets

- Data sets of interest may be distributed over a network
- May be massive
- May have different owners
- How to decide when data sets should be, or can be, fused, compared, etc?

Geometric Structure Extraction as a Paradigm for Data Analysis

- All of science and engineering is becoming data rich
 - massive data coming from sensors
 - massive data coming from simulations
- Such data from physical processes is often in the form of unorganized point clouds
- Machine learning is fundamentally based on fitting functions to data (regression, classification)
- An alternative approach can be comparing data to itself, or to other data of the same type

Physical Laws ? Symmetries

Computational Symmetry

- Symmetry Extraction and Symmetrization
- II. Distributed Congruence Discovery
- III. Repeated Pattern Detection

I. Symmetry Extraction and Symmetrization

[Mitra, G., Pauly, Siggraph '06, Mitra, G., Pauly, Siggraph '07]

Partial/Approximate Symmetry Detection

Given:

Object/shape (represented as point cloud, mesh, ...)

Identify and extract similar (symmetric) patches of possibly different sizes, across different resolutions

An Example: Reflective Symmetry

Reflective Symmetry: A Pair Votes

Reflective Symmetry: Voting Continues

Reflective Symmetry: Voting Continues

Reflective Symmetry : Largest Cluster

- Height of cluster → size of patch
- Spread of cluster → approximation level

A Typical Density Plot

height of cluster \rightarrow extent of approximate symmetry spread of cluster \rightarrow deviation from exact symmetry

Pipeline

Pruning: Local Signatures

- Local signature → invariant under transforms
- ◆ Signatures disagree → points don't correspond

Use (κ_1, κ_2) for curvature based pruning

$$(1/(a+b), 1/a))$$
 (0, 1/a)

Reflection: Normal-Based Pruning

Point Pair Pruning

Transformations

- Reflection → point-pairs
- Rigid transform → more information

Robust estimation of principal curvature frames [Cohen-Steiner et al. `03]

Mean-Shift Clustering

Kernel:

- Type → radially symmetric hat function
- Radius

Verification

- Clustering gives a good guess of the dominant symmtries
- Suggested symmetries need to be verified against the data
- Locally refine transforms using ICP algorithm [Besl and McKay `92]

Random Sampling

- Height of clusters related to symmetric region size
- Larger regions likely to be detected earlier
- Output-sensitive ...

Compression: Chambord

Compression: Chambord

25

Opera

Approximate Symmetry: Dragon

detected symmetries

correction field

Extrinsic vs. Intrinsic Symmetries

Extrinsic symmetry

- Invariance under translation, rotation, reflection and scaling (Isometries of the ambient space)
- Break under isometric deformations of the shape

Intrinsic symmetry

• Invariance of geodesic distances under self-mappings. For a homeomorphism $T: O \rightarrow O$

$$g(\mathbf{p}, \mathbf{q}) = g(T(\mathbf{p}), T(\mathbf{q})) \ \forall \ \mathbf{p}, \mathbf{q} \in O$$

- Persist under isometric deformations
- Introduced by Raviv et al. in NRTL 2007

Global Intrinsic Symmetries

[Ovsjanikov, Sun, G., SGP 2008]

- Signature space
 - For each point p define its signature s(p) [Rustamov, SGP 2007]

$$s(\mathbf{p}) = \left(\frac{\phi_1(\mathbf{p})}{\sqrt{\lambda_1}}, \frac{\phi_2(\mathbf{p})}{\sqrt{\lambda_2}}, ..., \frac{\phi_i(\mathbf{p})}{\sqrt{\lambda_i}}, ...\right)$$

- is the value of the *i*-th eigenfunction of the Laplace-Beltrami operator at p
- Invariant under isometric deformations
- Main Observation: Intrinsic symmetries of the object become extrinsic symmetries of the signature space.
- 1. $\phi = \phi \circ T$: **positive** eigenfunction
- 2. $\phi = -\phi \circ T$: **negative** eigenfunction
- 3. λ is a repeated eigenvalue

Global Intrinsic Symmetries

Partial Intrinsic Symmetries

- One part of an object is isometrically mapped to another part
- Use heat kernel
 - $-k_t(x,y) = \sum_i e^{-\lambda_i t} \phi_i(x) \phi_i(y).$
 - Is the amount of heat transferred from y to x in t time.
 - $k_t(x,\cdot)$ is a bump function with scale t

Extrinsic Symmetrization

Goal: Symmetrize 3D geometry

Approach: Minimally deform the model in the spatial domain by optimizing the distribution in transformation space

Cluster Enhancement and Contraction

Key Points and Issues

- Capturing partial/approximate/intrinsic symmetries of 3D shapes can be done efficiently via a voting mechanism
- Only transforms supported by the data are searched and larger symmetries are found with less work

II. Distributed Congruence Discovery

[Pauly, Giesen, Mitra, G., SGP 2006]

Probabilistic Fingerprints

Insight

Partial matching → difficult problem

Total matching → easy problem

Reduce partial matching → many small total matching problems

Results in few false positives → quick to verify and discard

From document similarity to shape similarity: shingles and min-hashing

Input Shapes

Sample Points

Shingles: Overlapping Patches

Shingles: Overlapping Patches

Bag of Patches: Ordering Discarded

Fingerprint Pipeline

Pipeline: Uniform Sampling

- Uniform spacing → use [Turk`92]
- Sample spacing ≈ δ

Pipeline: Shingle Generation

- Shingles: overlapping, unordered patches
- Shingle radius: ρ
- $\rho \gg \delta$

Pipeline: Signatures

- Stable signatures wrt. sampling (continuity)
- Invariant to rigid transforms
 - Spin-images [Johnson, Hebert 1999]
- Shape →
 unordered high-dimensional point set with rigid
 transform factored out

Pipeline: Resemblance

Jaccard similarity measure

- Similarity/resemblance
 - Defined wrt. signatures
- $r(S_1, S_2) = \frac{|\{s_1\} \cap \{s_2\}|}{|\{s_1\} \cup \{s_2\}|}$
- Compare two bags of points in a high-d space
 - No alignment required
 - Still, brute force evaluation impractical

How to Compare Point Sets

Compare two point sets → no need to align

$$r(S_1, S_2) = \frac{|\{s_1\} \cap \{s_2\}|}{|\{s_1\} \cup \{s_2\}|}$$

But, we don't have red and blue points together

Reduce Sample Size

We need consistent sampling

Randomly sample red points

independently

- Randomly sample blue points
- still need to solve for correspondences

Min-Hashing I: Using Random [Broder`97] `Experts'

Each of *m* random 'experts'

- Has an ordering of space-boxes
- Selects the point that lies in lowest ordered box

$$min\{\pi(\mathcal{I})\}$$

Min-Hashing II

Each of m random 'experts'

- Has an ordering of space-box
- Selects the point that lies in lowest ordered box

$$min\{\pi(\mathcal{I})\}$$

Pipeline: Min-Hashing

Feature selection by random experts

- 'Features' only useful for correspondence
 - Need not have any visual or semantic importance
- Reduces set comparison to element-wise comparison

Data Reduction

 Resemblance between partial scans

Adaptive feature selection for stitching

- Multiple scans
 - greedy alignment using priority queue
 - fingerprint matching determines score
 - advanced alignment method for verification
 - merging fingerprints requires no recomputation

Shape distributions

Key Points and Issues

- Resemblance defined as set operation on signature sets → quantization is crucial
- Random experts effectively extract consistent set of features → requiring no explicit correspondences
- Fingerprints do not preserve spatial relation of shingles → false positives are possible
- Few parameters that are easy to tune

III. Repeated Pattern Detection

[Pauly, Mitra, Wallner. G., and Pottmann, Siggraph '08]

Structure Discovery

- Discover regular structures in 3D data, without prior knowledge of either the pattern involved, or the repeating element
- Algorithm has three stages:
 - Transformation analysis
 - Model estimation
 - Aggregation

Input Model

Regular structure

Challenges: joint discrete and continuous optimization, presence of clutter and outliers

1D structures

2D structures

Regular structures:

rotation + translation + scaling → any commutative combinations in the form of 1D, 2D grid structures

Input Model

- Transform Analysis
 - map to suitable transform space
 - goal: enhance and amplify regularity signal

Similarity Sets

Compare all pairs of small patches, using local shape descriptors

Based on shape descriptors alone

Pruned, after validation w. geometric alignment

Transform Analysis

Commutative 1- and 2-parameter groups

Match small local patches of geometry

Patterns in 3D space map to patterns in transform space

- Transform Analysis
 - map to suitable transform space
- Model Estimation
 - under a suitable parametrization, all previous patterns correspond to 1- or 2-d grids
 - robust grid estimation with noisy/partial data in transform space

Model Estimation

Grid Fitting I

$$\vec{g}_1, \vec{g}_2, \{\alpha_{ij}\}, \{\beta_k\} = \underset{\vec{g}_1, \vec{g}_2, \{\alpha_{ij}\}, \{\beta_k\}}{\operatorname{argmin}} E$$

$$E = \gamma (E_{X \to C} + E_{C \to X}) + (1 - \gamma)(E_{\alpha} + E_{\beta})$$

$$E_{X\to C} = \sum_{i} \sum_{j} \alpha_{ij}^{2} ||\vec{x}_{ij} - \vec{c}(i,j)||^{2}$$
$$E_{C\to X} = \sum_{k=1}^{|C|} \beta_{k}^{2} ||\vec{c}_{k} - \vec{x}(k)||^{2}$$

$$E_{\alpha} = \sum_{i} \sum_{j} (1 - \alpha_{ij}^{2})^{2}$$
 $E_{\beta} = \sum_{k} (1 - \beta_{k}^{2})^{2}$

X = grid
C = transform cluster

Grid Fitting II

Finding grids amidst clutter

- Transform Analysis
 - map to suitable transform space
- Model Estimation
 - robust grid estimation with noisy/partial data
- Aggregation
 - simultaneous optimization of regular structure + patch

Aggregation

- Once the basic repeated pattern is determined, we simultaneously (re-)optimize the pattern generators and the repeating geometric element it represents, by going back to the original 3D data
- We inteleave
 - region growing
 - re-optimization of the generating transforms of the pattern by performing simultaneous registrations on the original geometry

The Math

We optimize a generating transform T represented by 4x4 matrix H, by trying to improve the alignment of all patches put into correspondence by T, using standard ICP techniques

$$\vec{H}_{+} \approx \vec{H} + \epsilon \vec{D} \cdot \vec{H},$$

$$\vec{D} = \begin{pmatrix} \delta & -d_{3} & d_{2} & \bar{d}_{1} \\ d_{3} & \delta & -d_{1} & \bar{d}_{2} \\ -d_{2} & d_{1} & \delta & \bar{d}_{3} \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$T_{+}(\vec{x}) \approx T(\vec{x}) + \epsilon (\vec{d} \times T(\vec{x}) + \delta T(\vec{x}) + \vec{d})$$

$$T_{+}^{k} \approx (\vec{H} + \epsilon \vec{D} \cdot \vec{H})^{k} \to \vec{H}_{+}^{k} \approx \vec{H}^{k} + \epsilon f_{k}(\vec{H}, \vec{D}) + \epsilon^{2}(\dots), \text{ with}$$

$$f_{k}(\vec{H}, \vec{D}) = \vec{D} \cdot \vec{H}^{k} + \vec{H} \cdot \vec{D} \cdot \vec{H}^{k-1} + \dots + \vec{H}^{k-1} \cdot \vec{D} \cdot \vec{H}$$

$$Q_{ij} := \sum_{l} \left([(T_{+}^{k}(\vec{x}_{l}) - \vec{y}_{l}) \cdot \vec{n}_{l}]^{2} + \mu [T_{+}^{k}(\vec{x}_{l}) - \vec{y}_{l}]^{2} \right)$$

$$F(\epsilon \vec{D}) = \sum_{i,j} Q_{ij}$$

Simultaneous Registration

From grid optimization

After aggregation

Scanned Building Facade

Output:

- Golden: 7x3 2D grid

- Blue: 5x3 2D grid

(Structural) Model Completion

Naïve reconstruction

Reconstruction with structural constrains

Back to Chambord (30-100K Sample Points)

Amphitheater

Amphitheater

Output: 3 grids + associated patches

Robustness to Missing Data

- More regular the structure → more resilient to missing data.
- Top row shows the corresponding grids in transform space plots.

Structural + Geometric Edit

Original

Edited

Nautilus: Similarity Transform

Input: 72 registered laser scans

Nautilus: Similarity Transform

Original

Edited

Output: Detected structure + growth

Key Points and Issues

- Patterns in 3D data map into patterns in the space of locally aligning transforms
- Grid fitting w. weights as optimization variables allows for missing data and outliers
- The full geometry is exploited in detecting the optimal repeating element and pattern generator(s)
- Related to non-local smoothing in images

From 3-D to Any-D

- Presented work on structure extraction for 3-D data sets of scanned geometry
- Can these techniques be applied to higher-dimensional settings (low-d data sets in high-d ambient space)?
 - I. How do we estimate good local descriptors for high-dimensional data?
 - II. What if the data is sparse?
 - III. Are there structure-preserving low-d projections and embeddings?

Acknowledgements

Collaborators:

- Current and past students: Niloy Mitra, Maks Ovsjanikov
- Current and past postdocs: Jian Sun, Mark Pauly
- Senior: Joachim Giesen, Mark Pauly, Helmut Pottmann, Johannes Wallner

Sponsors:

