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Combinatorial group testing

Scitentist-types Big Party ~ 1 week
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Rat dies only 1 week after drinking poisoned wine



Being good (computer) scientists, they do the following:
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If bottle 5 were poison...
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...after 1 week




Problem statement: CGT

RLEES
Assume x has
m as small |I. 1 II low complexity:
as possible !III I-I x has k-defects
il

III r the rest are zero
il

Construct matrix A: B” — B™

Given Ax for any signal x € B”, we can quickly recover k defects
present in x. Note: arithmetic is boolean and result from pooled
test is {0, 1}.



Parameters

Number of measurements m

Recovery time

Recovery of all k defects

One matrix vs. distribution over matrices

Explicit construction of matrix

Tolerance to measurement errors (bits flipped, missing bits)
Number of replicates (number of times test each item)

Number of items in each pool



Problem statement: Sparse signal recovery

m as small
as possible

Construct matrix A;: R" — R™

Assume x has
low complexity:
x is k-sparse
(with noise)

Given Ax for any signal x € R”, we can quickly recover x with

Ix =X[lp < € min [lx—ylq

y k—sparse



Parameters

Number of measurements m

Recovery time

Approximation guarantee (norms, mixed)
One matrix vs. distribution over matrices
Explicit construction

Tolerance to measurement noise



High Throughput Screening (HTS)

HTS is an essential step in drug discovery
(and elsewhere in biology)

Large chemical libraries screened on a
biological target for activity

Basic {0, 1} type biological assays to find
active compounds

Usually a small number of compounds found

One-at-a-time screening: automation and
miniaturization

Noisy assays with false positives and
negative errors




Current HTS uses one-at-a-time testing scheme (with repeated
trials).

NAIVE DESIGN

COMPOUNDS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
WELLS WI W2 W3 W4 W5 W6 W7 W8 W9 WI0 Wil WI2 W13 Wi4 W15

. Wells with compound/s and a positive test result

‘ Wells with compound/s and a negative test result

O Wells with no compound/s




Pooled HTS design

POOLING DESIGN

COMPOUNDS

57 911315
6 7 10 11 1415
6 7 1213 1415
10 11 12 13 1415

Propose using pooled testing of
compounds

Uses fewer tests

Work moved from testing
(costly) to computational
analysis (cheap)

Handles errors in testing better
due to built-in replication

Additional quantitative
information



HTS and signal recovery

~ 1 Million
Measurements
(N)

Million Compounds ‘
Processing : Take K major

Threshold, Z-score, compounds
FDR etc. forward

N>>K

Secondary
Screening




Quantitative analysis of pooling in HTS

Constraints
linearity: measured quantities map linearly to compound
activities
sparsity: most compounds inactive
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Challenges
choosing a good mixing scheme
enforcing a mixing constraint
recovery algorithm tolerant to measurement noise + errors



Our approach

Binary measurement matrix: adjacency
matrix of unbalanced expander graph

Appropriate linear biochemical model

Decoding via linear programming




Compressed sensing: sparse matrices

LP decoding using sparse matrices
Deterministic (explicit) constructions

Control over number of replicates, number of compounds per
pool

LP decoding robust to measurement noise

Recall: Piotr Indyk’s talk Thursday



Sparse matrices: Expander graphs

o=

Adjacency matrix A of a d regular (1,¢) expander graph
Graph G = (X,Y,E), [X|=n, |Y|=m
For any S C X, |S| < k, the neighbor set

IN(S)| = (1 = €)d|S]
Probabilistic construction:
d = O(log(n/k)/€),m = O(klog(n/k)/e?)

Deterministic construction:

d = 0200 (oe(n)/€)) ' — /¢ 2O(Iog*l0g(n)/€)



RIP(p)

A measurement matrix A satisfies RIP(p, k, d) property if for any
k-sparse vector x,

(1= 9)lIxllp < IAX][p < (1 + 0)[Ix]l,-




RIP(p) <= expander

Theorem
(k, €) expansion implies

(1 = 2e)d||x]l1 < [[Ax][x < dl|x]|1
for any k-sparse x. Get RIP(p) for1 < p <1+ 1/logn.

Theorem
RIP(1) + binary sparse matrix implies (k,€) expander for
1-1/(1+9)
e=—T""—-"
2-v2



Expansion =—> LP decoding

Theorem

® adjacency matrix of (2k, €) expander. Consider two vectors x, x;
such that ®x = ®x, and ||x.||1 < ||x||1. Then

I = xulls < —

T(G)HX—XkHl

where xi is the optimal k-term representation for x and

ale) = (2¢)/(1 — 2e).

Guarantees that Linear Program recovers good sparse
approximation

Robust to noisy measurements too



RIP(1) = LP decoding

/1 uncertainty principle

Lemma

Let y satisfy Ay = 0. Let S the set of k largest coordinates of y.
Then

lyslls < ae)llylls-
LP guarantee

Theorem
Consider any two vectors u, v such that for y = u— v we have
Ay =0, ||v|1 < |lull1. S set of k largest entries of u. Then

2
<— 2 usels.
lylls < 1= 20(0) lusel1



Small library

Synthetic screen: small molecule ligands for formylpeptide
receptor, 6 active
n = 272,k = 6, using deterministic STD matrix, m = 116
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In silico

B Actual Activity

[ Decoded Activity (No Noise)
[ Decoded Activity (Low Noise)
I Decoded Activity (High Noise)
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Large library

Actual screen: 50,000 compounds screened against E. coli
dihydrofolate reductase (DHFR), 12 active

n = 50,000, k = 12 screened in 122 blocks of 410 compounds
using STD deterministic matrix, m = 10, 004
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In silico

B Actual Activity B Actual Measurement
I Decoded Activity (No Noise) 1 With Low Noise

[ Decoded Activity (Low Noise) B With High Noise
B Decoded Activity (High Noise)
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Current/Future work

Computer Science:

greedy algorithms in place of LP decoding
decoding with noise + missing measurements
refined error analysis
decoding algorithms to rank compounds
Chemical Engineering:
good/best explicit constructions which meet experimental
constraints
refine error analysis, algorithm output for cultural
interpretations of biologists
design and implementation of several in vitro experiments
(HTS, differential gene expression)



