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2. Dimensionality Reduction

o Given a high-dimensional dataset/fiff, map it to a lower-dimensional space
o One approach: carefully pick which coordinates to keep
= Some dimensions afeatures, others are not
o Or: carefully rotate the data, then carefully pick which coordinates to keep, or do soregéring
more complicated
= SVD (PCA, LSI, EigenFace*), SDP, ICA, MDS, ETC
= *See also: EigenEyebrow, EigenEye, EigenNose, EigenMouth, EigenHead....
= EigenHand, EigenBody, EigenHeart...
= EigenSign, Eigenlmage, EigenFish, EigenForm, EigenTracking, EigenWindowmC#iije
EigenLightField, EigenSurface, EigenFeature, Eigen Lightfield, EigateSpace, Eigen
Nodule, Eigen-Prosody, EigenShape, EigenTree, EigenEdge, EigenEdginess, EigenHill
Eigen (grapefruit) stems, EigenCharacter, EigenSignature, EigenWoet g,
EigenLetter, EigenScrabble**
= **Not: EigenCluster, EigenMonkey

;. Random projection

o Instead of picking a rotation carefully,
pick one at random

o Instead of picking from the new coordinates carefully,
pick the firstk

+. Random projection, more specifically

o Again:
= Apply a random rotation te € R™
= Drop all butk coordinates
= Scale (multiply by a constant) so that new vewgtdrase[|[v/] = ||
o Equivalently: pick a random subspace of dimeng&igorojectv onto it, then scale
o Johnson-Lindenstrauss (JL) Lemma: with high probability, this preserves length, aygtebyxi
= Let ak-map P be a random projection froii" to R¥, as above
= If k> ¢ 2Clog(1/9), then with probability at least-15,

1-eIM =[IPvil = @ +e)lMl

o SinceP is linear,|aPvl = «||Pv|| for « > 0, so WLOG|v|| = 1



s. (Random projection : why?)

o Existence proof: if a random projection gives good results, what if we work harder?
o There are many similar algorithms with the same properties
= Multiply by a kxm matrix of random %1, or of Gaussians
= Use a matrix with a fast multiply [AC]
o Obliviousness: the random projection is chosen without looking at the data at alll
» ...and so is called "universal feature reduction”
= Feature reduction without "feedback": no loops
= Brain may work this way; a recent model of the brain [SOP]:
= |s a "feedforward" neural network
= Uses randomness for feature reduction in a similar way

. From one point to many

o Pointisometrizing: for one vector (pointy, the probability of failure is
5 <exp(-ke?/C)

o Finite setisometrizing: for setS of n points, probability of failure for all points is
d <nexp(- ke?/C)

o Finite setembedding: for S—-S:={x—-y | X,y E S},
5 <n’exp(- ke?/ C)

= k= Ofe log(n/ )
= That is, preserving distances

2. From many to infinite

o Subspace JL [M][Sar]: fad-dimensional linear subspaEe
5= 0(1)%xp(~ ke?/ C)

o Hint:
= There is a finite subset &f so that isometrizing it= isometrizing~
m |t helps that ifx, y € F, so isx—y, and so isx

o "Doubling" JL [AHY][IN]: Embedding bounds for sets &I" of bounded doubling dimension
= Mostly, additive approximation bounds on distance approximation, not relative
= Doubling dimension [L67][A83] is a kind of "intrinsic dimensionality"; applied e.g. to NN

searching [C99][KL04]
o Manifold JL [BW], here: embedding(amooth, connected)
d-dimensional manifold,

5=0(1/%exp(- ke?/ C)

. (When istheinput to a program infinite?)



o ltisn't

o Peta-Shmeta: "uncountably infinite" will always be "massive”

o And: the bounds hold for any finite subset of the infinite set

o So: for a set ofi points on a manifold, better bound wheis very large

o. NB: Embedding and embedding

o Embedding a manifold here means presertzng/idean distances
o This implies also preserving geodesic distances and other local properties
o If only geodesic distances are of interest, results here simplify a bit

10." All d-manifolds are not the same"

o The leading term fok, here and [BW], i& = O(¢ 2(dlog(1/¢) + log(1/5)))
o Improvement here is for lower-order terms, but they matter:
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11. Menifol

o Baraniuk and Wakin result has additional termkiéi »6 Y
Oz *(dlog(me(M)/ p)))
is enough for failure probability, where:
= mis (as before) the ambient dimension
= (M) is the surface area ™

= p is thereach [F59], the minimum distance of any pointMf to its medial axis, and J/is

an upper bound for curvature at any poinibf
o My result has additional term (roughly):
Oz 2(Iog(y (M) /7% + (M)
where:
= 4,,(M) is the total absolute curvature Idf

= 7(M) is a low-torsion-path threshold:af b € M havella— bl| <z then there is a

low-curvatureor low-torsion path between them
= |f a path has zero torsion, it is planar; if very low total torsiomplanar

o b | A T [ s o



12. Why isthisan improvement or interesting?

[¢]

Removed dependence on ambient dimensi@mtirely
= Sometimesn = o
1/7 plays a role similar to 14, but can be much more smaller
= If M is a pure quadric, then 1 is zero
o Also showed: can use curvature meagyéM) instead of surface argg(M)
= u (M) can be < x4 (M)
Places "JL complexity" among other propertied/bbounded by integral measurgg M)

[¢]

[¢]

13. T he General Approach : Long Chords

o As in prior work [IN][AHY], approximate the infinite set of
all (a—b)/|la—bl|, fora, b € M by a sequence of finite sets, and then apply JL Lemma to all the
finite sets

o "Long chords", fromra, b that are far apart, are easy to handle, because
a' close toa andb’ close tdb = normalized differences are close

1. The General Approach : Short Chords

o For short chords, the smoothness of the manifold is helpful:
if a, b € M are very close together, than- b = a tangent vector d1

b/d
\

o If the max curvature is small, chords need not be very short for this to be good




o Approximation for short chords becomes approximation of tangent vectors, which have total
complexityu,, (M)

15. Short chords, tangents, reach

o Suppose, b € M very close in Euclidean distance, but very far in arc length

o Then tangent & or b has nothing to do with—b

o This can happen when the reachf M is small
= As mentioned, the reach is the minimum distance of a poikk td the medial axis d¥
= Smallest distance of poimt & R™ to M, whenp has two nearest neighborshh
» A KA. recinracalcondition number of M

o Reach is a key property, but very "local" and "worst case"

N

a

p‘
b oo
~

16. Short Chords via Planar Tangents

o How to avoid max curvature / reach?
o Whena, b € M are connected by@anar curve inM, that curve has a tangent vector parallel to
a-b
= "Planar" ;= contained in a plane (2-flat).

—J =

o M is a pure quadric= a, b & M connected by a planar curve
o Low-torsion == approximately planar

17. Concluding Remarks



[¢]

[¢]

[¢]

[¢]

Results here give a relation of projection dimengioa standard measures
= May not be "news you can use": projection dimension guarantee relies on quantitieg/that ma
not be available
= Like many results, gives an unverifiable sufficient condition
= Test for the righk statistically?
OK for Manifold + (Gaussian) noise
Relation to linear compression [Thurs, 4:30]
= Both: multiply bykxm matrix,k < m
m There:x is sparse= X is recovered approximately
= Here:x's in a manifold, preserve (only) distances
= (Could apply [S] to altl-flats ofd-sparse vectors)
Probably extendible to polyhedral manfolds

Thank you for your attention



