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1.

Dimensionality Reduction

Given a high-dimensional dataset, in �

m, map it to a lower-dimensional space
One approach: carefully pick which coordinates to keep

Some dimensions are features, others are not
Or: carefully rotate the data, then carefully pick which coordinates to keep, or do something even
more complicated

SVD (PCA, LSI, EigenFace*), SDP, ICA, MDS, ETC
*See also: EigenEyebrow, EigenEye, EigenNose, EigenMouth, EigenHead....
EigenHand, EigenBody, EigenHeart...
EigenSign, EigenImage, EigenFish, EigenForm, EigenTracking, EigenWindow, EigenGait,
EigenLightField, EigenSurface, EigenFeature, Eigen Lightfield, Eigen-Scale-Space, Eigen
Nodule, Eigen-Prosody, EigenShape, EigenTree, EigenEdge, EigenEdginess, EigenHills,
Eigen (grapefruit) stems, EigenCharacter, EigenSignature, EigenWord, EigenSign,
EigenLetter, EigenScrabble**
**Not: EigenCluster, EigenMonkey

2.

Random projection
Instead of picking a rotation carefully,
pick one at random
Instead of picking from the new coordinates carefully,
pick the first k

3.

Random projection, more specifically
Again:

Apply a random rotation to v � �

m

Drop all but k coordinates
Scale (multiply by a constant) so that new vector v ' has E[||||v '||||] = ||||v||||

Equivalently: pick a random subspace of dimension k, project v onto it, then scale
Johnson-Lindenstrauss (JL) Lemma: with high probability, this preserves length, approximately:

Let a k-map P be a random projection from �

m to �k , as above
If k � ��2Clog(1 /�), then with probability at least 1� �,

(1� �)||||v|||| � ||||Pv|||| � (1 + �)||||v||||

Since P is linear, ||||�Pv|||| = �||||Pv|||| for � � 0, so WLOG ||||v|||| = 1

4.



(Random projection : why?)
Existence proof: if a random projection gives good results, what if we work harder?
There are many similar algorithms with the same properties

Multiply by a k×m matrix of random ±1, or of Gaussians
Use a matrix with a fast multiply [AC]

Obliviousness: the random projection is chosen without looking at the data at all
...and so is called "universal feature reduction"
Feature reduction without "feedback": no loops
Brain may work this way; a recent model of the brain [SOP]:

Is a "feedforward" neural network
Uses randomness for feature reduction in a similar way

5.

From one point to many
Point isometrizing: for one vector (point) v, the probability of failure is

� � exp(� k�2 / C)

Finite set isometrizing: for set S of n points, probability of failure for all points is

� � nexp(� k�2 / C)

Finite set embedding: for S � S := { x � y  ||  x, y � S},

� � n2exp(� k�2 / C)

k = O(��2log(n / �))
That is, preserving distances

6.

From many to infinite
Subspace JL [M][Sar]: for d-dimensional linear subspace F,

� = O(1)dexp(� k�2 / C)

Hint:
There is a finite subset of F so that isometrizing it �  isometrizing F
It helps that if x, y � F, so is x � y, and so is �x

"Doubling" JL [AHY][IN]: Embedding bounds for sets in �

m of bounded doubling dimension
Mostly, additive approximation bounds on distance approximation, not relative
Doubling dimension [L67][A83] is a kind of "intrinsic dimensionality"; applied e.g. to NN
searching [C99][KL04]

Manifold JL [BW], here: embedding a (smooth, connected)
d-dimensional manifold,

� = O(1 / �d)exp(� k�2 / C)

7.

(When is the input to a program infinite?)8.



It isn't
Peta-Shmeta: "uncountably infinite" will always be "massive"
And: the bounds hold for any finite subset of the infinite set
So: for a set of n points on a manifold, better bound when n is very large

NB: Embedding and embedding
Embedding a manifold here means preserving Euclidean distances
This implies also preserving geodesic distances and other local properties
If only geodesic distances are of interest, results here simplify a bit

9.

"All d-manifolds are not the same"

The leading term for k, here and [BW], is k = O(��2(d log(1 /�) + log(1 /�)))
Improvement here is for lower-order terms, but they matter:

10.

Manifold JL
Baraniuk and Wakin result has additional term for k of (roughly):
  O(��2(d log(m�I(M ) / �)))
is enough for failure probability �, where:

m is (as before) the ambient dimension
�I(M ) is the surface area of M
� is the reach [F59], the minimum distance of any point of M  to its medial axis, and 1 /� is
an upper bound for curvature at any point of M

My result has additional term (roughly):
  O(��2(log(�I(M ) / � d + �III(M ))))
where:
�III(M ) is the total absolute curvature of M

�(M ) is a low-torsion-path threshold: if a, b � M  have ||||a � b|||| � � then there is a
low-curvature or low-torsion path between them
If a path has zero torsion, it is planar; if very low total torsion,�  planar

11.



Why is this an improvement or interesting?
Removed dependence on ambient dimension m entirely

Sometimes m = �
1 / � plays a role similar to 1 /�, but can be much more smaller

If M  is a pure quadric, then 1 /� is zero
Also showed: can use curvature measure �II(M ) instead of surface area �I(M )
�II(M ) can be � �I(M )

Places "JL complexity" among other properties of M  bounded by integral measures �X(M )

12.

The General Approach : Long Chords
As in prior work [IN][AHY], approximate the infinite set of
all (a � b) / ||||a � b||||, for a, b � M  by a sequence of finite sets, and then apply JL Lemma to all the
finite sets
"Long chords", from a, b that are far apart, are easy to handle, because
a ' close to a and b ' close to b �  normalized differences are close

13.

The General Approach : Short Chords
For short chords, the smoothness of the manifold is helpful:
if a, b � M  are very close together, then a � b �  a tangent vector of M

If the max curvature is small, chords need not be very short for this to be good

14.



Approximation for short chords becomes approximation of tangent vectors, which have total
complexity �III(M )

Short chords, tangents, reach
Suppose a, b � M  very close in Euclidean distance, but very far in arc length
Then tangent at a or b has nothing to do with a � b
This can happen when the reach � of M  is small

As mentioned, the reach is the minimum distance of a point of M  to the medial axis of M
Smallest distance of point p � �

m to M , when p has two nearest neighbors in M
A.K.A., reciprocal condition number of M

Reach is a key property, but very "local" and "worst case"

15.

Short Chords via Planar Tangents
How to avoid max curvature / reach?
When a, b � M  are connected by a planar curve in M , that curve has a tangent vector parallel to
a � b

"Planar" := contained in a plane (2-flat).

M  is a pure quadric �  a, b � M  connected by a planar curve
Low-torsion == approximately planar

16.

Concluding Remarks17.



Results here give a relation of projection dimension k to standard measures
May not be "news you can use": projection dimension guarantee relies on quantities that may
not be available
Like many results, gives an unverifiable sufficient condition
Test for the right k statistically?

OK for Manifold + (Gaussian) noise
Relation to linear compression [Thurs, 4:30]

Both: multiply by k×m matrix, k � m
There: x is sparse � x is recovered approximately
Here: x's in a manifold, preserve (only) distances
(Could apply [S] to all d-flats of d-sparse vectors)

Probably extendible to polyhedral manfolds

Thank you for your attention


