1. Tighter Bounds for Random Projections of Manifolds

Ken Clarkson IBM Almaden

2. Dimensionality Reduction

- \circ Given a high-dimensional dataset, in \mathbb{R}^m , map it to a lower-dimensional space
- One approach: carefully pick which coordinates to keep
 - Some dimensions are *features*, others are not
- Or: carefully rotate the data, then carefully pick which coordinates to keep, or do something even more complicated
 - SVD (PCA, LSI, EigenFace*), SDP, ICA, MDS, ETC
 - *See also: EigenEyebrow, EigenEye, EigenNose, EigenMouth, EigenHead....
 - EigenHand, EigenBody, EigenHeart...
 - EigenSign, EigenImage, EigenFish, EigenForm, EigenTracking, EigenWindow, EigenGait, EigenLightField, EigenSurface, EigenFeature, Eigen Lightfield, Eigen-Scale-Space, Eigen Nodule, Eigen-Prosody, EigenShape, EigenTree, EigenEdge, EigenEdginess, EigenHills, Eigen (grapefruit) stems, EigenCharacter, EigenSignature, EigenWord, EigenSign, EigenLetter, EigenScrabble**
 - **Not: EigenCluster, EigenMonkey

3. Random projection

- Instead of picking a rotation carefully, pick one at random
- Instead of picking from the new coordinates carefully, pick the first *k*

4. Random projection, more specifically

- o Again:
 - Apply a random rotation to $v \in \mathbb{R}^m$
 - \blacksquare Drop all but k coordinates
 - Scale (multiply by a constant) so that new vector v' has E[||v'||] = ||v||
- \circ Equivalently: pick a random subspace of dimension k, project v onto it, then scale
- o Johnson-Lindenstrauss (JL) Lemma: with high probability, this preserves length, approximately:
 - Let a *k-map P* be a random projection from \mathbb{R}^m to \mathbb{R}^k , as above
 - If $k \ge \varepsilon^{-2} C \log(1/\delta)$, then with probability at least 1δ ,

$$(1-\varepsilon)\|y\| \le \|Pv\| \le (1+\varepsilon)\|y\|$$

• Since P is linear, $\|\alpha Pv\| = \alpha \|Pv\|$ for $\alpha \ge 0$, so WLOG $\|v\| = 1$

5. (Random projection: why?)

- Existence proof: if a random projection gives good results, what if we work harder?
- o There are many similar algorithms with the same properties
 - Multiply by a $k \times m$ matrix of random ± 1 , or of Gaussians
 - Use a matrix with a fast multiply [AC]
- o Obliviousness: the random projection is chosen without looking at the data at all
 - ...and so is called "universal feature reduction"
 - Feature reduction without "feedback": no loops
 - Brain may work this way; a recent model of the brain [SOP]:
 - Is a "feedforward" neural network
 - Uses randomness for feature reduction in a similar way

6. From one point to many

• Point isometrizing: for one vector (point) v, the probability of failure is

$$\delta \leq \exp(-k\varepsilon^2/C)$$

• Finite set *isometrizing*: for set *S* of *n* points, probability of failure for all points is

$$\delta \leq n \exp(-k\varepsilon^2/C)$$

 \circ Finite set *embedding*: for $S - S := \{x - y \mid x, y \in S\},\$

$$\delta \leq n^2 \exp(-k\varepsilon^2/C)$$

- $k = O(\varepsilon^{-2}\log(n/\delta))$
- That is, preserving distances

7. From many to infinite

• Subspace JL [M][Sar]: for *d*-dimensional linear subspace *F*,

$$\delta = O(1)^d \exp(-k\varepsilon^2/C)$$

- o Hint:
 - There is a finite subset of F so that isometrizing it \Rightarrow isometrizing F
 - It helps that if $x, y \in F$, so is x y, and so is αx
- \circ "Doubling" JL [AHY][IN]: Embedding bounds for sets in \mathbb{R}^m of bounded doubling dimension
 - Mostly, additive approximation bounds on distance approximation, not relative
 - Doubling dimension [L67][A83] is a kind of "intrinsic dimensionality"; applied e.g. to NN searching [C99][KL04]
- Manifold JL [BW], here: embedding a (smooth, connected)
 d-dimensional manifold,

$$\delta = O(1/\varepsilon^d) \exp(-k\varepsilon^2/C)$$

8. (When is the input to a program infinite?)

- o It isn't
- o Peta-Shmeta: "uncountably infinite" will always be "massive"
- o And: the bounds hold for any finite subset of the infinite set
- \circ So: for a set of *n* points on a manifold, better bound when *n* is very large

9. NB: Embedding and embedding

- o Embedding a manifold here means preserving Euclidean distances
- This implies also preserving geodesic distances and other local properties
- o If only geodesic distances are of interest, results here simplify a bit

10. "All d-manifolds are not the same"

- The leading term for k, here and [BW], is $k = O(\varepsilon^{-2}(d\log(1/\varepsilon) + \log(1/\delta)))$
- o Improvement here is for lower-order terms, but they matter:

• Baraniuk and Wakin result has additional term for k of $O(\varepsilon^{-2}(d\log(m\mu_I(M)/\rho)))$

is enough for failure probability δ , where:

- \blacksquare *m* is (as before) the ambient dimension
- $\mu_I(M)$ is the surface area of M
- ρ is the *reach* [F59], the minimum distance of any point of M to its medial axis, and $1/\rho$ is an upper bound for curvature at any point of M
- o My result has additional term (roughly):

$$O(\varepsilon^{-2}(\log(\mu_I(M)/\tau^d + \mu_{III}(M))))$$

where:

- $\mu_{III}(M)$ is the total absolute curvature of M
- $\tau(M)$ is a low-torsion-path threshold: if $a, b \in M$ have $||a-b|| \le \tau$ then there is a low-curvature *or* low-torsion path between them
- If a path has zero torsion, it is planar; if very low total torsion, \approx planar

12. Why is this an improvement or interesting?

- Removed dependence on ambient dimension m entirely
 - Sometimes $m = \infty$
- \circ 1/ τ plays a role similar to 1/ ρ , but can be much more smaller
 - If M is a pure quadric, then $1/\tau$ is zero
- Also showed: can use curvature measure $\mu_{II}(M)$ instead of surface area $\mu_{I}(M)$
 - $\blacksquare \mu_{II}(M)$ can be $\ll \mu_{I}(M)$
- \circ Places "JL complexity" among other properties of M bounded by integral measures $\mu_X(M)$

13. The General Approach: Long Chords

- As in prior work [IN][AHY], approximate the infinite set of all $(a-b)/\|a-b\|$, for $a,b\in M$ by a sequence of finite sets, and then apply JL Lemma to all the finite sets
- \circ "Long chords", from a, b that are far apart, are easy to handle, because a' close to a and b' close to $b \Rightarrow$ normalized differences are close

14. The General Approach: Short Chords

 \circ For short chords, the smoothness of the manifold is helpful: if $a, b \in M$ are very close together, then $a - b \approx a$ tangent vector of M

o If the max curvature is small, chords need not be very short for this to be good

o Approximation for short chords becomes approximation of tangent vectors, which have total complexity $\mu_{III}(M)$

15. Short chords, tangents, reach

- \circ Suppose $a, b \in M$ very close in Euclidean distance, but very far in arc length
- \circ Then tangent at a or b has nothing to do with a-b
- \circ This can happen when the reach ρ of M is small
 - \blacksquare As mentioned, the reach is the minimum distance of a point of M to the medial axis of M
 - Smallest distance of point $p \in \mathbb{R}^m$ to M, when p has two nearest neighbors in M
 - A.K.A., reciprocal *condition number* of M
- o Reach is a key property, but very "local" and "worst case"

16. Short Chords via Planar Tangents

- How to avoid max curvature / reach?
- \circ When $a, b \in M$ are connected by a planar curve in M, that curve has a tangent vector parallel to
 - "Planar" := contained in a plane (2-flat).

- $\circ M$ is a pure quadric $\Rightarrow a, b \in M$ connected by a planar curve
- Low-torsion == approximately planar

17. Concluding Remarks

- \circ Results here give a relation of projection dimension k to standard measures
 - May not be "news you can use": projection dimension guarantee relies on quantities that may not be available
 - Like many results, gives an unverifiable sufficient condition
 - Test for the right k statistically?
- o OK for Manifold + (Gaussian) noise
- Relation to linear compression [Thurs, 4:30]
 - Both: multiply by $k \times m$ matrix, $k \ll m$
 - There: x is sparse $\Rightarrow x$ is recovered approximately
 - Here: x's in a manifold, preserve (only) distances
 - (Could apply [S] to all d-flats of d-sparse vectors)
- o Probably extendible to polyhedral manfolds

Thank you for your attention