Bayesian Co-clustering for Dyadic Data Analysis

Arindam Banerjee <u>banerjee@cs.umn.edu</u>

Dept of Computer Science & Engineering University of Minnesota, Twin Cities

Workshop on Algorithms for Modern Massive Datasets (MMDS 2008)

Joint work with Hanhuai Shan

Introduction

- Dyadic Data
 - Relationship between two entities
- Examples
 - (Users, Movies): Ratings, Tags, Reviews
 - (Genes, Experiments): Expression
 - (Buyers, Products): Purchase, Ratings, Reviews
 - (Webpages, Advertisements): Click-through rate
- Co-clustering
 - Simultaneous clustering of rows and columns
 - Matrix approximation based on co-clusters
- Mixed membership co-clustering
 - Row/column has memberships in multiple row/column clusters
 - Flexible model, naturally handles sparsity

Example: Gene Expression Analysis

Co-clustered

Bayesian Co-clustering

Co-clustering and Matrix Approximation

U, V	1	2	3	4	5	6
1	-66	54	-63	93	51	96
2	35	87	37	-26	84	-22
3	-68	56	-64	92	52	94
4	30	83	32	-24	80	-21
5	-63	55	-60	92	53	95

Original Matrix Z

U,V	1	3	5	2	4	6
4	30	32	80	83	-24	-21
2	35	37	84	87	-26	-22
5	-63	-60	53	55	92	95
1	-66	-63	51	54	93	96
3	-68	-64	52	56	92	94

Reordered Matrix Z

Row Clustering

 Û, Û
 1
 2
 3

 1
 33.5
 83.5
 -23.3

 2
 -64.0
 53.5
 93.7

 Low Parameter Matrix

\hat{V}, V	1	2	3	4	5	6
1	1	0	1	0	0	0
2	0	1	0	0	1	0
3	0	0	0	1	0	1

Column Clustering

 \times

Example: Collaborative Filtering

Related Work

- Partitional co-clustering
 - Bi-clustering (Hartigan '72)
 - Bi-clustering of expression data (Cheng et al., '00)
 - Information theoretic co-clustering (Dhillon et al., '03)
 - Bregman co-clustering and matrix approximation (Banerjee et al., '07)
- Mixed membership models
 - Probabilistic latent semantic indexing (Hoffman, '99)
 - Latent Dirichlet allocation (Blei et al., '03)
- Bayesian relational models
 - Stochastic block structure (Nowicki et al, '01)
 - Infinite relational model (Kemp et al, '06)
 - Mixed membership stochastic block model (Airoldi et al, '07)

Background

• Bayesian Networks

• Plates

Latent Dirichlet Allocation (LDA) [BNJ'03]

- 2. For each of d tokens $(x_j, [j]_1^m)$ in **x**:
 - (a) Choose a component $z_j \sim \text{Discrete}(\pi)$.
 - (b) Choose x_j from $p(x_j|\beta_{z_j})$, a Discrete distribution conditioned on the topic z_j .

Bayesian Naïve Bayes (BNB) [BS'07]

- 1. Choose $\pi \sim \text{Dir}(\alpha)$.
- 2. For each of the observed features $f_j, [j]_1^m$: (a) Choose a class $z_j \sim \text{Discrete}(\pi)$, (b) Choose a feature value $x_j \sim p_{\psi}(x_j|z_j, f_j, \Theta)$.

Bayesian Co-clustering (BCC)

- 1. For each row $u, [u]_1^{n_1}$, choose $\pi_{1u} \sim \text{Dir}(\alpha_1)$.
- 2. For each column $v, [v]_1^{n2}$, choose $\pi_{2v} \sim \text{Dir}(\alpha_2)$.
- 3. For each non-missing entry in row u and column v:
 - (a) Choose $z_1 \sim \text{Discrete}(\pi_{1u})$.
 - (b) Choose $z_2 \sim \text{Discrete}(\pi_{2v})$.
 - (c) Choose $x_{uv} \sim p(x|\theta_{z_1z_2})$.

 $\log p(X|\alpha_1, \alpha_2, \Theta) \neq \sum_{n=1}^N \log p(x_n | \alpha_1, \alpha_2, \Theta)$

Bayesian Co-clustering (BCC)

$$p(X|\alpha_1, \alpha_2, \Theta) = \int_{u=1,...,n_1} \int_{v=1,...,n_2} \left(\prod_{u=1}^{n_1} p(\pi_{1u}|\alpha_1) \right) \left(\prod_{v=1}^{n_2} p(\pi_{2v}|\alpha_2) \right)$$
$$\left(\prod_{u,v} \sum_{z_{1uv}=1}^{k_1} \sum_{z_{2uv}=1}^{k_2} p(z_{1uv}|\pi_{1u}) p(z_{2uv}|\pi_{2v}) p(x_{uv}|\theta_{z_{1uv},z_{2uv}})^{\delta_{uv}} \right) d\pi_{1u[u=1\cdots n_1]} d\pi_{2v[v=1\cdots n_2]} d\pi_{2v[v=1\cdots n$$

Variational Inference

- Expectation Maximization
 - E-step: Calculate posterior probability $p(\pi_1, \pi_2, \mathbf{z}_1, \mathbf{z}_2 | \alpha_1, \alpha_2, \Theta, X)$ to obtain log-likelihood $L(\alpha, \Theta)$.
 - M-step: Maximize $L(\alpha, \Theta)$ w.r.t α, Θ .
- Variational EM
 - Introduce a variational distribution $q(\pi_1, \pi_2, \mathbf{z}_1, \mathbf{z}_2 | \gamma_1, \gamma_2, \phi_1, \phi_2)$ to approximate $p(\pi_1, \pi_2, \mathbf{z}_1, \mathbf{z}_2 | \alpha_1, \alpha_2, \Theta, X)$.
 - Use Jensen's inequality to get a tractable lower bound for log-likelihood $\log p(X|\alpha_1, \alpha_2, \Theta) \ge E_q[\log p(X, \mathbf{z}_1, \mathbf{z}_2, \pi_1, \pi_2 | \alpha_1, \alpha_2, \Theta)] + H(q(\mathbf{z}_1, \mathbf{z}_2, \pi_1, \pi_2))$
 - Maximize the lower bound w.r.t $(\phi_1, \gamma_1, \phi_2, \gamma_2)$ for the best lower bound, i.e., minimize the KL divergence between $q(\pi_1, \pi_2, \mathbf{z}_1, \mathbf{z}_2 | \gamma_1, \gamma_2, \phi_1, \phi_2)$ and $p(\pi_1, \pi_2, \mathbf{z}_1, \mathbf{z}_2 | \alpha_1, \alpha_2, \Theta, X)$
 - Maximize the lower bound w.r.t $(\alpha_1, \alpha_2, \Theta)$

Variational Distribution

• $Dir(\gamma_1)$, $Disc(\phi_1)$ for each row, $Dir(\gamma_2)$, $Disc(\phi_2)$ for each column

Bayesian Co-clustering

Variational EM for Bayesian Co-clustering

 $L(\gamma_1, \gamma_2, \phi_1, \phi_2; \alpha_1, \alpha_2, \Theta) =$ lower bound of log -likelihood

1. E-step: Given the model parameters $(\alpha_1^{(t)}, \alpha_2^{(t)}, \Theta^{(t)})$, find the variational parameters

$$(\boldsymbol{\gamma}_1^{(t+1)}, \boldsymbol{\gamma}_2^{(t+1)}, \boldsymbol{\phi}_1^{(t+1)}, \boldsymbol{\phi}_2^{(t+1)}) = \arg \max_{(\boldsymbol{\gamma}_1, \boldsymbol{\gamma}_2, \boldsymbol{\phi}_1, \boldsymbol{\phi}_2)} L(\boldsymbol{\gamma}_1, \boldsymbol{\gamma}_2, \boldsymbol{\phi}_1, \boldsymbol{\phi}_2; \boldsymbol{\alpha}_1^{(t)}, \boldsymbol{\alpha}_2^{(t)}, \boldsymbol{\Theta}^{(t)}) .$$

Then, $L(\boldsymbol{\gamma}_1^{(t+1)}, \boldsymbol{\gamma}_2^{(t+1)}, \boldsymbol{\phi}_1^{(t+1)}, \boldsymbol{\phi}_2^{(t+1)}; \alpha_1, \alpha_2, \Theta)$ serves as the lower bound function for $\log p(X|\alpha_1, \alpha_2, \Theta)$.

2. M-step: Obtain an improved estimate of the model parameters:

$$(\alpha_1^{(t+1)}, \alpha_2^{(t+1)}, \Theta^{(t+1)}) = \underset{(\alpha_1, \alpha_2, \Theta)}{\arg \max} L(\gamma_1^{(t+1)}, \gamma_2^{(t+1)}, \phi_1^{(t+1)}, \phi_2^{(t+1)}; \alpha_1, \alpha_2, \Theta)$$

EM for Bayesian Co-clustering

• Inference (E-step)

$$\phi_{1ui} \propto \exp\left(\Psi(\gamma_{1ui}) + \frac{\sum_{v=1}^{n_2} \sum_{j=1}^{k_2} \delta_{uv} \phi_{2vj} \log p(x_{uv}|\theta_{ij})}{m_u}\right)$$
$$\phi_{2vj} \propto \exp\left(\Psi(\gamma_{2vj}) + \frac{\sum_{u=1}^{n_1} \sum_{i=1}^{k_1} \delta_{uv} \phi_{1ui} \log p(x_{uv}|\theta_{ij})}{m_v}\right)$$
$$\gamma_{1ui} = \alpha_{1i} + m_u \phi_{1ui}$$
$$\gamma_{2vj} = \alpha_{2j} + m_v \phi_{2vj}$$

• Parameter Estimation (M-step) (Gaussians)

$$\mu_{ij} = \frac{\sum_{u=1}^{n_1} \sum_{v=1}^{n_2} \delta_{uv} x_{uv} \phi_{1ui} \phi_{2vj}}{\sum_{u=1}^{n_1} \sum_{v=1}^{n_2} \delta_{uv} \phi_{1ui} \phi_{2vj}}$$

$$\sigma_{ij}^2 = \frac{\sum_{u=1}^{n_1} \sum_{v=1}^{n_2} \delta_{uv} (x_{uv} - \mu_{ij})^2 \phi_{1ui} \phi_{2vj}}{\sum_{u=1}^{n_1} \sum_{v=1}^{n_2} \delta_{uv} \phi_{1ui} \phi_{2vj}}$$

Bayesian Co-clustering

Fast Latent Dirichlet Allocation (FastLDA)

• Introduce a different variational distribution $q(\pi, \mathbf{z}|\gamma, \phi)$ as an approximation of $p(\pi, \mathbf{z}|\alpha, \Theta, \mathbf{x})$.

- Number of variational parameters $\phi: m^*n \rightarrow n$.
- Number of optimizations over $\phi: m^*n \rightarrow n$.

FastLDA vs LDA: Perplexity

$$Perplexity(X) = \exp\left\{-\frac{\sum_{i=1}^{n}\log p(\mathbf{x}_i)}{\sum_{i=1}^{n}m_i}\right\}$$
17

FastLDA vs LDA: Time

Word List for Topics (Classic3)

LDA

Topic 1	Topic 2	Topic 3
information	patients	flow
library	cells	boundary
system	cases	pressure
data	normal	layer
libraries	growth	number
research	blood	mach
systems	found	$\operatorname{results}$
retrieval	treatment	theory
science	children	heat
scientific	cell	method

Fast LDA

Topic 1	Topic 2	Topic 3
information	patients	flow
library	cells	boundary
system	cases	pressure
libraries	normal	layer
data	growth	number
research	blood	mach
$\operatorname{retrieval}$	treatment	$\operatorname{results}$
systems	found	theory
science	children	shock
scientific	cell	heat

Word List for Three Topics on Classic3 Dataset

Word List for Topics (Newsgroups)

LDA

Topic 1	Topic 2	Topic 3
god	space	year
people	earth	game
don	nasa	don
time	launch	team
good	orbit	baseball
religion	system	good
make	shuttle	time
objective	moon	games
point	time	hit
evidence	mission	players

Fast LDA

Topic 1	Topic 2	Topic 3
god	space	year
people	earth	game
don	nasa	don
religion	launch	team
time	time	baseball
objective	orbit	good
good	system	games
moral	don	time
make	shuttle	hit
point	moon	players

Word List for Three Topics on CmuDiff Dataset

BCC Results: Simulated Data

Table 1: Cluster accuracy on simulated data.

BCC Results: Real Data

- Movielens: Movie recommendation data
 - 100,000 ratings (1-5) for 1682 movies from 943 users (6.3%)
 - Binarize: 0 (1-3), 1(4-5).
 - Discrete (original), Bernoulli (binary)
- Foodmart: Transaction data
 - 164,558 sales records for 7803 customers and 1559 products (1.35%)
 - Binarize: 0 (less than median), 1(higher than median)
 - Poisson (original), Bernoulli (binary)
- Jester: Joke rating data
 - 100,000 ratings (-10.00 +10.00) for 100 jokes from 1000 users (100%)
 - Binarize: 0 (lower than 0), 1 (higher than 0)
 - Gaussian (original), Bernoulli (binary)

BCC vs BNB vs LDA (Binary data)

Perplexity on Binary Jester Dataset with Different Number of User Clusters

BCC vs BNB (Original data)

Perplexity on Movielens Dataset with Different Number of User Clusters

Perplexity Comparison with 10 User Clusters

Training Set

Test Set

	BNB	BCC	LDA
Jester	1.7883	1.8186	98.3742
Movielens	1.6994	1.9831	439.6361
Foodmart	1.8691	1.9545	1461.7463

	BNB	BCC	LDA
Jester	4.0237	2.5498	98.9964
Movielens	3.9320	2.8620	1557.0032
Foodmart	6.4751	2.1143	6542.9920

On Binary Data

Training Set

Test Set

	BNB	BCC		BNB	BCC
Jester	15.4620	18.2495	Jester	39.9395	24.8239
Movielens	3.1495	0.8068	Movielens	38.2377	1.0265
Foodmart	4.5901	4.5938	Foodmart	4.6681	4.5964

On Original Data

Co-cluster Parameters (Movielens)

Co-embedding: Users

User signatures

ID	Age	\mathbf{Sex}	Occupation
79	39	F	administrator
374	36	М	executive
470	24	М	programmer
933	28	М	$\operatorname{student}$

User profiles.

Co-embedding: Movies

Movie names and keywords.

Summary

- Bayesian co-clustering
 - Mixed membership co-clustering for dyadic data
 - Flexible Bayesian priors over memberships
 - Applicable to variety of data types
 - Stable performance, consistently better in test set
- Fast variational inference algorithm
 - One variational parameter for each row/column
 - Maintains coupling between row/column cluster memberships
 - Same idea leads to FastLDA (try it at home)
- Future work
 - Open problem: Joint decoding of missing entries
 - Predictive models based on mixed membership co-clusters
 - Multi-relational clustering

References

• A Generalized Maximum Entropy Approach to Bregman Coclustering and Matrix Approximation

A. Banerjee, I. Dhillon, J. Ghosh, S. Merugu, D. Modha. *Journal of Machine Learning Research (JMLR)*, (2007).

- Latent Dirichlet Conditional Naive Bayes Models A. Banerjee and H. Shan. *IEEE International Conference on Data Mining (ICDM)*, (2007).
- Latent Dirichlet Allocation
 D. Blei, A. Ng, M. Jordan.
 Journal of Machine Learning Research (JMLR), (2003).
- Bayesian Co-clustering

 H. Shan, A. Banerjee.
 Tech Report, University of Minnesota, Twin Cities, (2008).