

Predictive Discrete Latent Factor Models

for large incomplete dyadic data

Deepak Agarwal, Srujana Merugu, Abhishek Agarwal Y! Research

MMDS Workshop, Stanford University 6/25/2008

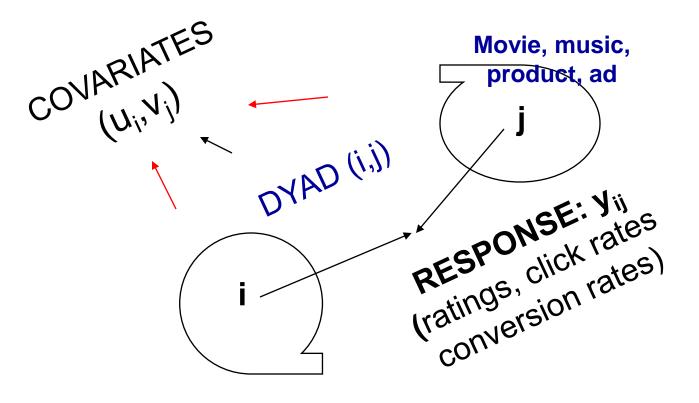
Agenda

- Motivating applications
- Problem Definitions
- Classic approaches
- Our approach PDLF
 - Building local models via co-clustering
- Enhancing PDLF via factorization
- Discussion

Motivating Applications

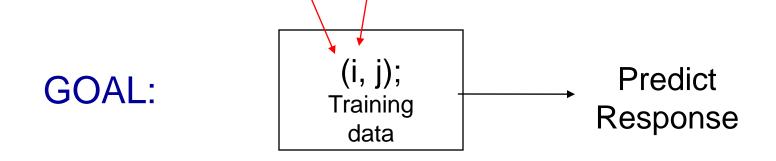
- Movie (Music) Recommendations
 - (Netflix, Y! Music)
 - Personalized; based on historical ratings
- Product Recommendation
 - Y! shopping: top products based on browse behavior
- Online advertising
 - What ads to show on a page?
- Traffic Quality of a publisher
 - What is the conversion rate?

DATA



user, webpage

Problem Definition



CHALLENGES

Scalability: Large dyadic matrix

Missing data: Small fraction of dyads

Noise: SNR low; data heterogeneous but

there are strong interactions

Classical Approaches

- SUPERVISED LEARNING
 - Non-parametric Function Estimation
 - Random effects: to estimate interactions
- UNSUPERVISED LEARNING
 - -Co-clustering, low-rank factorization,...
- Our main contribution
 - Blend supervised & unsupervised in a model based way; scalable fitting

Non-parametric function estimation

$$y_{ij} = h(\mathbf{x_{ij}}) + \text{noise}$$

- E.g. Trees, Neural Nets, Boosted Trees, Kernel Learning,...
 - capture entire structure through covariates
 - Dyadic data: Covariate-only models shows "Lack-of-Fit", better estimates of interactions possible by using information on dyads.

Random effects model

Specific term per observed cell

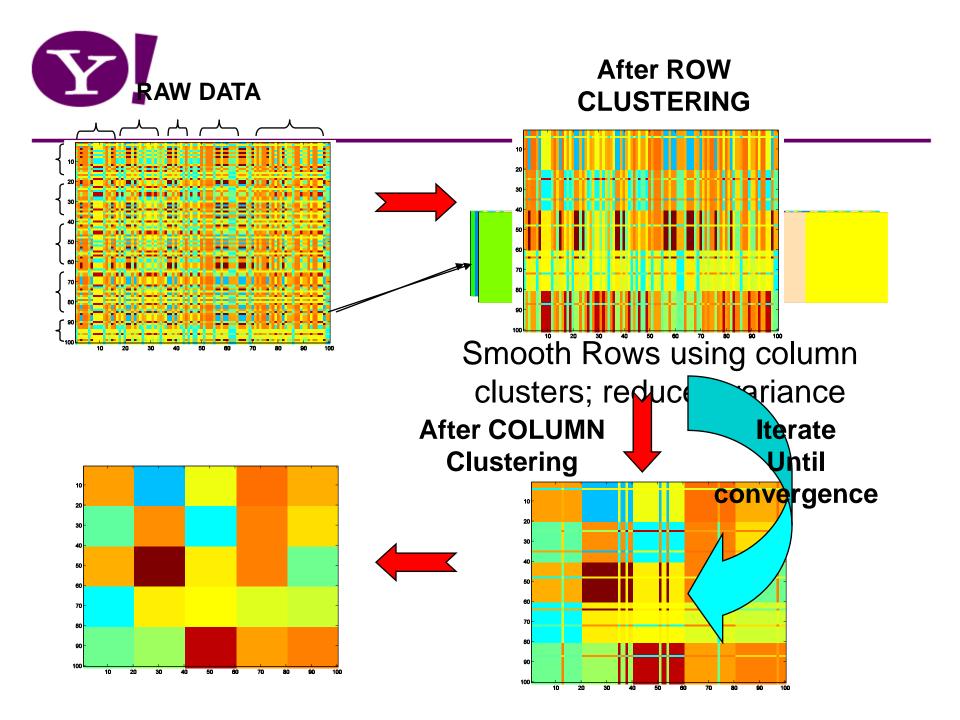
$$f(y_{ij}; z_{ij}, x_{ij}) = \int f_{\psi}(y_{ij}; z_{ij}^T \beta + \mathbf{x_{ij}}^T \delta_{ij}) \pi(\delta_{ij}; G) d\beta_{ij}$$
global Dyad-specific

- Smooth dyad-specific effects using prior("shrinkage")
 - E.g. Gaussian mixture, Dirichlet process,...
- Main goal: hypothesis testing, not suited to prediction
 - Prediction for new cell is based only on estimated prior
- Our approach
 - Co-cluster the matrix; *local* models in each cluster
 - Co-clustering done to obtain the best model fit

Classic Co-clustering

- Exclusively capture interactions
 - →No covariates included!
- Goal: Prediction by Matrix Approximation

- Scalable
 - Iteratively cluster rows & cols
 - →homogeneous blocks



Our Generative model

$$f(y_{ij}; x_{ij}, z_{ij}) = \sum_{I=1}^{K} \sum_{J=1}^{L} P(\rho_i = I, \gamma_j = J) f_{\psi}(y_{ij}; z_{ij}^T \beta + x_{ij}^T \delta_{I,J})$$

 ρ_i = Cluster id for row i; γ_i = Cluster id for column j

- Sparse, flexible approach to learn dyad-specific coeffs
 - borrow strength across rows and columns
- Capture interactions by co-clustering
 - Local model in each co-cluster
 - Convergence fast, procedure scalable
 - Completely model based, easy to generalize
- We consider $x_{ii}=1$ in this talk

Scalable model fitting EM algorithm

Hard assignment or "Winner-Take all"

Row/col assigned to the best cluster

$$\rho_{i} = \arg\max_{I} \left(\sum_{j:(i,j) \in \kappa} (y_{ij} \delta_{I\gamma_{j}} - \psi(x_{ij}^{T} \boldsymbol{\beta} + \delta_{I\gamma_{j}}) \right)$$

$$\gamma_{j} = \arg\max_{J} \left(\sum_{i:(i,j) \in \kappa} \left(y_{ij} \delta_{\rho_{i}J} - \psi(x_{ij}^{T} \boldsymbol{\beta} + \delta_{\rho_{i}J}) \right) \right)$$

Easily done in parallel; we use Map - Reduce

Several million dyads; thousands of rows/columns take few hours

Conditional on cluster assignments:

Estimate parameters via usual statistical procedures

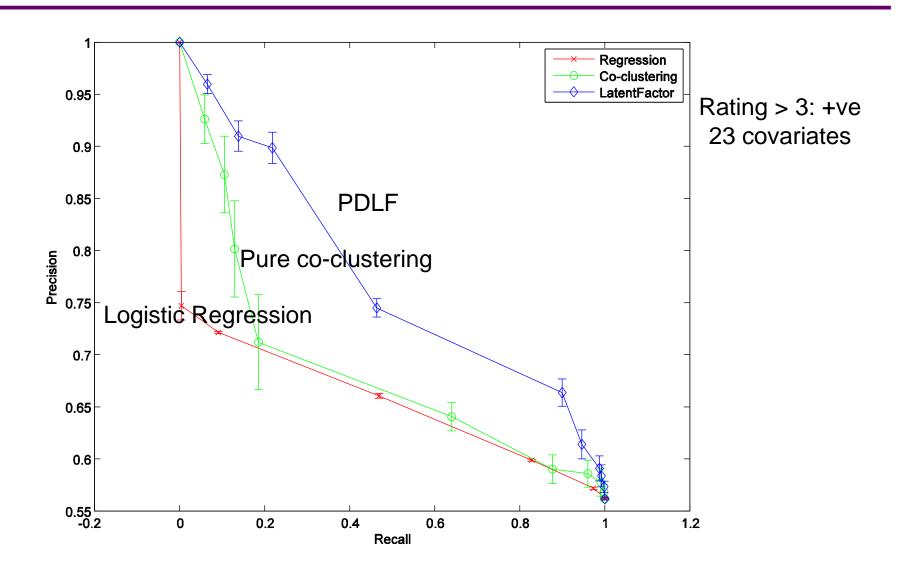
Complexity :
$$O(N((K + L) + s^2))$$

Simulation on Movie Lens

- User-movie ratings
 - Covariates: User demographics; genres
 - Simulated (200 sets): estimated co-cluster structure
 - Response assumed Gaussian

	β ₀	β1	β2	β ₃	β ₄	σ^2
truth	3.78	0.51	-0.28	0.14	0.24	1.16
95%	3.66,3.84	-0.63,0.62	-0.58,-0.16	-0.09,0.18	-0.68,1.05	0.90,0.99
c.i						

Regression on Movie Lens



Click Count Data

Goal:

Click activity on publisher pages from ip-domains

Dataset:

- 47903 ip-domains, 585 web-sites, 125208 click-count observations
- two covariates: ip-location (country-province) and routing type (e.g., aol pop, anonymizer, mobile-gateway), row-col effects.

Model:

 PDLF model based on Poisson distributions with number of row/column clusters set to 5

We thank Nicolas Eddy Mayoraz for discussions and data

Co-cluster Interactions: Plain Co-clustering

Publishers: IP Domains

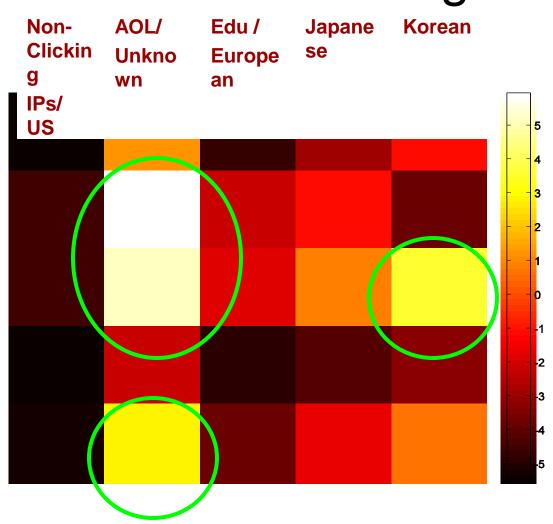
Internet-related e.g., buydomains

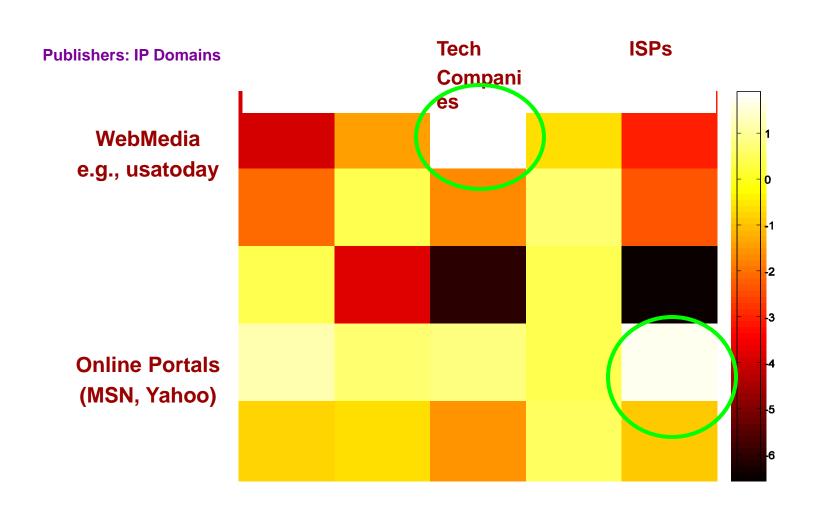
Shopping search e.g., netguide

AOL & Yahoo

Smaller publishers e.g. blogs

Smaller portals e.g. MSN, Netzero





Smoothing via Factorization

 Cluster size vary in PDLF, smoothing across local models works better

row profile : $u_i = (u_{i1}, u_{i2}, ..., u_{ir})$; col profile : $v_i = (v_{i1}, v_{i2}, ..., v_{ir})$

Regularized Weighted Factorization (RWF):

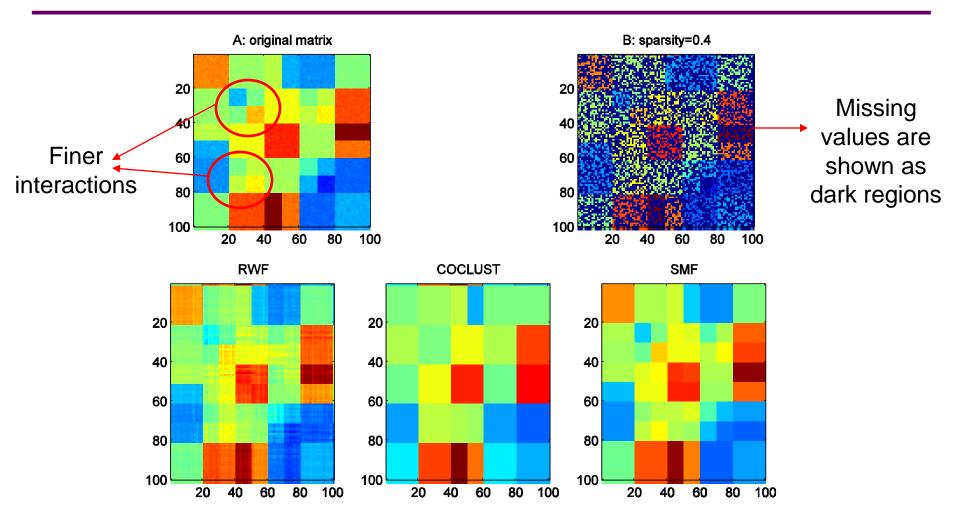
$$\delta_{ii} = u_i^T v_i$$
; u_i, v_i drawn from Gaussian prior

Squashed Matrix Factorization (SMF):

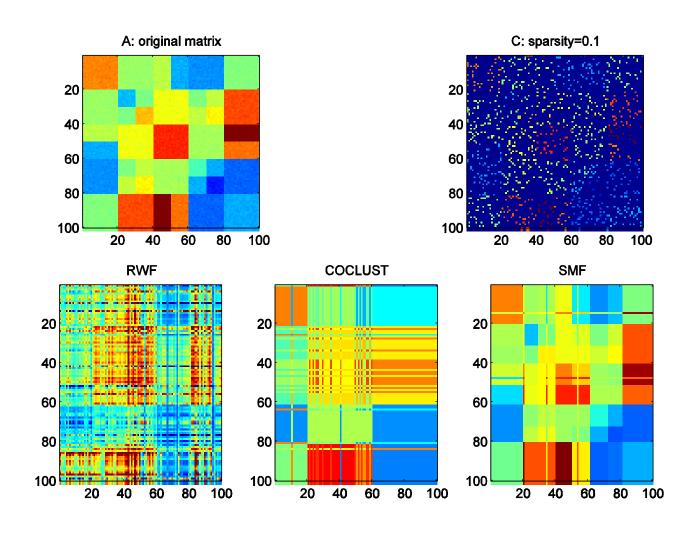
Co - cluster and factorize cluster profiles

$$\delta_{_{\rm IJ}} = U_{_{I}}^{^{T}} V_{_{J}}$$

Synthetic example (moderately sparse data)



Synthetic example (highly sparse data)



Movie Lens

Metric	RWF	COCLUST	SMF	
MAE	0.8012 ± 0.0041	0.8481 ± 0.0082	0.7882 ± 0.0055	
	r = 5	k = 5, l = 15	r = 5	k = 15, l = 45, r = 5
RMSE	0.3659 ± 0.0017	0.3676 ± 0.0021	0.3586 ± 0.0022	
	r = 2	k = 10, l = 30	r = 5	k = l5, l = 45, r = 5

Table 6.14. Prediction accuracy (5-fold cross-validation) on MovieLens dataset.

Estimating conversion rates

- Back to ip x publisher example
 - Now model conversion rates
 - Prob (click results in sales)
 - Detecting important interaction helps in traffic quality estimation

	COCLUST	SMF
RMSE	0.0406 ± 0.0011	0.0383 ± 0.0009
R^2	0.3485	0.4202
Parameters	(k = 10, l = 500)	(k = 15, l = 750, r = 5)

5.15. Prediction accuracy (with 5-fold cross-validation) on ip-click dataset.

Summary

- Covariate only models often fail to capture residual dependence for dyadic data
- Model based co-clustering attractive and scalable approach to estimate interactions
- Factorization on cluster effects smoothes local models; leads to better performance
- Models widely applicable in many scenarios

Ongoing work

- Fast co-clustering through DP mixtures (Richard Hahn, David Dunson)
 - Few sequential scans over the data
 - Initial results extremely promising
- Model based hierarchical co-clustering (Inderjit Dhillon)
 - Multi-resolution local models; smoothing by borrowing strength across resolutions