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Euclidean List Decoding

Fix
& structured spanning codebook C = {py} of vectors in C
<& Parameter k.

Given vector (“signal”) s € CV.

& Accessed by sampling: query y, learn s(y).

Goal:

Quickly find list of A such that | (py, s) |2 > (1/k) ||s|”.

For some codebooks, leads to sparse approximation:

¢ Small A with § =), expa =~ s.



Definitions of Reed-Muller (-like) Codes

For y, ¢ € Z%; P a binary symmetric matrix:
e Second-order Reed-Muller, RM(2):

T T
ppe(y) =¥ vy,

e Hankel, Kerdock codes: limited allowable P’s.
< Hankel: P is constant along reverse diagonals.
e First-order Reed-Muller, RM(1):

oyT T
woe(y) =i ¥ =(-1)" V.

Sometimes omit normalization factor 1/v/ N; makes ||¢||, = 1.



Our Results

e Theorem: There’s a Kerdock code that is a subcode of Hankel.

e Theorem: We give a list-decoding algorithm for length-/N
Hankel.
& Return list A of Hankel X such that | (o, s) |2 > (1/k) ||s||”
& L..in time poly(klog(NV)).

e Corollary: We give a fast list-decoding algorithm for Kerdock.

e Corollary: We give a fast sparse recovery algorithm for
Kerdock.
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Significance

First “simple” construction of a Kerdock code, as Hankel
subcode. (Isomorphic to an existing “complicated”
construction [Calderbank-Cameron-Kantor-Seidel].)

To our knowledge, first extension of RM(1) list decoding to
large codebook with small alphabet.

Sparse recovery for the important Kerdock code.

& Wireless communication—Multi-User Detection (Joel
Lepak)

<& Quantum information

Hankel and Kerdock compromise between RM(1) and RM(2)

& Code parameters

<& Learning



Related Work

List decoding over a single ONB [Kushilevitz-Mansour| doesn’t
(directly) give a result for the union of many ONBs (Kerdock,
Hankel)

Test for RM(2) [Alon-Kaufman-Krivelevich-Litsyn-Ron]| is not
a test for Kerdock and doesn’t do list decoding.

Decoding RM(2) with low noise [AKKLR| doesn’t help with
high noise.

Work over large alphabets [Sudan, ...] doesn’t help over Z,.
(Restrict multi-variate polynomial to random line, getting
univariate polynomial. But low-degree univariate polys over Zs

are not interesting.)

General sparse recovery |Gilbert-Muthukrishnan-S-Tropp, ...
requires time poly(2™) > poly(k,n) and/or space poly(2")
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Fundamental Properties of Kerdock

Used in our recovery algorithm and of independent interest.
|Calderbank-Cameron-Kantor-Seidel]

e Geometry. Union of N ONB’s, each of the form ¢po-RM(1)
for Kerdock P. (“Mutually-Unbiased Bases.”)

’

1, P=P 1=/
[(ppe,opre)| =19 0, P=P (£
 1/VN P#P.

e Algebra. Add'n and invertible mult’n of Kerdock matrices P.

< Map one ONB to another and permute elements of one
ONB.

e Multiscale Similarity. Some structure is preserved on some
restrictions to subspaces.



Multi-User Detection

e FEach subscriber gets a set of codewords.
e To speak, a user picks a codeword ¢, from her set.
& Message is encoded in choice of codeword and/or coefficient
C-
e Receiver gets ) |, capa.

e Decoder recovers all (A, cy)’s.

RM(2) and Hankel won’t work. Kerdock supports more users than
RM(1) for fixed blocklength.



Quantum Key Distribution

Four polarization directions:

e vertical |v) = , horizontal |h) = , and two diagonals

+1 +1
[v) +[h) = and |v) — [h) =
+1 —1

arranged in two mutually unbiased bases,

1 0 +1 +1
I= H = /2.
0 1 +1 -1

Punchline: Diagonal particle measured in I comes out |v) or |h).

e Kerdock gives optimal construction of larger MUBs.
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Compromise between RM (1) and RM(2)

e Code parameters.

e Learning. RM(1) is linear functions; RM(2) is quadratics.

Kerdock and Hankel are some quadratics, namely,

f(yo,y1,Y2,Ys3,...) has term 2ygy, iff it has 2y, y3 and y% = 1o,

etc. b.g.:
(000 0 0 1) (u)
000 1 0||wn
(yoy1y2y3y4)00100 Y2
0100 0f]us
\1 0 0 0 0/ \yu)
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Definition of Hankel

A matrix is Hankel if it is constant on reverse diagonals,

( Po P1 P2 p3\
P1 P2 P3 D4
P2 P3 P4 D5
Kps P4 P5  DPe /

The Hankel code is the subcode of RM(2)= {¢p,} in which P is
Hankel. |Calderbank-Gilbert-Levchenko-Muthukrinshnan-S|
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Definition of Kerdock

A set of matrices is a Kerdock set if the sum of any two is

non-singular or zero.

Each Kerdock set of matrices leads to some Kerdock code.
e Kerdock matrix PP and vector £: ppy.

Note:

e There are at most N = 2™ matrices in a Kerdock set, since
each matrix in the set has a distinct top row.

e We’ll construct a maximum-sized set.
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Our Construction of a Kerdock Set

Fix primitive polynomial h(t) = hg + hit + - - - + h,t™ over Zs[t],
e.g., n =4. A matrix P is If-Kerdock if

e P is Hankel, ( Po D1 P2 p3\

P1 P2 P3 P4
P2 P3 P4 DPs
\P3 P4 Ps5  DPe )

e (Top row pg, p1,p2, p3 unconstrained)

e Fach other paramter is a linear combination of top-row

parameters, using linear-feedback rule with coefficients in h.
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Example

Primitive polynomial h(t) =3+t +1 =1t 4+ 0t* + 1t + 1.

Po P1 P2

Top row unconstrained.

15



Example

Primitive polynomial h(t) =3+t +1 =1t 4+ 0t* + 1t + 1.

Po P1 P2
P = P1 D2 pP3 =
P2 P3 — P4 =

Top row unconstrained.

Extend to Hankel.
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Example

Primitive polynomial h(t) =3+t +1 =1t 4+ 0t* + 1t + 1.

Po P1 P2
P=1p P2 p3 = po + P1
P2 P3 =DPo+P1 P4 =P1+P2

Top row unconstrained.
Extend to Hankel.

Use teedback rule for lower half.
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Proof of Correctness

Theorem: A set of lf-Kerdock matrices is a Kerdock set.

Sufficient to show that 1f-Kerdocks are non-singular. Definitions:
e Additive Tr : F(2") — F(2) is given by
Tr(z) =z 422+ 2+ 28+ + 22"
e Recall A is primitive polynomial; (&) = 0.
o (Ku)jk := Tr(ag?™*) (“trace-Kerdock” matrix, for o € F(2"))
Three lemmas, one-line proofs:

e Trace-Kerdocks are non-singular.
e Trace-Kerdocks are 1f-Kerdock.

e lf-Kerdocks are trace-Kerdock.

18



Facts about Trace

Recall Tr(z) =x +2* + 2 + 28+ + 22", Squaring is linear in
characteristic 2, so
o Tr(zx+y)="Tr(x)+ Tr(y).
o Tr(x)? = Tr(z?) = Tr(x).
O Tr(x) satisfies y? +y = 0.
& Tr(x) € {0,1}.
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Trace-Kerdocks are non-Singular

Lemma: Trace-Kerdocks are non-Singular

K, =VTD,V over F(2"), where

D,, = diag(a, a2, a4, a8,...,a%" ") and vandermonde V is given by
(1 ¢ & & ¢ )
1 & & &8

V = 1 54 58 612 516
1 58 516 524 532

\: /

K, is over F(2), so det(K,) € F(2) over big field.
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Trace-Kerdocks are l1f-Kerdock

Lemma: Trace-Kerdocks are 1f-Kerdock.
A trace-Kerdock (K, );x := Tr(a&?*) is Hankel by inspection.
Feedback rule:

Tr(agTFtm)y = Tr <a§j+k Z hﬁ)

L<n

Z hyTr (a§j+k§£) :

L<n

so feedback rule is satisfied.
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lf-Kerdocks are Trace-Kerdock

Lemma: If-Kerdocks are Trace-Kerdock.

There are 2™ distinct matrices of each type. Above we showed that
all trace-Kerdocks are 1f-Kerdock.
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Overview

Motivation v
New construction of Kerdock v
List decoding for Hankel

& Review of list decoding for RM(1).
& (Simple) extension of algorithm to Hankel.

< Hankel structure keeps intermediate and final lists small.

Alternatives and conclusion
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Tensor-Product View of RM(1)

1011 = L1000 - L0010 - Looo1 is signal of length 2% = 16.

Start with ¢gggo = 1 and flip bits, in dyadic blocks.

©0000 ++++ ++++ A+t
Flip Vv Vv Vv Vv Vv Vv Vv
©1000 +—t—  +—+—  +—+— =+
Flip VVVV VVVV
01010 +—+—  —+—+ +—+-  —+—+
Flip VVVV ~ VVVV
Y1011 +-+-  —+—-+ -+  +—+-
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RM(1) Recovery

E.g., [Kushilevitz-Mansour|

Want ¢ such that | (s, o) |2 > (1/k) ||s|”.

For j < n, maintain candidate list L; for first j bits of Z.
Extend candidates one bit at a time—j to (j + 1)—and test.
Need to show, with high probability:

e No false negatives
<& True candidates are found
e Few (false) positives

<& List remains small; algorithm is efficient.

<& Can remove false positives at the end.
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RM(1) Recovery, No False Negatives

Signal s € C!9; candidate , with £ = 01 * .

Signal s | ++-- ++—- ++-3 i-++

900100 +4+—- ++—- ++—- ++—-

PO1xx* ++-——  F+14++—— +1-++-—- F+1-4+--

o | (o100, s) |? is high compared with |s||°.

e | {0100, 8) |? consists of contributions from dyadic blocks, many
of which are high.

e Each dyadic block’s contribution is sum of small contributions.

e Keep candidate @14« since > 1/0(k) blocks have square dot
product > 1/0(k), as estimated by sampling.

e Alternative view of dot product: | (s, ) |? = | (sp*, £1) |°.
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RM(1) Recovery, Few (False) Positives

e Markov: Most blocks get not much more than E[] share of ||s|°.
e Parseval: In each of B dyadic blocks, < k large dot products.
e So total number of v'’s is < kB.

e Thus: number pp,’s with > B/k v'’s is < k2.

dyadic blocks

Y
oy

(£,0) v v vy v v v Y

v

v
v

large dot product
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Hankel Recovery

Want P, ¢ such that | (s, oe) |2 > (1/k)||s||*.

Find P, then use KM to find ¢ with large
[ (s:0p.0) 2 = [ (59F0: P0,0) *-

For 5 < n, maintain candidate list for upper-left j-by-; submatrix
P’ of P.

Extend Hankel P’ one row/column at a time—four
possibilities—and test.

(P e
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Hankel Recovery, cont’d

Keep candidate P’ if, on many dyadic blocks, for restricted signal
s', there is some RM(1) vector og with | (s'¢p o, o) | large.

e Divide out RM(2) part, ¢’ .
e See if result is well-approximated by RM(1).
e Use KM to determine this.

With high probability, no false negatives:
e Algorithm works for all RM(2) just like for RM(1).
Need to show few (false) positives. Sufficient to show:

e few positives within each dyadic block.

e few large Hankel coefficients to any signal, s.
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There are Few Large Hankel Coefficients

Want: Approximate Parseval for the Hankel codebook.
e Dickson: rank(P + P’) high = (pp ¢, pp: ¢) small.

e Incoherence: All dot products small = appropriate

approximate Parseval.
e For each P, there are few P’ with rank(P + P’) low.
e Put it all together:

< Theorem: Given signal s and parameter k, there are at most
poly(k) Hankel vectors ppy with | (ppe, s) |2 > (1/k) ||s||*.
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Dickson’s Theorem

If (P,¢) # (P',¢'), then

| <90P,€7 SOP’,E’> | < 2—rank(P—|—P’)/2.

Relates dot products to the rank of P-matrix sums mod 2.

Bigger rank = vectors are closer to orthogonal.
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Dickson for Kerdock, proof

2 2 T Py+20tyd2T Pz120T
N <S0P,£a900,0> = Ezy Y Y

Y,z

T t T
_ E :,Lw Pw+20 w42y P(w—|—y)’ w=1y+2z

y,w

T t T T .
. E :Zw Pw+20 w42y Pw+2d y) d = dlag(P)

Y, w
_ 2 :inPw—i—QEtw Z Z-Q(wTP—i—dT)y
w y
T t
= N E o Pur2twsTp dt,  Pw=d
w

NZ-dTP_ld+2£tP_1d

Thus | {ppe; 00) > = 1/VN.
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Few Low-Rank Hankels

Theorem: At most 2°(") Hankel matrices have rank at most 7.

Proof: Suppose column 3 is a linear combination C of columns
0,1,2. Then C' and positions 0, 1, 2 in top row determine the top

half of the matrix: ( a b c \
b c
C
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Few Low-Rank Hankels

Theorem: At most 2°(") Hankel matrices have rank at most 7.

Proof: Suppose column 3 is a linear combination C of columns
0,1,2. Then C' and positions 0, 1, 2 in top row determine the top

half of the matrix: ( a b ¢ d \
b c
c

\ /

Learn d from linear combination.
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Few Low-Rank Hankels

Theorem: At most 2°(") Hankel matrices have rank at most 7.

Proof: Suppose column 3 is a linear combination C of columns
0,1,2. Then C' and positions 0, 1, 2 in top row determine the top

half of the matrix: (a b ¢ d \
b ¢ d
d
d

Fill in by Hanklicity.
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Few Low-Rank Hankels

Theorem: At most 2°(") Hankel matrices have rank at most 7.

Proof: Suppose column 3 is a linear combination C of columns
0,1,2. Then C' and positions 0, 1, 2 in top row determine the top

half of the matrix: (a b ¢ d \
b ¢ d e
d
d

\ /

Learn e from linear combination
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Few Low-Rank Hankels

Theorem: At most 2°(") Hankel matrices have rank at most 7.

Proof: Suppose column 3 is a linear combination C of columns
0,1,2. Then C' and positions 0, 1, 2 in top row determine the top

half of the matrix: (a b ¢ d e \
b ¢ d e
d e
d e
€

Fill in by Hanklicity.
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Few Low-Rank Hankels

Theorem: At most 2°(") Hankel matrices have rank at most 7.

Proof: Suppose column 3 is a linear combination C of columns
0,1,2. Then C' and positions 0, 1, 2 in top row determine the top
half of the matrix: (a b ¢ d e \

b ¢ d e

d e f
d e
€

Learn f by linear combination.
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Few Low-Rank Hankels

Theorem: At most 2°(") Hankel matrices have rank at most 7.

Proof: Suppose column 3 is a linear combination C of columns
0,1,2. Then C' and positions 0, 1, 2 in top row determine the top

half of the matrix:
(a b ¢ d e f\
b ¢ d f
d e f
d e f
e f

Fill in by Hanklicity.
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Hankel Vectors

Space of Hankel Vectors:

Dot: vector ¢pp.
Ball: ¢pr o with rank(P + P") < 2log(k)

Stick: vectors ppy, as £ varies.
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Few Large Hankel Coefficients

Space of Hankel vectors

®
H; e rank boundary
— P5 ®
Pe P, e
P50 RM(1)

Claim: Few lollipops with heavy vector pp, (| (¢pe,s) |? large).

e FEach dot & stick meets few lollipops. -Few low-rank Hankels.
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Few Large Hankel Coefficients

Space of Hankel vectors

rank boundary
P5 ®

SOPE),O'RM(l)

Claim: Few lollipops with heavy vector pp, (| (¢pe,s) |? large).
e Each dot & stick meets few lollipops. -Few low-rank Hankels.

e Disjoint lollipops are nearly orthogonal. -Dickson
e No large sets of heavy vectors in nearly-orthogonal subset.

-Incoherence (approximate Parseval)
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Sparse Recovery of Kerdock

Corollary: There is an algorithm to recover a near-best k-term
Kerdock reprentation to length-INV vector in time poly(klog(N)).

Uses incoherence of Kerdock: for Kerdock ¢ # 1), we have

[ (p,9) | <1/VN.
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Overview

Motivation v

New construction of Kerdock v/

List decoding for Hankel v/

Alternatives and conclusion
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Alternative Algorithms

A faster alternative to KM first permutes the RM(1) labels
(' — (TR:

(Ts)(y) = s(Ry) = i*" ) = 210,

for random invertible R. Simulate by substituting Ry for y.

Us: Recall K, = VT D,V. Use
R=V-ID,V=WVTV)"\(VTD,V) = K{ 'K,.
e Maps K, to K,,2—preserves Kerdock structure.

e For each ¢, /T R is uniform over Z? for such R.

Can randomize KM in our inner loop while preserving Kerdock
structure.

Get faster recovery algorithm, but only for Kerdock.
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Mutliscale Similarity

e Restricting Hankel to dyadic block gives Hankel
e Restricting Kerdock to subfield gives Kerdock.

<& No large dot products (v. < k® for Hankel)
<& More efficient algorithm
<& Bit-by-bit extension won’t work—we have new algorithm.

<& Can assume existence of subfields of the correct size.
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Subfields

Need subfield of size 2/ > k2, to get (1/k)-incoherence.
e So need f|n.
O n— fn,so N — N7,
<& Extend signal via trace function.

& Cost factor log(N) — log(N7) < log?(N).
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Smaller Subfields

At most O(k) coefs with | (i, s) |2 > (1/k) ||s|* in subfield of size
2/ = k2.
Now suppose s = ) . capx + v, where
o IA|=k
e o)~ 1
e ¢, random with Flcy] =0
& E.g., ¢y = %1 for message 0 and +:¢ for message 1.

e v Gaussian with ||v|> < k.

(Plausible in wireless applications.) Then...
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Smaller Subfields, cont’d

(...assuming random unit coefficients and noise.)

For subfield size k, there are constants ¢; > ¢y with

[(px,8) 2> (el /R) [1s17, A € A
[ (pars) P < (ca/R) [Isl®, A A.

e So list decoding works. (Ongoing work by Lepak.)
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Extension: Delsarte-Goethals

e Hierarchy of codes between RM(1) and RM(2).
e Sum of two matrices has rank at least n — g.
& Dickson: Get incoherent codebook

e Number of codewords between N2 (Kerdock) and N ©(log(N))
(RM(2)).
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Recap

We construct a Kerdock code as a subcode of Hankel.
We give a list-decoding algorithm for Hankel.
(Corollary) We give a list-decoding algorithm for Kerdock.

(Corollary) Since Kerdock is p-incoherent for small p, we get a

sparse recovery algorithm for Kerdock.
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