
List Decoding of Noisy
Reed-Muller-like Codes

Martin J. Strauss
University of Michigan

Joint work with
A. Robert Calderbank (Princeton)

Anna C. Gilbert (Michigan)
Joel Lepak (Michigan)

Euclidean List Decoding

• Fix

3 structured spanning codebook C = {ϕλ} of vectors in CN

3 Parameter k.

• Given vector (“signal”) s ∈ CN .

3 Accessed by sampling: query y, learn s(y).

• Goal:

Quickly find list of λ such that | 〈ϕλ, s〉 |2 ≥ (1/k) ‖s‖2.

• For some codebooks, leads to sparse approximation:

3 Small Λ with s̃ =
∑

λ∈Λ cλϕλ ≈ s.

1

Definitions of Reed-Muller (-like) Codes

For y, ` ∈ Zn
2 ; P a binary symmetric matrix:

• Second-order Reed-Muller, RM(2):

ϕP,`(y) = iy
T Py+2`T y.

• Hankel, Kerdock codes: limited allowable P ’s.

3 Hankel: P is constant along reverse diagonals.

• First-order Reed-Muller, RM(1):

ϕ0,`(y) = i2`T y = (−1)`T y.

Sometimes omit normalization factor 1/
√
N ; makes ‖ϕ‖2 = 1.

2

Our Results

• Theorem: There’s a Kerdock code that is a subcode of Hankel.

• Theorem: We give a list-decoding algorithm for length-N
Hankel.

3 Return list Λ of Hankel λ such that | 〈ϕλ, s〉 |2 ≥ (1/k) ‖s‖2
3 ...in time poly(k log(N)).

• Corollary: We give a fast list-decoding algorithm for Kerdock.

• Corollary: We give a fast sparse recovery algorithm for
Kerdock.

3

Overview

• Motivation

• New construction of Kerdock

• List decoding for Hankel

• Alternatives and conclusion

4

Significance

• First “simple” construction of a Kerdock code, as Hankel
subcode. (Isomorphic to an existing “complicated”
construction [Calderbank-Cameron-Kantor-Seidel].)

• To our knowledge, first extension of RM(1) list decoding to
large codebook with small alphabet.

• Sparse recovery for the important Kerdock code.

3 Wireless communication—Multi-User Detection (Joel
Lepak)

3 Quantum information

• Hankel and Kerdock compromise between RM(1) and RM(2)

3 Code parameters

3 Learning

5

Related Work

• List decoding over a single ONB [Kushilevitz-Mansour] doesn’t
(directly) give a result for the union of many ONBs (Kerdock,
Hankel)

• Test for RM(2) [Alon-Kaufman-Krivelevich-Litsyn-Ron] is not
a test for Kerdock and doesn’t do list decoding.

• Decoding RM(2) with low noise [AKKLR] doesn’t help with
high noise.

• Work over large alphabets [Sudan, ...] doesn’t help over Z2.
(Restrict multi-variate polynomial to random line, getting
univariate polynomial. But low-degree univariate polys over Z2

are not interesting.)

• General sparse recovery [Gilbert-Muthukrishnan-S-Tropp, ...]
requires time poly(2n) À poly(k, n) and/or space poly(2n)

6

Fundamental Properties of Kerdock

Used in our recovery algorithm and of independent interest.
[Calderbank-Cameron-Kantor-Seidel]

• Geometry. Union of N ONB’s, each of the form ϕP,0·RM(1)
for Kerdock P . (“Mutually-Unbiased Bases.”)

| 〈ϕP,`, ϕP ′,`′〉 | =





1, P = P ′, ` = `′

0, P = P ′, ` 6= `′

1/
√
N P 6= P ′.

• Algebra. Add’n and invertible mult’n of Kerdock matrices P .

3 Map one ONB to another and permute elements of one
ONB.

• Multiscale Similarity. Some structure is preserved on some
restrictions to subspaces.

7

Multi-User Detection

• Each subscriber gets a set of codewords.

• To speak, a user picks a codeword ϕλ from her set.

3 Message is encoded in choice of codeword and/or coefficient
cλ.

• Receiver gets
∑

λ cλϕλ.

• Decoder recovers all (λ, cλ)’s.

RM(2) and Hankel won’t work. Kerdock supports more users than
RM(1) for fixed blocklength.

8

Quantum Key Distribution

Four polarization directions:

• vertical |v〉 =


1

0


, horizontal |h〉 =


0

1


, and two diagonals

|v〉+ |h〉 =


+1

+1


 and |v〉 − |h〉 =


+1

−1


.

arranged in two mutually unbiased bases,

I =


1 0

0 1


 ,H =


+1 +1

+1 −1


 /

√
2.

Punchline: Diagonal particle measured in I comes out |v〉 or |h〉.
• Kerdock gives optimal construction of larger MUBs.

9

Compromise between RM(1) and RM(2)

• Code parameters.

• Learning. RM(1) is linear functions; RM(2) is quadratics.
Kerdock and Hankel are some quadratics, namely,
f(y0, y1, y2, y3, . . .) has term 2y0y4 iff it has 2y1y3 and y2

2 = y2,
etc. E.g.:

(
y0 y1 y2 y3 y4

)




0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0







y0

y1

y2

y3

y4




10

Overview

• Motivation X
• New construction of Kerdock

• List decoding for Hankel

• Alternatives and conclusion

11

Definition of Hankel

A matrix is Hankel if it is constant on reverse diagonals,

P =




p0 p1 p2 p3

p1 p2 p3 p4

p2 p3 p4 p5

p3 p4 p5 p6




The Hankel code is the subcode of RM(2)= {ϕP,`} in which P is
Hankel. [Calderbank-Gilbert-Levchenko-Muthukrinshnan-S]

12

Definition of Kerdock

A set of matrices is a Kerdock set if the sum of any two is
non-singular or zero.

Each Kerdock set of matrices leads to some Kerdock code.

• Kerdock matrix P and vector `: ϕP,`.

Note:

• There are at most N = 2n matrices in a Kerdock set, since
each matrix in the set has a distinct top row.

• We’ll construct a maximum-sized set.

13

Our Construction of a Kerdock Set

Fix primitive polynomial h(t) = h0 + h1t+ · · ·+ hnt
n over Z2[t],

e.g., n = 4. A matrix P is lf-Kerdock if

• P is Hankel,

P =




p0 p1 p2 p3

p1 p2 p3 p4

p2 p3 p4 p5

p3 p4 p5 p6




• (Top row p0, p1, p2, p3 unconstrained)

• Each other paramter is a linear combination of top-row
parameters, using linear-feedback rule with coefficients in h.

14

Example

Primitive polynomial h(t) = t3 + t+ 1 = t3 + 0t2 + 1t+ 1.

P =



p0 p1 p2




Top row unconstrained.

15

Example

Primitive polynomial h(t) = t3 + t+ 1 = t3 + 0t2 + 1t+ 1.

P =



p0 p1 p2

p1 p2 p3 =

p2 p3 = p4 =




Top row unconstrained.

Extend to Hankel.

16

Example

Primitive polynomial h(t) = t3 + t+ 1 = t3 + 0t2 + 1t+ 1.

P =



p0 p1 p2

p1 p2 p3 = p0 + p1

p2 p3 = p0 + p1 p4 = p1 + p2




Top row unconstrained.

Extend to Hankel.

Use feedback rule for lower half.

17

Proof of Correctness

Theorem: A set of lf-Kerdock matrices is a Kerdock set.

Sufficient to show that lf-Kerdocks are non-singular. Definitions:

• Additive Tr : F(2n) → F(2) is given by
Tr(x) = x+ x2 + x4 + x8 + · · ·+ x2n−1

.

• Recall h is primitive polynomial; h(ξ) = 0.

• (Kα)j,k := Tr(αξj+k) (“trace-Kerdock” matrix, for α ∈ F(2n))

Three lemmas, one-line proofs:

• Trace-Kerdocks are non-singular.

• Trace-Kerdocks are lf-Kerdock.

• lf-Kerdocks are trace-Kerdock.

18

Facts about Trace

Recall Tr(x) = x+ x2 + x4 + x8 + · · ·+ x2n−1
. Squaring is linear in

characteristic 2, so

• Tr(x+ y) = Tr(x) + Tr(y).

• Tr(x)2 = Tr(x2) = Tr(x).

3 Tr(x) satisfies y2 + y = 0.
3 Tr(x) ∈ {0, 1}.

19

Trace-Kerdocks are non-Singular

Lemma: Trace-Kerdocks are non-Singular

Kα = V TDαV over F(2n), where
Dα = diag(α, α2, α4, α8, . . . , α2n−1

) and vandermonde V is given by

V =




1 ξ ξ2 ξ3 ξ4 · · ·
1 ξ2 ξ4 ξ6 ξ8 · · ·
1 ξ4 ξ8 ξ12 ξ16 · · ·
1 ξ8 ξ16 ξ24 ξ32 · · ·
...




.

Kα is over F(2), so det(Kα) ∈ F(2) over big field.

20

Trace-Kerdocks are lf-Kerdock

Lemma: Trace-Kerdocks are lf-Kerdock.

A trace-Kerdock (Kα)j,k := Tr(αξj+k) is Hankel by inspection.

Feedback rule:

Tr(αξj+k+n) = Tr

(
αξj+k

∑

`<n

h`ξ
`

)

=
∑

`<n

h`Tr
(
αξj+kξ`

)
,

so feedback rule is satisfied.

21

lf-Kerdocks are Trace-Kerdock

Lemma: lf-Kerdocks are Trace-Kerdock.

There are 2n distinct matrices of each type. Above we showed that
all trace-Kerdocks are lf-Kerdock.

22

Overview

• Motivation X
• New construction of Kerdock X
• List decoding for Hankel

3 Review of list decoding for RM(1).

3 (Simple) extension of algorithm to Hankel.
3 Hankel structure keeps intermediate and final lists small.

• Alternatives and conclusion

23

Tensor-Product View of RM(1)

φ1011 = ϕ1000 · ϕ0010 · ϕ0001 is signal of length 24 = 16.

Start with φ0000
∼= 1 and flip bits, in dyadic blocks.

ϕ0000 ++++ ++++ ++++ ++++

Flip v v v v v v v v

ϕ1000 +-+- +-+- +-+- +-+-

Flip vvvv vvvv

ϕ1010 +-+- -+-+ +-+- -+-+

Flip vvvv vvvv

ϕ1011 +-+- -+-+ -+-+ +-+-

24

RM(1) Recovery

E.g., [Kushilevitz-Mansour]

Want ` such that | 〈s, ϕ`〉 |2 ≥ (1/k) ‖s‖2.
For j ≤ n, maintain candidate list Lj for first j bits of `.

Extend candidates one bit at a time—j to (j + 1)—and test.

Need to show, with high probability:

• No false negatives

3 True candidates are found

• Few (false) positives

3 List remains small; algorithm is efficient.

3 Can remove false positives at the end.

25

RM(1) Recovery, No False Negatives

Signal s ∈ C16; candidate ϕ` with ` = 01 ∗ ∗.
Signal s ++-- ++-- ++-3 i-++

ϕ0100 ++-- ++-- ++-- ++--

ϕ01∗∗ ++-- ±1·++-- ±1·++-- ±1·++--
• | 〈ϕ0100, s〉 |2 is high compared with ‖s‖2.
• | 〈ϕ0100, s〉 |2 consists of contributions from dyadic blocks, many

of which are high.

• Each dyadic block’s contribution is sum of small contributions.

• Keep candidate ϕ01∗∗ since ≥ 1/O(k) blocks have square dot
product ≥ 1/O(k), as estimated by sampling.

• Alternative view of dot product: | 〈s, ϕ〉 |2 = | 〈sϕ∗,±1〉 |2.
26

RM(1) Recovery, Few (False) Positives

• Markov: Most blocks get not much more than E[] share of ‖s‖2.
• Parseval: In each of B dyadic blocks, ≤ k large dot products.

• So total number of X’s is ≤ kB.

• Thus: number ϕP,`’s with ≥ B/k X’s is ≤ k2.

dyadic blocks - B

(P, `)

?
large dot product

XX X XX X X X X

X
X

X

27

Hankel Recovery

Want P, ` such that | 〈s, ϕ`〉 |2 ≥ (1/k) ‖s‖2.
Find P , then use KM to find ` with large
| 〈s, ϕP,`〉 |2 = | 〈sϕ∗P,0, ϕ0,`

〉 |2.
For j ≤ n, maintain candidate list for upper-left j-by-j submatrix
P ′ of P .

Extend Hankel P ′ one row/column at a time—four
possibilities—and test.

P =




P ′ a

a b




28

Hankel Recovery, cont’d

Keep candidate P ′ if, on many dyadic blocks, for restricted signal
s′, there is some RM(1) vector ϕ`′ with | 〈s′ϕ∗P ′,0, ϕ0,`′

〉 |2 large.

• Divide out RM(2) part, ϕ′P ′,0.

• See if result is well-approximated by RM(1).

• Use KM to determine this.

With high probability, no false negatives:

• Algorithm works for all RM(2) just like for RM(1).

Need to show few (false) positives. Sufficient to show:

• few positives within each dyadic block.

• few large Hankel coefficients to any signal, s.

29

There are Few Large Hankel Coefficients

Want: Approximate Parseval for the Hankel codebook.

• Dickson: rank(P + P ′) high ⇒ 〈ϕP,`, ϕP ′,`′〉 small.

• Incoherence: All dot products small ⇒ appropriate
approximate Parseval.

• For each P , there are few P ′ with rank(P + P ′) low.

• Put it all together:

3 Theorem: Given signal s and parameter k, there are at most
poly(k) Hankel vectors ϕP,` with | 〈ϕP,`, s〉 |2 ≥ (1/k) ‖s‖2.

30

Dickson’s Theorem

If (P, `) 6= (P ′, `′), then

| 〈ϕP,`, ϕP ′,`′〉 | ≤ 2−rank(P+P ′)/2.

Relates dot products to the rank of P -matrix sums mod 2.

Bigger rank ⇒ vectors are closer to orthogonal.

31

Dickson for Kerdock, proof

N2 〈ϕP,`, ϕ0,0〉2 =
∑
y,z

iy
T Py+2`ty+zT Pz+2`T z

=
∑
y,w

iw
T Pw+2`tw+2yT P (w+y), w = y + z

=
∑
y,w

iw
T Pw+2`tw+2yT Pw+2dT y, d = diag(P)

=
∑
w

iw
T Pw+2`tw

∑
y

i2(w
T P+dT)y

= N
∑
w

iw
T Pw+2`twδ(wTP, dT), Pw = d

= Nid
T P−1d+2`tP−1d.

Thus | 〈ϕP,`, ϕ0,0〉 |2 = 1/
√
N .

32

Few Low-Rank Hankels

Theorem: At most 2O(r) Hankel matrices have rank at most r.

Proof: Suppose column 3 is a linear combination C of columns
0,1,2. Then C and positions 0, 1, 2 in top row determine the top
half of the matrix:




a b c

b c

c




33

Few Low-Rank Hankels

Theorem: At most 2O(r) Hankel matrices have rank at most r.

Proof: Suppose column 3 is a linear combination C of columns
0,1,2. Then C and positions 0, 1, 2 in top row determine the top
half of the matrix:




a b c d

b c

c




Learn d from linear combination.

34

Few Low-Rank Hankels

Theorem: At most 2O(r) Hankel matrices have rank at most r.

Proof: Suppose column 3 is a linear combination C of columns
0,1,2. Then C and positions 0, 1, 2 in top row determine the top
half of the matrix:




a b c d

b c d

c d

d




Fill in by Hanklicity.

35

Few Low-Rank Hankels

Theorem: At most 2O(r) Hankel matrices have rank at most r.

Proof: Suppose column 3 is a linear combination C of columns
0,1,2. Then C and positions 0, 1, 2 in top row determine the top
half of the matrix:




a b c d

b c d e

c d

d




Learn e from linear combination

36

Few Low-Rank Hankels

Theorem: At most 2O(r) Hankel matrices have rank at most r.

Proof: Suppose column 3 is a linear combination C of columns
0,1,2. Then C and positions 0, 1, 2 in top row determine the top
half of the matrix:




a b c d e

b c d e

c d e

d e

e




Fill in by Hanklicity.

37

Few Low-Rank Hankels

Theorem: At most 2O(r) Hankel matrices have rank at most r.

Proof: Suppose column 3 is a linear combination C of columns
0,1,2. Then C and positions 0, 1, 2 in top row determine the top
half of the matrix:




a b c d e

b c d e

c d e f

d e

e




Learn f by linear combination.

38

Few Low-Rank Hankels

Theorem: At most 2O(r) Hankel matrices have rank at most r.

Proof: Suppose column 3 is a linear combination C of columns
0,1,2. Then C and positions 0, 1, 2 in top row determine the top
half of the matrix: 



a b c d e f

b c d e f

c d e f

d e f

e f

f




Fill in by Hanklicity.

39

Hankel Vectors

Space of Hankel Vectors:

t
&%

'$

P

Dot: vector ϕP,0.

Ball: ϕP ′,0 with rank(P + P ′) ≤ 2 log(k)

Stick: vectors ϕP,`, as ` varies.

40

Few Large Hankel Coefficients

Space of Hankel vectors

t
&%

'$

P1

t
&%

'$

P2 t
&%

'$

P3

t
&%

'$

P4

t
&%

'$

P5

rank boundary

ϕP5,0·RM(1)

Claim: Few lollipops with heavy vector ϕP,` (| 〈ϕP,`, s〉 |2 large).

• Each dot & stick meets few lollipops. -Few low-rank Hankels.

41

Few Large Hankel Coefficients

Space of Hankel vectors

t
&%

'$

P1

t
&%

'$

P2

t
&%

'$

P4

t
&%

'$

P5

rank boundary

ϕP5,0·RM(1)

Claim: Few lollipops with heavy vector ϕP,` (| 〈ϕP,`, s〉 |2 large).

• Each dot & stick meets few lollipops. -Few low-rank Hankels.

• Disjoint lollipops are nearly orthogonal. -Dickson

• No large sets of heavy vectors in nearly-orthogonal subset.
-Incoherence (approximate Parseval)

42

Sparse Recovery of Kerdock

Corollary: There is an algorithm to recover a near-best k-term
Kerdock reprentation to length-N vector in time poly(k log(N)).

Uses incoherence of Kerdock: for Kerdock ϕ 6= ψ, we have
| 〈ϕ,ψ〉 | ≤ 1/

√
N .

43

Overview

• Motivation X
• New construction of Kerdock X
• List decoding for Hankel X
• Alternatives and conclusion

44

Alternative Algorithms

A faster alternative to KM first permutes the RM(1) labels
`T → `TR:

(Ts)(y) = s(Ry) = i2`T (Ry) = i2(`
T R)y,

for random invertible R. Simulate by substituting Ry for y.

Us: Recall Kα = V TDαV . Use
R = V −1DrV = (V TV)−1(V TDrV) = K−1

1 Kr.

• Maps Kα to Kαr2—preserves Kerdock structure.

• For each `, `TR is uniform over Zn
2 for such R.

Can randomize KM in our inner loop while preserving Kerdock
structure.

Get faster recovery algorithm, but only for Kerdock.

45

Mutliscale Similarity

• Restricting Hankel to dyadic block gives Hankel

• Restricting Kerdock to subfield gives Kerdock.

3 No large dot products (v. ≤ k8 for Hankel)

3 More efficient algorithm
3 Bit-by-bit extension won’t work—we have new algorithm.

3 Can assume existence of subfields of the correct size.

46

Subfields

Need subfield of size 2f ≥ k2, to get (1/k)-incoherence.

• So need f |n.

3 n→ fn, so N → Nf .
3 Extend signal via trace function.

3 Cost factor log(N) → log(Nf) ≤ log2(N).

47

Smaller Subfields

At most O(k) coefs with | 〈ϕ, s〉 |2 ≥ (1/k) ‖s‖2 in subfield of size
2f = k2.

Now suppose s =
∑

λ∈Λ cλϕλ + ν, where

• |Λ| = k

• |cλ| ≈ 1

• cλ random with E[cλ] = 0

3 E.g., cλ = ±1 for message 0 and ±i for message 1.

• ν Gaussian with ‖ν‖2 ≤ k.

(Plausible in wireless applications.) Then...

48

Smaller Subfields, cont’d

(...assuming random unit coefficients and noise.)

For subfield size k, there are constants c1 > c2 with



| 〈ϕλ, s〉 |2 > (c1/k) ‖s‖2 , λ ∈ Λ;

| 〈ϕλ, s〉 |2 < (c2/k) ‖s‖2 , λ 6∈ Λ.

• So list decoding works. (Ongoing work by Lepak.)

49

Extension: Delsarte-Goethals

• Hierarchy of codes between RM(1) and RM(2).

• Sum of two matrices has rank at least n− g.

3 Dickson: Get incoherent codebook

• Number of codewords between N2 (Kerdock) and NΘ(log(N))

(RM(2)).

50

Recap

• We construct a Kerdock code as a subcode of Hankel.

• We give a list-decoding algorithm for Hankel.

• (Corollary) We give a list-decoding algorithm for Kerdock.

• (Corollary) Since Kerdock is µ-incoherent for small µ, we get a
sparse recovery algorithm for Kerdock.

51

