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1 A Problem



A PROBLEM

� We are given the following.Æ An m�n matrix A.Æ An m�k matrix X.Æ An n�` matrix Y .

� Find a k�` matrix T su
h thatkA�XTY �k = min :Æ Here k � k denotes the Frobenius norm.

2 Solution



SOLUTION

kA�XTY �k = min :�

� Let PX be the orthogonal proje
tion onto the 
olumn spa
eof X and P?X = I � PX .

� Similarly for PY and P?Y .

� Then ^A = PXAPY :

3 Error



ERROR

� The error isA� ^A = PXAP?Y + P?XAPY + P?XAP?Y :

� IfÆ R(X) approximates the dominant part of the 
olumnspa
e of A andÆ R(Y ) approximates the dominant part of the row spa
eof A,
then the error will be small4 Formulas



FORMULAS

� Let X and Y be of full rank and letX = QXRX and Y = QYRYbe the QR fa
torizations of X and Y .

� Then T = (R�XRX)�1X�AY (R�YRY )�1:

� Note that the formulas do not involve QX and QY .

5 Sparsity Considerations



SPARSITY CONSIDERATIONST = (R�XRX)�1X�AY (R�XRX)�1:�� Suppose:Æ k and ` are small 
ompared to m and n.Æ A, X, and Y are sparse.� Then the formation of X�AY 
an be done with sparsematrix-ve
tor multipli
ations.� The formation of T requires dense matrix operations, butthe matri
es are small.� The matrix ^A = XTY � 
an be eÆ
iently manipulated fromits fa
tored form.6 The Pivoted QR De
omposition



THE PIVOTED QR DECOMPOSITION

� We need to get sparse X and Y that approximate the
olumn and row spa
es of A.Æ We will fo
us on X.

� The matrix A has a pivoted QR de
omposition of the formAJ = (X X�) = (QX Q�)�RX RX�0 R��� :

Æ J is a permutation matrix 
hosen dynami
ally to makethe 
olumns of X independent.

7 Expanding the De
omposition



EXPANDING THE DECOMPOSITION� Given X = QXRX ,Æ Choose a 
olumn a of A that is not in XÆ Orthogonalize a against QX by the Gram{S
hmidtmethod.
1. r = Q�Xa2. q = a�Qr3. � = kqk; q = q=�4. X = (X a); QX = (QX q)5. RX = �RX r0 ��� In pra
ti
e the orthogonalization must be repeated.8 The Quasi-Gram{S
hmidt Algorithm



THE QUASI-GRAM{SCHMIDT ALGORITHM� We 
an get rid of QX , whi
h is dense, by using the relationQX = XR�1X1. Solve the system R�Xr = X�a2. Solve the system RXd = Xr3. q = a� d4. � = kqk; q = q=�5. X = (X a); QX = (QX q)6. RX = �RX r0 ��� Reorthogonalization is required.� The algorithm breads down at half pre
ision.9 On R��



ON R��AJ = (X X�) = (QX Q�)�RX RX�0 R��� :�� kR��k = kP?XAk.Æ Thus kR��k 
an be used to stop the expansion.� The norms of the 
olumns of R�� are used to 
hoose the
olumn to bring into the 
omputation.� These norms 
an be 
omputed initially and downdated asthe expansion pro
eeds.Æ This pro
ess also breaks down at half pre
ision.Æ It is the most expensive part of the algorithm.10 A Theorem on Singular Ve
tors



A THEOREM ON SINGULAR VECTORS

Let A = XY � + E. Let � > 0 be a singular value of A withnormalized left and right singular ve
tors u and v. Thensin\(u;R(X)); sin\(v;R(Y )) � kEk2� :�

� The theorem shows that if the error in the approximation issmall, then its 
olumn and row spa
es must 
ontain goodapproximations to left and right singular ve
tors
orresponding to the larger singular values.

11 Comparison with the SVD (I)



COMPARISON WITH THE SVD (I)� The A is of order 10;000, with singular values given by

s = logspa
e(0, -6, n).� The timings 
ompared with Matlab's svds arek SPQR SVD10 2:6 42:415 3:0 35:720 3:4 52:625 3:7 57:330 4:1 70:535 4:4 91:440 4:8 120:012 Comparison with the SVD (II)



COMPARISON WITH THE SVD (II)

� We now 
onsider a problem with gaps.s = logspa
e(0, -4, n);s(20:n) = 1e-6*s(20:n);

� The timings are k SPQR SVD19 1:8 4:420 1:8 323:6

� When the SVD has to 
ross the gap, its timing jumps.Æ But it has to 
ross to �nd the gap.13 Some Literature
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