SPARSE REDUCED-RANK APPROXIMATIONS TO
SPARSE MATRICES

G. W. Stewart

Department of Computer Science

University of Maryland

A Problem



A PROBLEM

e We are given the following.
o An mXxn matrix A.
o An mXxk matrix X.

o An nx/ matrix Y.

e Find a kx /¥ matrix T such that
|A— XTY™| = min.

o Here || - || denotes the Frobenius norm.

2 Solution



SOLUTION

|A— XTY™|| = min.

&

e Let Py be the orthogonal projection onto the column space
of X and Py =1 — Py .

e Similarly for P~ and P%.

e [hen

N

A= PyAPy.



ERROR

e The erroris
A— A= PxAPy + P APy + Px APy

o If

o R(X) approximates the dominant part of the column
space of A and

o R(Y') approximates the dominant part of the row space

of A,

then the error will be small

4 Formulas



FORMULAS

e Let X and Y be of full rank and let
X=QxRxy and Y =QyvRy
be the QR factorizations of X and Y.

e Then
T = (R%Ryx) ' X*AY (R} Ry) L.

e Note that the formulas do not involve () x and Qy .

) Sparsity C



SPARSITY CONSIDERATIONS

T = (R%Ryx) 'X*AY (R%Rx) .

&

Suppose:
o k and £ are small compared to m and n.

o A, X, and Y are sparse.

Then the formation of X*AY can be done with sparse

matrix-vector multiplications.

The formation of 1" requires dense matrix operations, but

the matrices are small.

The matrix A = XTY™ can be efficiently manipulated from

its factored form.

The Pivoted QR Decomposition



THE PIVOTED QR DECOMPOSITION

e We need to get sparse X and Y that approximate the
column and row spaces of A.

o We will focus on X.

e The matrix A has a pivoted QR decomposition of the form
Ry Rxe
AJ = (X Xa)=(Qx Q.)< o Rﬁ).

o .J is a permutation matrix chosen dynamically to make
the columns of X independent.

7 Expanding the Decomposition



EXPANDING THE DECOMPOSITION
e Given X = Q xRy,

o Choose a column a of A thatis not in X

o Orthogonalize a against () x by the Gram—-Schmidt

method.
r=Q%va
1=a=Qr

p=lqll; a=a/p
X=(Xa);Qx=(Qxq)

Ry r
RX:(OXp)

e In practice the orthogonalization must be repeated.

A

8 The Quasi-Gram-Schmidt Algorithm



THE QUASI-GRAM-SCHMIDT ALGORITHM

e We can get rid of () x, which is dense, by using the relation
Qx = XR,'
1. Solve the system Rr = X*a

Solve the system Ryd = Xr

g=a—d

p=llqll; a=q/p
X =(Xa);

Ry r
RX:(OXP>

e Reorthogonalization is required.

o Ot Wi

e The algorithm breads down at half precision.

9 On Ree
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ON Ree

AT = (X X = (@x Qo) (5 T5e)).

&

| Ree|| = || P Al
o Thus || Ree|| can be used to stop the expansion.

The norms of the columns of Hee are used to choose the
column to bring into the computation.

These norms can be computed initially and downdated as
the expansion proceeds.

o This process also breaks down at half precision.

o It is the most expensive part of the algorithm.

A Theorem on Singular Vectors



A THEOREM ON SINGULAR VECTORS

Let A= XY" + E. Let ¢ > 0 be a singular value of A with
normalized left and right singular vectors w and v. Then

sin Z(u, R(X)), sin Z(v, R(Y)) < |12

o

&

e The theorem shows that if the error in the approximation is
small, then its column and row spaces must contain good
approximations to left and right singular vectors
corresponding to the larger singular values.

11 Comparison with the SVD (I)



COMPARISON WITH THE SVD (1)

e The A is of order 10,000, with singular values given by

S

logspace(0, -6, n).

e The timings compared with Matlab’s svds are

12

k SPQR SVD
10 26 424
15 3.0 35.7
20 34 526
05 3.7  57.3
30 4.1 70.5
35 44 914
40 48 120.0

Comparison with the SVD (II)



COMPARISON WITH THE SVD (1)

e \We now consider a problem with gaps.

s = logspace(0, -4, n);
s(20:n) = 1le-6%s(20:n);

e The timings are

k SPQR SVD
19 1.8 44
20 1.8 323.6

e When the SVD has to cross the gap, its timing jumps.
o But it has to cross to find the gap.
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