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1. Positive Definiteness of Multivariate Forms
Recently, I defined eigenvalues and eigenvectors of a real supersymmetric ten-
sor, and explored their practical applications in determining positive definiteness
of an even degree multivariate form, and finding the best rank-one approxima-
tion to a supersymmetric tensor. This work extended the classical concept of
eigenvalues of square matrices, and has potential applications in mechanics and
physics as well as the classification of hypersurfaces and the study of hyper-
graphs.

http://math.suda.edu.cn


Positive Definiteness . . .

Eigenvalues of Tensors

Z-eigenvalue Methods . . .

More Study on E- . . .

Lim’s Exploration

Further Discussion

Home Page

Title Page

JJ II

J I

Page 4 of 27

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

1.1. Quadratic Forms

Consider a quadratic form

f(x) ≡ xTAx =
n∑

i,j=1

aijxixj,

wherex = (x1, · · · , xn)
T ∈ <n, A = (aij) is a symmetric matrix. Iff(x) > 0

for all x ∈ <n, x 6= 0, thenf andA are called positive definite. A complex
numberλ is called an eigenvalue of the matrixA if there is a nonzero complex
vectorx such that

Ax = λx.

A complex number is an eigenvalue ofA if it is a root of the characteristic
polynomial ofA. An n × n real symmetric matrix hasn real eigenvalues. It is
positive definite if and only if all of its eigenvalues are positive. These are some
basic knowledge of linear algebra.
Can these be extended to higher orders? Is there a need from practice for such
an extension?
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1.2. Homogeneous Polynomial Form

An n-dimensional homogeneous polynomial form of degreem, f(x), where
x ∈ <n, is equivalent to the tensor product of asupersymmetricn-dimensional
tensorA of orderm, and the rank-one tensorxm:

f(x) ≡ Axm :=
n∑

i1,··· ,im=1

ai1,··· ,imxi1 · · ·xim.

The tensorA is called supersymmetric as its entriesai1,··· ,im are invariant un-
der any permutation of their indices. The tensorA is called positive definite
(semidefinite) iff(x) > 0 (f(x) ≥ 0) for all x ∈ <n, x 6= 0. Whenm is even,
the positive definiteness of such a homogeneous polynomial formf(x) plays an
important role in the stability study of nonlinear autonomous systems via Lia-
punov’s direct method in automatic control. Forn ≥ 3 andm ≥ 4, this issue is
a hard problem in mathematics.
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1.3. Study on the Positive Definiteness

[1]. B.D. Anderson, N.K. Bose and E.I. Jury, “Output feedback stabilization
and related problems-solutions via decision methods”,IEEE Trans. Automat.
Contr. AC20 (1975) 55-66.
[2]. N.K. Bose and P.S. Kamt, “Algorithm for stability test of multidimensional
filters”, IEEE Trans. Acoust., Speech, Signal Processing, ASSP-22(1974) 307-
314.
[3]. N.K. Bose and A.R. Modaress, “General procedure for multivariable poly-
nomial positivity with control applications”,IEEE Trans. Automat. Contr.
AC21 (1976) 596-601.
[4]. N.K. Bose and R.W. Newcomb, “Tellegon’s theorem and multivariate real-
izability theory”, Int. J. Electron. 36 (1974) 417-425.
[5]. M. Fu, “Comments on ‘A procedure for the positive definiteness of forms
of even-order’ ”,IEEE Trans. Autom. Contr. 43 (1998) 1430.
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[6]. M.A. Hasan and A.A. Hasan, “A procedure for the positive definiteness of
forms of even-order”,IEEE Trans. Autom. Contr. 41 (1996) 615-617.
[7]. J.C. Hsu and A.U. Meyer, Modern Control Principles and Applications,
McGraw-Hill, New York, 1968.
[8]. E.I. Jury and M. Mansour, “Positivity and nonnegativity conditions of a
quartic equation and related problems”IEEE Trans. Automat. Contr. AC26
(1981) 444-451.
[9]. W.H. Ku, “Explicit criterion for the positive definiteness of a general quartic
form”, IEEE Trans. Autom. Contr. 10 (1965) 372-373.
[10]. F. Wang and L. Qi, “Comments on ‘Explicit criterion for the positive
definiteness of a general quartic form’ ”,IEEE Trans. Autom. Contr. 50 (2005)
416- 418.
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2. Eigenvalues of Tensors
L. Qi, “Eigenvalues of a real supersymmetric tensor”,Journal of Symbolic Com-
putation 40 (2005) 1302-1324,

defined eigenvalues and eigenvectors of a real supersymmetric tensor, and ex-
plored their practical applications in determining positive definiteness of an even
degree multivariate form.
By the tensor product,Axm−1 for a vectorx ∈ <n denotes a vector in<n, whose
ith component is

(
Axm−1)

i
≡

n∑
i2,··· ,im=1

ai,i2,··· ,imxi2 · · ·xim.

http://math.suda.edu.cn
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We call a numberλ ∈ C aneigenvalueof A if it and a nonzero vectorx ∈ Cn

are solutions of the following homogeneous polynomial equation:(
Axm−1)

i
= λxm−1

i , ∀ i = 1, · · · , n. (1)

and call the solutionx an eigenvectorof A associated with the eigenvalueλ.
We call an eigenvalue ofA anH-eigenvalueof A if it has a real eigenvectorx.
An eigenvalue which is not an H-eigenvalue is called anN-eigenvalue. A real
eigenvector associated with an H-eigenvalue is called anH-eigenvector.

Theresultant of (1) is a one-dimensional polynomial ofλ. We call it thechar-
acteristic polynomial of A.
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2.1. Theorem on Eigenvalues

Theorem 2.1(Qi 2005)
We have the following conclusions on eigenvalues of anmth order n-
dimensional supersymmetric tensorA:
(a). A numberλ ∈ C is an eigenvalue ofA if and only if it is a root of the
characteristic polynomialφ.
(b). The number of eigenvalues ofA is d = n(m−1)n−1. Their product is equal
to det(A), the resultant ofAxm−1 = 0.
(c). The sum of all the eigenvalues ofA is

(m− 1)n−1tr(A),

where tr(A) denotes the sum of the diagonal elements ofA.
(d). If m is even, thenA always has H-eigenvalues.A is positive definite (pos-
itive semidefinite) if and only if all of its H-eigenvalues are positive (nonnega-
tive).
(e). The eigenvalues ofA lie in the followingn disks:

|λ−ai,i,··· ,i| ≤
∑

{|ai,i2,··· ,im| : i2, · · · , im = 1, · · · , n, {i2, · · · , im} 6= {i, · · · , i}},

for i = 1, · · · , n.

http://math.suda.edu.cn
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2.2. E-Eigenvalues

In the same paper, I defined another kind of eigenvalues for tensors. Their struc-
ture is different from the structure described by Theorem2.1. Their characteris-
tic polynomial has a lower degree.

Suppose thatA is anmth ordern-dimensional supersymmetric tensor. We say
a complex numberλ is anE-eigenvalueof A if there exists a complex vectorx
such that {

Axm−1 = λx,

xTx = 1.
(2)

In this case, we say thatx is an E-eigenvector of the tensorA associated with
the E-eigenvalueλ. If an E-eigenvalue has a real E-eigenvector, then we call it
aZ-eigenvalueand call the real E-eigenvector aZ-eigenvector.

http://math.suda.edu.cn
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2.3. The E-Characteristic Polynomial and Orthogonal Similarity

Whenm is even, theresultant of

Axm−1 − λ(xTx)
m−2

2 x = 0

is a one dimensional polynomial ofλ and is called theE-characteristic poly-
nomial of A. We say thatA is regular if the following system has no nonzero
complex solutions: {

Axm−1 = 0,

xTx = 0.

Let P = (pij) be ann× n real matrix. DefineB = PmA as anothermth order
n-dimensional tensor with entries

bi1,i2,··· ,im =
n∑

j1,j2,··· ,jm=1

pi1j1
pi2j2

· · · pimjm
aj1,j2,··· ,jm

.

If P is an orthogonal matrix, then we say thatA andB areorthogonally similar .

http://math.suda.edu.cn
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2.4. Theorem on E-eigenvalues

Theorem 2.2(Qi 2005)
We have the following conclusions on E-eigenvalues of anmth order n-
dimensional supersymmetric tensorA:
(a). WhenA is regular, a complex number is an E-eigenvalue ofA if and only if
it is a root of its E-characteristic polynomial.
(b). Z-eigenvalues always exist. An even order supersymmetric tensor is positive
definite if and only if all of its Z-eigenvalues are positive.
(c). If A andB are orthogonally similar, then they have the same E-eigenvalues
and Z-eigenvalues.
(d). If λ is the Z-eigenvalue ofA with the largest absolute value andx is a Z-
eigenvector associated with it, thenλxm is the best rank-one approximation of
A, i.e.,

‖A−λxm‖F =
√
‖A‖2

F − λ2 = min{‖A−αum‖F : α ∈ <, u ∈ <n, ‖u‖2 = 1},

where‖ · ‖F is the Frobenius norm.
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3. Z-eigenvalue Methods and Best Rank-One
Approximation

If we may find the smallest Z-eigenvalue and the Z-eigenvector, then we have
a way to solve the best rank-one approximation problem and the positive defi-
niteness problem. Z-eigenvalue methods have been developed in the following
paper:

L. Qi, F. Wang and Y. Wang, “Z-eigenvalue methods for a global polynomial
optimization problem”, June 2006.
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3.1. The Best Rank-One Approximation

The best rank-one approximation of higher order tensors has extensive engineer-
ing and statistical applications. The following are some papers on this topic:

[1]. L. De Lathauwer, B. De Moor and J. Vandwalle, “On the best rank-1 and
rank-(R1, R2, · · · , Rn) approximation of higher order tensors”,SIAM J. Matrix
Anal. Appl, 21 (2000) 1324-1342.

[2]. E. Kofidies and Ph.A. Regalia, “On the best rank-1 approximation of higher
order supersymmetric tensors”,SIAM J. Matrix Anal. Appl, 23(2002) 863-884.

[3]. T. Zhang and G.H. Golub, “Rank-1 approximation to higher order tensors”,
SIAM J. Matrix Anal. Appl, 23 (2001) 534-550.
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3.2. The Pseudo-Canonical Form

The problem for finding the smallest Z-eigenvalue of a supersymmetric tensorA
is equivalent to solving the following global polynomial optimization problem

min f(x) = Axm

subject to xTx = 1.
(3)

Whenn = 2, we may use definition (2) to find all the Z-eigenvalues. When
n = 3, we may use a pseudo-canonical form ofA for help to find all the Z-
eigenvalues.

An m-th ordern-dimensional supersymmetric tensorB is said to be a pseudo-
canonical form of anothermth ordern-dimensional supersymmetric tensorA if
A andB are orthogonally similar and

bi,··· ,i,j = 0 (4)

for all 1 ≤ i < j ≤ n. In this case, we say thatB is a pseudo-canonical form. If
m = 2, then a pseudo-canonical form is a diagonal matrix.

http://math.suda.edu.cn
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3.3. Find A Pseudo-Canonical Form

We may use a conventional optimization method to find a local minimizer of (3).
Then we find a Z-eigenvalue and a Z-eigenvector ofA. Suppose thatλ is a Z-
eigenvalue ofA with a Z-eigenvectorx. LetP be an orthogonal matrix withx as
its first row vector. LetB = PmA. Then we see thaty = Px = (1, 0, · · · , 0)T .
By (2), we see that

b1,··· ,1 = λ

and
b1,··· ,1,i = 0, (5)

for i = 2, · · · , n. Repeating this procedure to some principal subtensors ofA,
we may find a pseudo-canonical form ofA.

http://math.suda.edu.cn
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3.4. The Third Order Pseudo-Canonical Form

Whenn ≥ 4, we developed two heuristic Z-eigenvalue methods for finding an
approximate global minimizer of (3).
The first heuristic Z-eigenvalue method is based upon finding a third order
pseudo-canonical form ofA.

An mth order n-dimensional supersymmetric tensorB is called a first or-
der pseudo-canonical form of anothermth ordern-dimensional supersymmet-
ric tensorA if it is a pseudo-canonical form ofA and bi,··· ,i ≤ bj,··· ,j for
1 ≤ i < j ≤ n.

Let 1 ≤ j < k < l ≤ n. We useB(j, k, l) to denote them-th order three dimen-
sional supersymmetric tensor whose entries arebi1,i2,··· ,im, wherei1, i2, · · · , im =
j, k, l, and use[B(j, k, l)]min to denote the smallest Z-eigenvalue ofB(j, k, l).
An mth ordern-dimensional supersymmetric tensorB is called a third order
pseudo-canonical form of anothermth ordern-dimensional supersymmetric
tensorA if it is a first order pseudo-canonical form ofA and

b1,··· ,1 = min
1≤j<k<l≤n

[B(j, k, l)]min. (6)

http://math.suda.edu.cn
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3.5. A Heuristic Cross-Hill Z-Eigenvalue Method

We may describe this method form = 3. Certainly, the global minimum of
(3) is negative unlessA is a zero tensor. Suppose that we have found a local
minimizery = y(1) of (3) with a negative objective function value. We may find
n − 1 unit vectorsy(i) of <n for i = 2, · · · , n such that{y(i) : i = 1, · · · , n}
constitute an orthogonal basis of<n. Now, for i = 2, · · · , n, restrict problem
(3) on the plane spanned byy andy(i). Certainly, this is a two-dimensional form
of problem (3) and the current local minimizery of (3) is also a local minimizer
of the restricted problem. This two dimensional problem has at most two local
minimizers with negative objective function values. Then we may use the low
dimensional method mentioned earlier to findz(i), the other local minimizer
of the two-dimensional problem with a negative objective function value for
i = 2, · · · , n. Sincez(i) may not be a local minimizer of (3), andy andz(i) are
separated by a “hill” of the objective function value in two dimensional case,
if we use a conventional descent optimization method withz(i) as the starting
point, we will find a local minimizerw(i) of (3), which has a negative objective
function value and is different fromy. We may continue this process until no
new local minimizers can be found. Comparing the objective function values of
these local minimizers of (3), we may have a better solution.
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3.6. Numerical Results

We did numerical results form = 3. They show that our heuristic Z-eigenvalue
methods are efficient and promising.

To construct the testing problems in our numerical experiments, we take two sets
of three order supersymmetric tensors of different dimensions. The elements of
tensors in one set are generated by a uniform distribution in the interval (-1,1);
while the elements of tensors in another set are generated by a standard normal
distribution. In the following, these two sets of testing problems are labeled as
TPI and TPII, respectively.
To analyze the numerical results of our algorithms, we compute the global min-
imizers of the testing problems by the uniform grid method combining with the
descent solution method.

Tables 1 and 2 show the performance of Algorithm 1 (The Third-Order Pseudo-
Canonical Form Z-eigenvalue Method) and Algorithm 2 (The Cross-Hill Z-
eigenvalue Method) for problems TPI and TPII, whereDim denotes the dimen-
sion of the tensorA, Num denotes the number of tests for each dimension,Alg1
andAlg2 denote Algorithms 1 and 2 respectively,RS denotes the success ratio
of finding the global minimizers,AT denotes the average time for each sample,
andAN denotes the average number of local minimizers found by Algorithm 2
for each sample.
Numerical results show that Algorithm 2 has higher success ratios, while Algo-
rithm 1 uses less computational time.
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Table 1: Results of TPI

Dim Num Alg1 Alg2

RS(%) AT(s) RS(%) AT(s) AN

3 1000 100.0 0.013 99.4 0.038 2.9

4 1000 96.6 0.031 99.5 0.103 3.6

6 1000 91.6 0.089 99.7 0.335 4.6

8 100 88 0.196 99.0 0.728 5.6

10 100 89 0.379 99.0 1.359 6.4

Table 2: Results of TPII

Dim Num Alg1 Alg2

RS(%) AT(s) RS(%) AT(s) AN

3 1000 100.0 0.014 99.2 0.042 2.9

4 1000 96.5 0.031 99.3 0.097 3.6

6 1000 92.2 0.085 99.8 0.265 4.5

8 100 88 0.178 99.0 0.521 5.3

10 100 87 0.331 99.0 0.933 6.2

1
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4. More Study on E-eigenvalues and Z-
eigenvalues

Tensors are practical physical quantities in relativity theory, fluid dynamics,
solid mechanics and electromagnetism, etc. The concept of tensors was in-
troduced by Gauss, Riemann and Christoffel, etc., in the 19th century in the
study of differential geometry. In the very beginning of the 20th century, Ricci,
Levi-Civita, etc., further developed tensor analysis as a mathematical discipline.
But it wasEinstein who applied tensor analysis in his study of general relativ-
ity in 1916. This made tensor analysis an important tool in theoretical physics,
continuum mechanics and many other areas of science and engineering.
The tensors in theoretical physics and continuum mechanics are physical quan-
tities which are invariant under co-ordinate system changes.
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4.1. Tensors in Physics and Mechanics

In the study of tensors in physics and mechanics, an important concept isin-
variant . A scalar associated with a tensor is an invariant of that tensor. It does
not change under co-ordinate system changes.
A first order tensor, i.e., a vector, has one invariant, which is its magnitude. A
second ordern-dimensional tensor hasn eigenvalues, which are roots of its char-
acteristic polynomial. Then, the coefficients of the characteristic polynomial are
principal invariants of that tensor. They have important physical meanings.

L. Qi, “Eigenvalues and invariants of tensors”, to appear in:Journal of Mathe-
matical Analysis and Applications,

considered E-eigenvalues of general (not necessarily symmetric) tensors and
showed that E-eigenvalues and the coefficients of the E-characteristic polyno-
mial are invariants. Thus, they may have potential applications in mechanics
and physics, and deserve further exploration.

http://math.suda.edu.cn


Positive Definiteness . . .

Eigenvalues of Tensors

Z-eigenvalue Methods . . .

More Study on E- . . .

Lim’s Exploration

Further Discussion

Home Page

Title Page

JJ II

J I

Page 24 of 27

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

4.2. The Classification of Hypersurfaces

The classification of algebraic hypersurfaces is important and hard.Newton’s
classification of cubic curvesin the late 1600s was the first great success of
analytic geometry apart from its role in calculus.

L. Qi, “Rank and eigenvalues of a supersymmetric tensor, the multivariate ho-
mogeneous polynomial and the algebraic hypersurface it defines”, to appear in:
Journal of Symbolic Computation,

deals with the orthogonal classification problem of real hypersurfaces given by
an equation of the form

S = {x ∈ <n : f(x) = Axm = c},

whereA is a supersymmetric tensor, through the rank, the Z-eigenvalues and
the asymptotic directions.
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4.3. The Rank of a Supersymmetric Tensor

Let A be anmth ordern-dimensional real supersymmetric tensor. We call a real
n-dimensional vectorx a recession vectorof A if

Ax = 0.

All the recession vectors ofA form a linear subspace of<n. We call it the
recession spaceof A and denote it byVR. We call

r = n− dim VR

the rank of A. Clearly, 0 ≤ r ≤ n. If r < n, then we may use a linear
transformationy = Lx to transformf(x) = Axm to g(y) = f(Lx) such that
y ∈ <r andg is anr-dimensional homogeneous polynomial form of degreem.
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5. Lim’s Exploration
Independently, Lek-Heng Lim also defined eigenvalues for tensors in his paper:

L-H. Lim, “Singular values and eigenvalues of tensors: A variational approach”,
Proceedings of the 1st IEEE International Workshop on Computational Ad-
vances in Multi-Sensor Adaptive Processing (CAMSAP), December 13-15,
2005, pp. 129-132.

Lim (2005) defined eigenvalues for general real tensors in the real field. Thel2

eigenvalues of tensors defined by Lim (2005) are Z-eigenvalues of Qi (2005),
while the lk eigenvalues of tensors defined by Lim (2005) are H-eigenvalues
in Qi (2005). Notably, Lim (2005) proposed a multilinear generalization of
the Perron-Frobenius theorem based upon the notion oflk eigenvalues (H-
eigenvalues) of tensors. extended his definition in his report and cited my pa-
per. In particular, Lim mentioned amultilinear generalization of the Perron-
Frobenius theorembased upon the notion of H-eigenvalues of tensors.
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5.1. Multi-Linear Data Analysis and Hypergraphs

Lek-Heng visited me in January 2006. He pointed out that another potential ap-
plication of eigenvalues of tensors is onhypergraphs. A graph can be described
by its adjacency matrix. The properties of eigenvalues of the adjacency matrix
of a graph are related to the properties of the graph. This is the topic of spectral
graph theory. A hypergraph can be described by a (0, 1)- supersymmetric tensor,
which is called its adjacency tensor. Are the properties of the eigenvalues of the
adjacency tensor of a hypergraph related to the properties of the hypergraph?
This can be investigated.

A more important motivation of Lek-Heng is thestatistical analysis of multi-
way data. This is the main theme of this workshop.
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