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Outline

• Object Identification from Spectral Data

• Features-Based Clustering & Classification

• Nonnegativity Constrained Low-Rank Approximation for 
Blind Source Separation and Unsupervised Unmixing        
(ll-posed, nonlinear inverse problem)

• Nonnegative Matrix Factorization (NMF)

• Results using Air Force data from Maui and data from K. 
Abercromby at NASA JSC

• Preliminary Results on using Perron-Frobenius Theory to 
Compress Hyperspectral Sensor Data

• Comments on Nonnegative Tensor Factorization (NTF) for 
Image data (see poster by Christos Boutsidis)
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Simple Analog Illustration

Hidden Components in Light Hidden Components in Light –– Separated by a PrismSeparated by a Prism

Our purpose Our purpose –– finding hidden components by finding hidden components by data analysisdata analysis
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Blind Source Separation for 
Finding Hidden Components (Endmembers)

Mixing of Sources
… basic physics often leads to linear m ixing…

X = [X1,X2, … ,X n] –column vectors (1-D spectral scans)

Approximately factor 

X  W H =  1
k w(j)± h(j)

± denotes outer product
wj is jth col of W,  hj is jth col of HT

X sensor readings (mixed components – observed data)
W separated components (feature basis matrix, unknown, low rank) 
H hidden mixing coefficients (unknown), replaced later with

abundances of materials that make up the object.
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Typical Scan
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• NMF Allows only additive, not subtractive combinations of 
the original data, in comparison to orthogonal 
decomposition methods, e.g. PCA.

• Used by Lee and Seung (MIT) in Nature, 1999, in 
biometrics, preceded and followed by numerous papers 
related to applications.

• Matlab Toolbox: NMFLAB,  http://www.bsp.brain.riken.jp/  
• Historical perspective:

Problem 73-14, Rank Factorization of Nonnegative 
Matrices, by A. Berman and R.J. Ple., SIAM Review 15 
(1973), p. 655:  (Also in Berman/Ple. book)



8

Some General  Applications of NMF Techniques

• Source separation in acoustics, speech, video

• EEG in Medicine, electric potentials

• Spectroscopy in chemistry

• Molecular pattern discovery - genomics 

• Thermal nondestructive testing - aircraft and missile parts

• Email surveillance

• Document clustering in text data mining

• Atmospheric pollution source identification

• Hyperspectral sensor data compression
• Spectroscopy for space applications – spectral data mining

– Identifying object surface materials and substances
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Space Object Identification and Characterization fromSpace Object Identification and Characterization from
Spectral Reflectance DataSpectral Reflectance Data

More than 15,000 known objects in orbit: various types of military and 
commercial satellites, rocket bodies, residual parts,  and debris – need for 
space object database mining, object identification, clustering, classification, etc.
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M a u i  S p a c e
S u r v e i l l a n c e  S i t e
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Satellite Pass

r0
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Imaging Sciences for Space Situational Awareness
by Monitoring Space Satellites (AFOSR)

• ‘Listen’ (laser enabled vibrom etry)

• ‘S m ell’ (chem ical sensing w ith spectrom eter)

• ‘Touch’ (scatterom etry/polarim etry for surface texture 
information)

• ‘S ee’ (by sequential speckle <video> im aging)

• ‘characterize m aterials’ (spectral im aging)
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The creation and observation of a reflectance spectrum
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Spectral Imaging of Space Objects
• C urrent “operational” capability for spectral 

imaging of space objects

• Panchromatic images 

• Non-imaging spectra 
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Spectral Imaging of Space Objects

• Why look at anything spectrally?
– Simple answer: Color vs. Black and white
– More involved answer: Spectral radiometry

• For space objects were looking at being able to: 
– Differentiate between 

different material classes
– Material degradation 
– Identify hidden payloads
– Anomaly resolution 

0 0.5 1 1.5 2 2.5
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

al1100

al2024

al6061

sandal

al2219

al7075

Wavelength, microns

R
ef

le
ct

an
ce

Jorgensen

UNCLASSIFIED



16

Overview of the SOI Problem

• Space activities require accurate information about 
orbiting objects for space situational awareness 

• Many objects are either in 
– Geosynchronous orbits (about 40,000 KM from earth), or
– Near-Earth orbits, but too small (e.g., space mines) to be 

resolved by optical imaging systems
– Can approximately collect one pixel/object by optical telescope
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Overview of the SOI Problem Continued

• Problem solution by learning the parts of objects (hidden components) 
by low rank nonnegative sparse representation

• Basis representation (dimension reduction) can enable near real-time 
object (target) recognition, object class clustering, and 
characterization. (ill-posed inverse problem) 

• Match recovered hidden components with known spectral signatures
from substances such as mylar, aluminum, white paint, kapton, and 
solar panel materials, etc. This is classification.

• Fundamental difficulty: Find from spectral measurements:
– Endmembers: types of constituent materials
– Fractional abundances: proportion of materials that comprise the object. 
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Approximate NMF 
• Utilize constraint that sensor data values in X are nonnegative

• Apply non-negativity constrained low rank approximation for blind 
source separation, dimension reduction and unsupervised unmixing

• Low rank approximation to data matrix  X :   

X  WH,  W ≥  0,  H ≥  0

 Columns of W  are initial basis vectors for spectral trace database, 
may want smoothness and statistical independence in W.             

 Columns of H represent mixing coefficients, desire statistical 
sparsity in H to force essential uniqueness in W.  May want 
sparsity for H.
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Some of our Data Obtained from a Spica (Space Infrared 
Telescope for Cosmology and Astrophysics)  Spectrometer

• Mission: Support non-
imaging SOI with 
spectroscopic 
observations

• 3 – 4 angstrom resolution 
• Blue mode: 3000 – 6000 

angstroms (.3 – .6 mm)
• Red mode: 6000 – 9000 

angstroms (.6 – .9 mm)
• Located on Maui
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Sample Raw Data Collected in Blue and Red ModesSample Raw Data Collected in Blue and Red Modes
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Electromagnetic Spectrum: Spectral 
Signatures

q For any given material, the amount of solar (or other) radiation
that it reflects, absorbs, or transmits varies with 
wavelength.

q This property of matter makes it possible to identify different 
substances out of 300+ and separate them by their spectral
signatures (spectral curves) –spectral unmixing, finding 
fractional abundances.
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An Approach to Finding Endmembers and 
Fractional Abundances

• Vectorize the spectral scans of space objects into 
columns of X (works well for 1-D signals, not for 
2-D images

• Cluster the columns of X using a NMF scheme
X  WH,  W ≥ 0 (sm ooth),  H ≥ 0 (sparse)

(We use a metric by Hoyer to enforce sparsity in H.)



23

Parts- Based Clustering & Classification

• Features from hidden components: parts-based learning algorithms 
from training set data

• Utilize constraint that spectral trace reflectance values are nonnegative

• Arrange the spectral traces into columns of a (nonnegative) database 
matrix denoted by X

• Non-negativity constrained low rank approximation for blind source 
separation and unsupervised unmixing

• Low rank approximation to data matrix  X :  X  WH,  W ≥ 0,  H ≥ 0
 Columns of W  are basis vectors for spectral trace database (endmembers)
 H eventually discarded and new reduced H computed
 Alternating iterations used
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NMF Problem FormulationNMF Problem Formulation

q Given initial database expressed as n x m nonnegative matrix X

find two reduced-dimensional matrices W (n x r) and  H (r x m) to:

where Wij ≥ 0 and  H ij ≥ 0  for each i and j. Choice of r << m is often 
problem dependent. Can impose other (e.g., smoothness, sparsity) 
constraints on W and/or H.

plus constraints
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NMF - Continued

• Can use convex cone theoretic geometric concepts to 
determine conditions for uniqueness, up to permutation 
and scaling of the rows (Donaho and Stodden). 

• Constraints on H strongly affect uniqueness in W. 
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Lee and Seung (1999) proposed a multiplicative alternating iteration scheme

1. Initialize W and H with nonnegative values and scale columns of W to unit norm.
2. Iterate for each c, j and i until convergence or stop (eps is a machine dependent 

small positive pos. no.):

q Process is essentially a diagonally-scaled gradient 
descent method of EM (R-L) type.

But, clustering is ill-posed. Regularization may be needed.
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New Approach to Selecting Endmembers and 
Computing Fractional Abundances

• Vectorize the spectral scans of space objects into columns of a matrix Y

• Cluster the columns of Y using a NMF scheme
Y  WH,  W ≥ 0,  H ≥ 0

(Enforce smoothness on W and sparsity on H.)

• Classify the basis vectors in W using lab data from Jorgersen and an 
information theoretic scoring method (Kullback-Leibler divergence, i.e., relative 
entropy). Represent these endmembers by a matrix B.

• B represents a compressed database for Y and has a variety of uses, e.g., ....

• Determine the spectral abundances of the space object spectral scans in 
columns of Y by iteratively solving nonlinear least squares problems with matrix 
B containing the classified endmembers.
(We use a nonlinear least squares scheme to compute material abundancies.) 
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• Minimize a functional  F(W, H) by solving the following constrained 
optimization problem. (Here  a and  b are regularization parameters).  

•Determine gradients for W and H and set each to zero 
(alternating iterations).
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Sparse CNMF

Compute gradient, insert in basic optimization expression, and 
apply alternating iterations. Results in basis matrix W with a 
sparse mixing matrix H.
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Sample Results – Finding only Endmembers 
We Form Simulated Satellites from NASA Data
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A Few Combined Traces 
(time varying mixtures)
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Blind Source Separation Using NMF
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Original Recovered
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Extend NMF: Nonegative Tensor Factorization (NTF)
Joint project with Christos Boutsidis and Peter Zhang

• Our interest: 3-D data. 2-D images stacked into 
3-D  A rray, form ing a “box”
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Datasets of images modeled as tensors

Goal: Extract features from a tensor dataset (naively, a 
dataset subscripted by multiple indices). Image samples 
with diversities, e.g., eigenviews.

Mode 2

Mode 1

Mode 3

m £ n £ p tensor A
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What is NTF (for 3-D Arrays)?

• See poster by Christos Boutsidis 
• Issues:  Uniqueness, Initialization, Efficient optimization algorithms
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Iris Recognition Images
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Recovered Images using PARAFAC ~1 hr



49

Recovered Images using Boutsidis/Zhang ~ 5 min
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Compression

• Original array    120x160x30    4,608,000  bytes
• X       120x50                                  48,000   bytes
• Y       160x50                                  64,000   bytes
• Z         30x50                                  12,000  bytes

– Compression ratio 37 to 1
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Columbia in Final Orbit over Maui Space Center
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K-means clustering
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Summary and NMF Applications for Spectral Data

• Classification of objects in terms of material features and fractional 
abundances

• Database compression, including hyperspectral data

• Fast determination of whether a new object spectral trace is in the 
database, using basis matrix approximation

• Multiple observations with object in different orientations can provide 
object shape information

• Low-rank representation can enable fast object (target) recognition 
and tracking (Kullback-Leibler matching)

• Enabled in part by modified nonnegative matrix factorization and 
information theoretic techniques (relative entropy)

• Compression and reconstruction of image arrays data
• Some related papers at:  http://www.wfu.edu/~plemmons


