Low-Rank Nonnegative Factorizations for Spectral Imaging Applications

Bob Plemmons Wake Forest University

- Collaborators:
 - Christos Boutsidis (U. Patras), Misha Kilmer (Tufts), Peter Zhang, Paul Pauca, (WFU)
- Interaction on spectral data with: Kira Abercromby (NASA-Houston)
- Related Papers at: http://www.wfu.edu/~plemmons
- Project Funded by AFOSR

Stanford Workshop on Algorithms for Modern Massive Data Sets, June 06

Outline

- Object Identification from Spectral Data
- Features-Based Clustering & Classification
- Nonnegativity Constrained Low-Rank Approximation for Blind Source Separation and Unsupervised Unmixing (II-posed, nonlinear inverse problem)
- Nonnegative Matrix Factorization (NMF)
- Results using Air Force data from Maui and data from K. Abercromby at NASA JSC
- Preliminary Results on using Perron-Frobenius Theory to Compress Hyperspectral Sensor Data
- Comments on Nonnegative Tensor Factorization (NTF) for Image data (see poster by Christos Boutsidis)

Simple Analog Illustration

Hidden Components in Light – Separated by a Prism

Our purpose – finding hidden components by <u>data analysis</u>

Blind Source Separation for Finding Hidden Components (Endmembers)

Mixing of Sources

...basic physics often leads to linear mixing...

$$X = [X_1, X_2, ..., X_n]$$
 -column vectors (1-D spectral scans)

Approximately factor

$$X \qquad W H = {}_{1}{}^{k} W^{(j)} \neq h^{(j)}$$

± denotes outer product

X

W

Н

 \mathbf{W}^{j} is jth col of \mathbf{W} , \mathbf{h}^{j} is jth col of \mathbf{H}^{T}

sensor readings (mixed components – observed data)

separated components (feature basis matrix, unknown, low rank)

hidden mixing coefficients (unknown), replaced later with abundances of materials that make up the object.

Typical Scan

- NMF Allows only additive, not subtractive combinations of the original data, in comparison to orthogonal decomposition methods, e.g. PCA.
- Used by Lee and Seung (MIT) in Nature, 1999, in biometrics, preceded and followed by numerous papers related to applications.
- Matlab Toolbox: NMFLAB, http://www.bsp.brain.riken.jp/
- Historical perspective:

Problem 73-14, Rank Factorization of Nonnegative Matrices, by A. Berman and R.J. Ple., <u>SIAM Review</u> 15 (1973), p. 655: (Also in Berman/Ple. book)

7

Some General Applications of NMF Techniques

- Source separation in acoustics, speech, video
- EEG in Medicine, electric potentials
- Spectroscopy in chemistry
- Molecular pattern discovery genomics
- Thermal nondestructive testing aircraft and missile parts
- Email surveillance
- Document clustering in text data mining
- Atmospheric pollution source identification
- Hyperspectral sensor data compression
- Spectroscopy for space applications spectral <u>data mining</u>
 - Identifying object surface materials and substances

Space Object Identification and Characterization from Spectral Reflectance Data

More than 15,000 known objects in orbit: various types of military and commercial <u>satellites</u>, rocket bodies, residual parts, and debris – need for space object database mining, object identification, clustering, classification, etc.

Maui Space Surveillance Site

Imaging Sciences for Space Situational Awareness by Monitoring Space Satellites (AFOSR)

- 'Listen' (laser enabled vibrom etry)
- 'Smell' (chem ical sensing with spectrom eter)
- Touch' (scatterom etry /polarim etry for surface texture information)
- See' (by sequential speckle < video > im aging)
- 'characterize m aterials' (spectral im aging)

The creation and observation of a reflectance spectrum

Spectral Imaging of Space Objects

- Current "operational" capability for spectral imaging of space objects
- Panchromatic images
- Non-imaging spectra

Spectral Imaging of Space Objects

- Why look at anything spectrally?
 - Simple answer: Color vs. Black and white
 - More involved answer: Spectral radiometry
- For space objects were looking at being able to:
 - Differentiate between
 different material classes
 - Material degradation
 - Identify hidden payloads
 - Anomaly resolution

Overview of the SOI Problem

- Space activities require accurate information about orbiting objects for space situational awareness
- Many objects are either in
 - Geosynchronous orbits (about 40,000 KM from earth), or
 - Near-Earth orbits, but too small (e.g., space mines) to be resolved by optical imaging systems
 - Can approximately collect one pixel/object by optical telescope

Overview of the SOI Problem Continued

- Problem solution by <u>learning the parts of objects</u> (hidden components) by low rank nonnegative sparse representation
- Basis representation (dimension reduction) can enable <u>near real-time</u> <u>object (target) recognition, object class clustering, and</u> <u>characterization.</u> (ill-posed inverse problem)
- Match recovered hidden components with known spectral signatures from substances such as mylar, aluminum, white paint, kapton, and solar panel materials, etc. This is classification.
- Fundamental difficulty: Find from spectral measurements:
 - Endmembers: types of constituent materials
 - Fractional abundances: proportion of materials that comprise the object.

Approximate NMF

- Utilize constraint that sensor data values in X are <u>nonnegative</u>
- Apply non-negativity constrained low rank approximation for blind source separation, dimension reduction and unsupervised unmixing
- Low rank approximation to data matrix **X**:

- Columns of W are initial basis vectors for spectral trace database, may want smoothness and statistical independence in W.
- Columns of *H* represent mixing coefficients, desire statistical sparsity in *H* to force essential uniqueness in *W*. May want sparsity for *H*.

Some of our Data Obtained from a Spica (Space Infrared Telescope for Cosmology and Astrophysics) Spectrometer

- Mission: Support nonimaging SOI with spectroscopic observations
- 3 4 angstrom resolution
- Blue mode: 3000 6000 angstroms (.3 – .6 mm)
- Red mode: 6000 9000 angstroms (.6 – .9 mm)
- Located on Maui

Sample Raw Data Collected in Blue and Red Modes

Electromagnetic Spectrum: Spectral Signatures

- ☐ For any given material, the amount of solar (or other) radiation that it reflects, absorbs, or transmits varies with wavelength.
- □ This property of matter makes it possible to <u>identify different</u> <u>substances</u> out of 300⁺ and separate them by their spectral signatures (spectral curves) –spectral unmixing, finding fractional abundances.

An Approach to Finding Endmembers and Fractional Abundances

- <u>Vectorize</u> the spectral scans of space objects into columns of *X* (works well for 1-D signals, not for 2-D images
- Cluster the columns of X using a NMF scheme
 X WH, W 0 (smooth), H 0 (sparse)
 (We use a metric by Hoyer to enforce sparsity in H.)

$$sparseness(x) = \frac{\sqrt{n} - \frac{\|x\|_1}{\|x\|_2}}{\sqrt{n} - 1}$$

Parts- Based Clustering & Classification

- Features from hidden components: parts-based learning algorithms from training set data
- Utilize constraint that spectral trace reflectance values are <u>nonnegative</u>
- Arrange the spectral traces into columns of a (nonnegative) database matrix denoted by X
- Non-negativity constrained low rank approximation for blind source separation and unsupervised unmixing
- Low rank approximation to data matrix **X**: **X WH**, **W** 0, **H** 0
 - > Columns of **W** are basis vectors for spectral trace database (endmembers)
 - > **H** eventually discarded and new reduced **H** computed
 - Alternating iterations used

NMF Problem Formulation

☐ Given initial database expressed as n x m nonnegative matrix X

find two reduced-dimensional matrices W (n x r) and H (r x m) to:

$$\min_{W,H} \|X - WH\|_F^2,$$
 plus constraints

where W_{ij} 0 and H_{ij} 0 for each i and j. Choice of r << m is often problem dependent. Can impose other (e.g., smoothness, sparsity) constraints on W and/or H.

NMF - Continued

- Can use <u>convex cone theoretic geometric concepts</u> to determine conditions for uniqueness, up to permutation and scaling of the rows (Donaho and Stodden).
- Constraints on H strongly affect uniqueness in W.

Lee and Seung (1999) proposed a multiplicative alternating iteration scheme

- 1. Initialize *W* and *H* with nonnegative values and scale columns of W to unit norm.
- 2. Iterate for each c, j and i until convergence or stop (eps is a machine dependent small positive pos. no.):

(a)
$$H_{cj} \leftarrow H_{cj} \frac{(W^T X)_{cj}}{(W^T W H)_{cj} + eps}$$

(b)
$$W_{ic} \leftarrow W_{ic} \frac{(XH^T)_{ic}}{(WHH^T)_{ic} + eps}$$

- (c) Scale the columns of W to unit norm.
- ☐ Process is essentially a diagonally-scaled gradient descent method of EM (R-L) type.

But, clustering is ill-posed. Regularization may be needed.

New Approach to Selecting Endmembers and Computing Fractional Abundances

- Vectorize the spectral scans of space objects into columns of a matrix Y
- Cluster the columns of Y using a NMF scheme
 Y WH, W 0, H 0
 (Enforce smoothness on W and sparsity on H.)
- <u>Classify</u> the basis vectors in *W* using lab data from Jorgersen and an information theoretic scoring method (Kullback-Leibler divergence, i.e., relative entropy). Represent these endmembers by a matrix *B*.
- **B** represents a compressed database for **Y** and has a variety of uses, e.g.,
- Determine the <u>spectral abundances</u> of the space object spectral scans in columns of **Y** by iteratively solving nonlinear least squares problems with matrix **B** containing the classified endmembers.

(We use a nonlinear least squares scheme to compute material abundancies.)

• Minimize a functional F(W, H) by solving the following constrained optimization problem. (Here a and b are regularization parameters).

$$\min_{W,H} \{ ||Y - WH||_F^2 + \alpha J_1(W) + \beta J_2(H) \}, \text{ for } W \ge 0 \text{ and } H \ge 0$$

where $\alpha J_1(W)$ and $\beta J_2(H)$ are used to enforce certain application-dependent characteristics on the solution

• Determine gradients for W and H and set each to zero (alternating iterations).

Sparse CNMF

We define sparseness of a vector x of length n as

$$sparseness(x) = \frac{\sqrt{n} - \frac{\|x\|_1}{\|x\|_2}}{\sqrt{n} - 1}$$

Given A, a matrix of arbitrary size, let

$$\bar{A} = \text{vec}(A),$$

denote the vector formed by stacking the columns of A. Now consider the following objective function:

$$F(W,H) = \frac{1}{2} ||Y - WH||_F^2 + \frac{\beta}{2} (\omega ||\bar{H}||_2 - ||\bar{H}||_1)^2$$

where Y is $m \times n$, W is $m \times k$, and H is $k \times n$, and

$$\omega = \sqrt{kn} - (\sqrt{kn} - 1) \text{ sparseness}(H).$$

Compute gradient, insert in basic optimization expression, and apply <u>alternating iterations</u>. Results in basis matrix *W* with a sparse mixing matrix *H*.

Sample Results – Finding only Endmembers We Form Simulated Satellites from NASA Data

A Few Combined Traces (time varying mixtures)

Blind Source Separation Using NMF

Original

Recovered

Extend NMF: Nonegative Tensor Factorization (NTF) Joint project with Christos Boutsidis and Peter Zhang

 Our interest: 3-D data. 2-D images stacked into 3-D Array, forming a "box"

Datasets of images modeled as tensors

Goal: Extract features from a tensor dataset (naively, a dataset subscripted by multiple indices). Image samples with diversities, e.g., eigenviews.

m £ n £ p tensor A

What is NTF (for 3-D Arrays)?

Given a nonnegative tensor $\mathcal{A} \in R^{m \times n \times p}$ and a positive integer k, find nonnegative vectors $u^{(i)} \in R^{m \times 1}$, $v^{(i)} \in R^{n \times 1}$ and $w^{(i)} \in R^{p \times 1}$ to minimize the functional

$$\frac{1}{2} \| \mathcal{A} - \sum_{i=1}^{k} u^{(i)} \circ v^{(i)} \circ w^{(i)} \|_{F}^{2}.$$

Here \circ denotes "outer product". The rankone matrices $u^{(i)} \circ v^{(i)}$ are the desired basis components, and $w^{(i)}$ the weights.

- See poster by Christos Boutsidis
- <u>Issues</u>: Uniqueness, Initialization, Efficient optimization algorithms

Iris Recognition Images

Recovered Images using PARAFAC ~1 hr

Recovered Images using Boutsidis/Zhang ~ 5 min

Compression

•	Origi	nal array	120x160x30	4,608,000	bytes
•	X	120x50		48,000	bytes
•	Υ	160x50		64,000	bytes
•	Z	30x50		12,000	bytes

- Compression ratio 37 to 1

Columbia in Final Orbit over Maui Space Center

K-means clustering

Summary and NMF Applications for Spectral Data

- Classification of objects in terms of material features and fractional abundances
- Database compression, including hyperspectral data
- Fast determination of whether a new object spectral trace is in the database, using basis matrix approximation
- Multiple observations with object in different orientations can provide object shape information
- Low-rank representation can enable fast object (target) recognition and tracking (Kullback-Leibler matching)
- Enabled in part by modified nonnegative matrix factorization and information theoretic techniques (relative entropy)
- Compression and reconstruction of image arrays data
- Some related papers at: http://www.wfu.edu/~plemmons