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Talk Overview

• The Sparse Approximation Problem
– Math vs Algorithms. 

• Two Classical Extremes
– Parseval world: orthonormal dictionaries. 

– Cook-Karp-Levin world: general dictionaries. 

• Modern Versions 
– Compressed sensing. 

– Non uniform sparse approximation theory. 

– Incoherent dictionaries.

• Open Problems



Sparse Approximation Problem: 

Toy Example



Sparse Approximation Problem
• Given dictionary D of N dimensional vectors that span 
�

N. May be preprocessed, may have special properties.

• Query is a vector called the signal A[1,…,N].

• Sparse representation for A using b vectors of D:

• Minimize 
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Sparse Approximation: 

Algorithms vs Math.

Algorithms:

• Given arbitrary signal A, 

design an algorithm that 

finds a representation 

with error ||A-Rb|| that 

approximates 

||RA|| *

b−

Applied Mathematics:

• Given signal A, that is p-

compressible, that is, 

||A-R*
b || = O(b1-2/p)

determine an algorithm 

that computes a 

representation R that 

approximates A to error 

||A-R|| = O(b1-2/p)

• Art of finding suitable D

for an application.



Two Extremes

• World of Parseval

• World  of Cook-Levin-Karp.



Parseval’s World

• Dictionary is an orthonormal basis for ����N, ie N unit 

vectors ψi so  <ψi, ψj> = 1 iff i=j, 0 otherwise.

• We have

• Best b coeff of smallest error:

– Since (Parseval’s)

pick b largest

• Computationally easy.
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Cook-Karp-Levin

• Arbitrary dictionary D.

• Reduction from SAT to set cover such that:

– YES -> there is an exact set cover of size ηd. (η<1).

– NO  ->  no set cover of size d. 

• Given elements [1,n] and sets S1, S2, .. Sm, we 

form M[i,j]=Q if i is in Sj. Let A be all 1’s vector.

– YES -> y[i]=1 if Si is in exact set cover. My-A=0.

– NO  -> for any d vector solution to the sparse approx 

problem, there exists an i such that My[i]-A[i]=-Q.

• NP hard to solve it exactly. Hard to get (log N, L)

approximation for any L. [N95, DM97, Mu05]
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Modern Versions of Sparse 

Approximation Problem

• Compressed sensing

• Weighted and other norms

• Incoherent dictionaries



Compressed Sensing, Insight

Ψ
A

θ

=

Full transformBasis

largest bSize N 

???

Donoho 04: What is the smallest number of

measurements (inner products) needed? 



Compressed Sensing

A =

Modified

~Ab

Ψ’=Ψ T

Ψ’

θ’

• Are there suitably small  T? f(b,N)

• Can we construct such T?

• Can we decode from θ’ to ~Ab fast?



Compressed Sensing: Known Results

• There exists an 

N x  O (b log N) matrix T. 

• Consider any p-compressible 

signal A, p in (0,1).

• From AT, solve the LP

• Claim:

ATRT

R

=

ℜ∈ 1||||min N
g

||A-R|| = O(b1-2/p)

Nonadaptive.

Random T will do.

||A-R*
b|| = O(b1-2/p)

Sorted order of |θi|’s

|θi|

O(1) approx

in the “worst case”. 

Time poly in N, b.

Donoho, Candes, Tao, Romberg, Vershynin,…. 2004+



Compressed Sensing: Excitement

• Excitement: “surprising”, “amazing”,…

• Math: T needs linear algebraic, geometric or 

uniform uncertainty principles. 

• Applications: MR imaging, wireless 

communication,

• Connections and Extensions: Error correction, 

noisy measurements, distributed setting, etc.  

• Thanks to Ron DeVore and Ingrid Daubauchies 

for simplifying and explaining things to me.



Compressed Sensing: 

An Algorithmer’s View

• There exists an 

N x  O (b log N) matrix T. 

• Consider any p-compressible 

signal A. 

• From AT, solve the LP

• Claim:

ATRT

R

=

ℜ∈ 1||||min N
g

||A-R|| = O(b1-2/p)
Why not wrt ||A-Rb

*|| ?

What is R like?

Different Algorithm?

Faster running time?

Why not any signal?

Why inner products?

How to construct T?

Using random projections to retrieve largest A[i]’s: lot of prior 

work in group testing, learning theory, streaming algorithms. 



Compressed Sensing: 

Our Results [Cormode, M 05]
• We can

– in time poly(N, b, 1/ε), construct

– a  poly(b, log N, 1/ε) sized T.

– Given any p-compressible signal A, 

– in time poly(b, log N, 1/ε),

– we can construct Rb such that
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poly(N)

O(b(1-2/p))

First polynomial time construction known. 



Compressed Sensing: 

Our Results [Cormode, M 05]
• Given any signal A,

– We can construct a N x O(b/ε2 log2 N log(1/δ)) sized random 

T

– Given AT, we can construct Rb such that with probability at 

least 1-δ, 

||||)1(|||| *

bb RARA −+≤− ε

Smallest known size of T thus far in the legacy of 

results in group testing, learning theory and streaming

algorithms.



Main idea of our algorithm

• Each inner product gives the sum of a group of coefficients. Goal 

is to find approximately the b largest coefficients (in magnitude). 

• Round 1: Group coefficients so that any set of  poly(b)

coefficients are separated.  

– Identify the coefficient that has the majority magnitude in each group via 

log N inner products. The identified set is a superset of the b largest coeff. 

– Key to the proof: the remainder coefficients together have small sum, so 

their combined effect is negligible.

• Round 2: Group coefficients so that  poly-poly(b) coefficients are 

separated. Identify the magnitude of the isolated coefficients from 

Round 1, outputing the b largest.

– Key to the proof:  taking the b largest approximate coefficients is a 

good approximation to the true b largest. 

• Execute the two rounds in parallel.



Combinatorial tools

• K-separating sets S = {S1, … Sl}.l=O(k log2 n)

• K-strongly separating sets S={S1…Sm}
m=O(k2log2n)

• Hamming matrix H, is (1+log n) X n 
(H represents 2-separating sets)

1 1 1 1 1 1 1 1 

1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0
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Key elements of the proof

• Over whole class, worst case error is Cpb
1-2/p = 

||Cb
opt||2

2

• The tail sum after removing the top k’ obeys

• ∑i=b’+1
n |θi| ���� O(b1-1/p)

• Picking b’ > (bε-p)1/(1-p)² ensures that even if every 
coefficient after the b’ largest is placed in the same 
set as θi, for i in top b, we will recover i. 

• Build a b’ strongly separating set S, and measure χS⊗ ⊗ ⊗ ⊗ 

H to identify a superset of the top-b.  

• Build a b’’ = (b’ log n)2 strongly separating set R, and 
measure χR to allow estimates to be made

• we estimate θi using θ’I: (θ’i - θi)
2 <= ε2/(25b) 

||Cb
opt||2

2



Compressed Sensing Postcursors

• For exponentially decaying compressible 

families, better constructions O(b2 log)

• For zero-error case (b-sparse case), Indyk has 

O(b polylog).

• For existential T, improved decoding time by 

Gilbert, Strauss, Tropp and Vershynin [06].

• Relationship between Compressed Sensing and 

Johnson-Lindenstauss, by Baranuik, DeVore et 

al. [06].



Modern Version 2:

Nonuniform Sparse Approximation
• Given dictionary D of N dimensional vectors that span 

RN. Also, given an importance (workload) function 

π[1..Ν].

• Query is a vector A[1,…,N].

• Sparse representation for A using B terms of D:

• Minimize 
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MAX and other non-L2 norms: Harb and Guha06



Motivation: Database operations

• Databases work very hard to keep track of the 

workload (SQL Logs, Index access logs etc.) and use 

the statistics to optimize the database structure, 

physical implementation, caching, query optimization, 

etc. 

• Two examples of commercial database engines that 

use workload information:

– LEO in DB2 is the recent upgrade from IBM.

– Self-tuning in Microsoft SQL Server.

• Nontrivial Problem:

A

D

π



Nonuniform SA: Some Results

• Haar dictionary. Sparse representation for A using B
terms:

Minimize error 

• [Garofalakis+Kumar,Mu,Guha] There exists an O(N2b)
time algorithm that finds the optimal b Haar wavelets 
for any function A with importance π. 

• If π is a k-piecewise constant function, then the running 
time is roughly O(n k b).

– Local Parseval’s.
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Piecewise Constant ππππ’s

Why piecewise constant π’s? 

• Compressible. 

• Good fit for Haar wavelet dictionary.



Piecewise constant ππππ

• Say π is disjoint union of k piecewise-
constant functions.

• Rewrite it as O(k log N) dyadic 
piecewise-constant functions.

• Algorithm: Compressed trie on these intervals.

– For all internal nodes, do external search. 

– Each leaf corresponds to a dyadic piecewise constant 
interval: Local Parseval’s applies. So pick the best b (except 
the average). 

• [M05] Combining, running time is O(n k b) since the 
dyadic trie has O(k log N) internal nodes. If k dyadic 
piecewise constant π, then running time is 

)2( }log,min{ Nk
bkNO +

Near-linear

time.



Piecewise Constant ππππ’s



Piecewise Constant ππππ’s



Piecewise Constant ππππ’s

Dynamic Programming  at 

Local Parseval’s at

k

k log N

Key is Local Parseval’s: At any node orange, one can pick the

q largest coefficients from wavelet vectors with support contained

in its subtree, for any q. Note that this collection of vectors is 

deficient.



Modern Version: 

Incoherent Dictionary

- Incoherent dictionary D satisfies|<u.v>| ≤ µ, for all 

vectors u, v in D. 

- [Gilbert,M,Strauss03, Gilbert,M,Strauss,Tropp04] If 

µ=O(ε/b2), we can get 1+ε approximation to the best 

signal representation in b terms in near linear time, 

after polynomial preprocessing. 



Conclusions & Open Problems

• Algorithmic theory of sparse approximation problems. 

NSF FRG. 

• Open problems:

– Compressed sensing and beyond. Universal decoding.

– Nonuniform optimization with fourier and wavelets.

– Incoherent dictionaries: combinations of two basis.

– Compressed sensing version of matrix approximation.

– Applications and experiments. 



• MassDAL manages massive streams during the entire 

lifecycle of data: collect, clean, analyze and integrate 

into applications. 
http://www.cs.rutgers.edu/~muthu/massdal.html

• I consult for highly specialized, domain-specific data analysis: 

Patent data analysis, Cellphone call detail records analysis, Auto-

insurance fraud, Epidemiology and data mining.

NARUS

Networks



Additional Slides for Nonuniform

Sparse Approximation



Approaches to Nonuniform SA

• Parseval’s does not help.

• Change signal and rewrite things to get Parseval’s. 

• Consider weighted versions of Haar [Matias et al. 04]:

– For ψi let li (ri) be sum of π[j]’s under positive                  

(negative) parts. Mult positive and negative parts by 
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Both O(N) time. 



Wavelets: Haar Wavelets (1910)

• N wavelet vectors.

• Orthonormal Basis.
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Approach

• Dyadic interval I (non-overlapping partition of 1…N

into 2i sized intervals, for each i).

• E(I,k,S): Minimum error for representing A[I] with 

importance π[I] using

– Set S of wavelet vectors whose 

support contains I,

– At most k wavelet vectors whose 

support is contained in I. 

• E([1..N],B,φ) solves our problem.

I

IL IR

+ -

root S = subset of wavelet 
vectors that 
correspond to the 
proper ancestors of I.



Dynamic Programming

• Details: 

• Dynamic Programming:
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Complexity

• Dynamic Programming E(I,k,S):

– Number of problems is O(N b N) since 

• At most N dyadic intervals.

• At most log N wavelet vectors contain a dyadic I. 

– Each problem takes time O(b) to solve. 

– Total time is O(N2 b2).

• Two challenges:

– Running time is too large.

– Why use Haar for arbitrary π’s?


