Near-Optimal Hashing Algorithms for Approximate Near(est) Neighbor Problem

Piotr Indyk

MIT

Joint work with: Alex Andoni, Mayur Datar, Nicole Immorlica, and Vahab Mirrokni

Definition

- Given: a set P of points in R^{d}
- Nearest Neighbor: for any query q, returns a point $p \in P$ minimizing \|p-q\|
- r-Near Neighbor: for any
 query q, returns a point $p \in P$ s.t. $\|p-q\| \leq r$ (if it exists)

Nearest Neighbor: Motivation

- Learning: nearest neighbor rule
- Database retrieval
- Vector quantization, a.k.a. compression

Brief History of NN

The case of $d=2$

- Compute Voronoi diagram
- Given q, perform point location
- Performance:
- Space: O(n)
- Query time: O(log n)

The case of $d>2$

- Voronoi diagram has size $\mathrm{n}^{(\text {(d) }}$
- We can also perform a linear scan: O(dn) time
- That is pretty much all what known for exact algorithms with theoretical guarantees
- In practice:
- kd-trees work "well" in "low-medium" dimensions
- Near-linear query time for high dimensions

Approximate Near Neighbor

- c-Approximate r-Near Neighbor: build data structure which, for any query q:
- If there is a point $p \in P,\|p-q\| \leq r$
- it returns $p^{\prime} \in P,\|p-q\| \leq c r$
- Reductions:
- c-Approx Nearest Neighbor reduces to c-Approx Near Neighbor (log overhead)

- One can enumerate all approx near neighbors
\rightarrow can solve exact near neighbor problem
- Other apps: c-approximate Minimum Spanning Tree, clustering, etc.

Approximate algorithms

- Space/time exponential in d [Arya-Mount-et al], [Kleinberg'97], [Har-Peled'02], [Arya-Mount-...]
- Space/time polynomial in d [Kushilevitz-OstrovskyRabani'98], [Indyk-Motwani'98], [Indyk'98], [Gionis-Indyk-Motwani'99], [Charikar'02], [Datar-Immorlica-Indyk-Mirrokni'04], [ChakrabartiRegev'04], [Panigrahy'06], [Ailon-Chazelle'06]...

Space	Time	Comment	Norm	Ref
$d n+n^{4 / \varepsilon^{2}}$	d * $\operatorname{logn} / \varepsilon^{2}$ or 1	$\mathrm{c}=1+\varepsilon$	Hamm, I_{2}	[KOR'98, IM'98]
$\mathrm{n} \Omega\left(1 / \varepsilon^{2}\right)$	$\mathrm{O}(1)$			[AIP'06]
$d n+n^{1+\rho(c)}$	$\mathrm{dn}{ }^{\rho(\mathrm{c})}$	$\rho(\mathrm{c})=1 / \mathrm{c}$	Hamm, I_{2}	[IM'98], [Cha'02]
		$\rho(\mathrm{c})<1 / \mathrm{c}$	I_{2}	[DIIM'04]
dn * logs	$\mathrm{d} \mathrm{n}^{\sigma(c)}$	$\sigma(\mathrm{c})=\mathrm{O}(\log \mathrm{c} / \mathrm{c})$	Hamm, I_{2}	[Ind'01]
		$\sigma(\mathrm{c})=\mathrm{O}(1 / \mathrm{c})$	I_{2}	[Pan'06]
$d \mathrm{n}+\mathrm{n}^{1+\rho(c)}$	dn ${ }^{\rho(c)}$	$\rho(\mathrm{c})=1 / \mathrm{c}^{2}+\mathrm{o}(1)$	I_{2}	[Al'06]
dn * logs	dn (c)	$\sigma(\mathrm{c})=\mathrm{O}\left(1 / \mathrm{c}^{2}\right)$	I_{2}	[Al'06]

Locality-Sensitive Hashing

- Idea: construct hash functions $\mathrm{g}: \mathrm{R}^{\mathrm{d}} \rightarrow \cup$ such that

${ }^{\circ}$ for any points p, q :
- If $\|p-q\| \leq r$, then $\operatorname{Pr}[g(p)=g(q)]$
 is "high" "not-so-small"
- If ||p-q\|| >cr, then $\operatorname{Pr[g(p)=g(q)]~}$ is "small"

- Then we can solve the problem by hashing

LSH

[Indyk-Motwani'98,Gionis-Indyk-Motwani'99]

- A family H of functions $h: R^{d} \rightarrow U$ is called ($\left.P_{1}, P_{2}, r, c r\right)$-sensitive, if for any p, q :
- if $\|p-q\|<r$ then $\operatorname{Pr}[h(p)=h(q)]>P_{1}$
- if ||p-q\|| >cr then $\operatorname{Pr}[h(p)=h(q)]<P_{2}$
- Example: Hamming distance
- LSH functions: $h(p)=p_{i}$, i.e., the i-th bit of p
- Probabilities: $\operatorname{Pr}[h(p)=h(q)]=1-D(p, q) / d$

$$
\begin{aligned}
& p=10010010 \\
& q=11010110
\end{aligned}
$$

LSH Algorithm

- We use functions of the form

$$
g(p)=<h_{1}(p), h_{2}(p), \ldots, h_{k}(p)>
$$

- Preprocessing:
- Select $g_{1} \ldots g_{L}$
- For all $p \in P$, hash p to buckets $g_{1}(p) \ldots g_{L}(p)$
- Query:
- Retrieve the points from buckets $g_{1}(q), g_{2}(q), \ldots$, until
- Either the points from all L buckets have been retrieved, or
- Total number of points retrieved exceeds 2L
- Answer the query based on the retrieved points
- Total time: $\mathrm{O}(\mathrm{dL})$

Analysis

- LSH solves c-approximate NN with:
- Number of hash fun: $L=n^{\rho}, \rho=\log (1 / P 1) / \log (1 / P 2)$
- E.g., for the Hamming distance we have $\rho=1 / \mathrm{c}$
- Constant success probability per query q
- Questions:
- Can we extend this beyond Hamming distance ?
- Yes:
- embed I_{2} into $I_{1} \quad$ (random projections)
$-I_{1}$ into Hamming (discretization)
- Can we reduce the exponent ρ ?

Projection-based LSH

[Datar-Immorlica-Indyk-Mirrokni'04]

- Define $h_{X, b}(p)=\left\lfloor\left(p^{*} X+b\right) / w\right\rfloor$:
- $w \approx r$
- $X=\left(X_{1} \ldots X_{d}\right)$, where X_{i} is chosen from:
- Gaussian distribution (for I_{2} norm)
- "s-stable" distribution* (for I_{s} norm)
- b is a scalar
- Similar to the $\mathrm{I}_{2} \rightarrow \mathrm{I}_{1} \rightarrow$ Hamming route
${ }^{*}$ I.e., $\mathrm{p}^{*} X$ has same distribution as $\|p\|_{s} Z$, where Z is s-stable

Analysis

- Need to:
- Compute $\operatorname{Pr}[\mathrm{h}(\mathrm{p})=\mathrm{h}(\mathrm{q})]$ as a function of $|\mid \mathrm{p}-\mathrm{q} \|$ and w; this defines P_{1} and P_{2}
- For each c choose w that minimizes

$$
\rho=\log _{1 / \mathrm{P} 2}\left(1 / \mathrm{P}_{1}\right)
$$

- Method:

- For I_{2} : computational
- For general I_{s} : analytic
$\rho(w)$ for various c's: I_{1}

$\rho(w)$ for various c's: I_{2}

ρ (c) for I_{2}

New LSH scheme

[Andoni-Indyk'06]

- Instead of projecting onto R^{1}, project onto R^{t}, for constant t
- Intervals \rightarrow lattice of balls
- Can hit empty space, so hash until a ball is hit
- Analysis:
$-\rho=1 / c^{2}+O\left(\log t / t^{1 / 2}\right)$
- Time to hash is $\mathrm{t}^{\circ}(\mathrm{t})$
- Total query time: $\mathrm{dn}^{1 / c^{2}+o(1)}$
- [Motwani-Naor-Panigrahy'06]: LSH in I 2 must have $\rho \geq 0.45 / \mathrm{c}^{2}$

Connections to

- [Charikar-Chekuri-Goel-Guha-Plotkin'98]
- Consider partitioning of R^{d} using balls of radius R
- Show that $\operatorname{Pr}[\operatorname{Ball}(p) \neq \operatorname{Ball}(q)] \leq\|p-q\| / R^{*} d^{1 / 2}$
- Linear dependence on the distance - same as Hamming
- Need to analyze $\mathrm{R} \approx||\mathrm{p}-\mathrm{q}||$ to achieve non-linear behavior! (as for the projection on the line)
- [Karger-Motwani-Sudan'94]
- Consider partitioning of the sphere via random vectors u from $\mathrm{N}^{\mathrm{d}}(0,1)$:
- Showed $\operatorname{Pr}[\operatorname{Cap}(p)=\operatorname{Cap}(q)] \leq \exp \left[-(2 T /| | p+q \|)^{2} / 2\right]$
- Large relative changes to $\|p-q\|$ can yield only small relative changes to ||p+q\||

Proof idea

- Claim: $\rho=\log (\mathrm{P} 1) / \log (\mathrm{P} 2) \rightarrow 1 / \mathrm{c}^{2}$

- P1=Pr(1), P2=Pr(c)
$-\operatorname{Pr}(z)=$ prob. of collision when distance z
- Proof idea:
- Assumption: ignore effects of mapping into R^{t}
- $\operatorname{Pr}(z)$ is proportional to the volume of the cap
- Fraction of mass in a cap is proportional to the probability that the x-coordinate of a random point u from a ball exceeds x
- Approximation: the x-coordinate of u has approximately normal distribution

$$
\rightarrow \operatorname{Pr}(x) \approx \exp \left(-A x^{2}\right)
$$

$-\rho=\log \left[\exp \left(-A 1^{2}\right)\right] / \log \left[\exp \left(-A c^{2}\right)\right]=1 / c^{2}$

New LSH scheme, ctd.

- How does it work in practice ?
- The time $t^{0(t)} \mathrm{dn}^{1 / c^{2}+f(t)}$ is not very practical
- Need $t \approx 30$ to see some improvement
- Idea: a different decomposition of R^{t}
- Replace random balls by Voronoi diagram of a lattice
- For specific lattices, finding a cell containing a point can be very fast
 \rightarrow fast hashing

Leech Lattice LSH

- Use Leech lattice in R^{24}, $t=24$
- Largest kissing number in 24D: 196560
- Conjectured largest packing density in 24D
- 24 is 42 in reverse...
- Very fast (bounded) decoder: about 519 operations [Amrani-Beery'94]
- Performance of that decoder for $\mathrm{c}=2$:
- $1 / \mathrm{c}^{2}$
0.25
- 1/c
0.50
- Leech LSH, any dimension:
$\rho \approx 0.36$
- Leech LSH, 24D (no projection): $\rho \approx 0.26$

Conclusions

- We have seen:
- Algorithm for c-NN with $\mathrm{dn}^{1 / /^{2}+o(1)}$ query time (and reasonable space)
- Exponent tight up to a constant
- (More) practical algorithms based on Leech lattice
- We haven't seen:
- Algorithm for c-NN with $d n^{O}\left(1 / c^{2}\right)$ query time and dn log n space
- Immediate questions:
- Get rid of the o(1)
- ...or came up with a really neat lattice...
- Tight lower bound
- Non-immediate questions:
- Other ways of solving proximity problems

Advertisement

- See LSH web page (Google "Locality Sensitive Hashing"):
- Experimental results (for the '04 version)
- Pointers to the code

