Near-Optimal Hashing Algorithms for Approximate Near(est) Neighbor Problem

Piotr Indyk MIT

Joint work with: Alex Andoni, Mayur Datar, Nicole Immorlica, and Vahab Mirrokni

Definition

- Given: a set P of points in R^d
- Nearest Neighbor: for any query q, returns a point p∈P minimizing ||p-q||
- r-Near Neighbor: for any query q, returns a point p∈P
 s.t. ||p-q|| ≤ r (if it exists)

Nearest Neighbor: Motivation

- Learning: nearest neighbor rule
- Database retrieval
- Vector quantization, a.k.a. compression

Brief History of NN

The case of d=2

Compute Voronoi diagram

Given q, perform point location

Performance:

– Space: O(n)

– Query time: O(log n)

The case of d>2

- Voronoi diagram has size n^{O(d)}
- We can also perform a linear scan: O(dn) time
- That is pretty much all what known for exact algorithms with theoretical guarantees
- In practice:
 - kd-trees work "well" in "low-medium" dimensions
 - Near-linear query time for high dimensions

Approximate Near Neighbor

- c-Approximate r-Near Neighbor: build data structure which, for any query q:
 - If there is a point $p \in P$, $||p-q|| \le r$
 - it returns p'∈P, ||p-q|| ≤ cr
- Reductions:
 - c-Approx Nearest Neighbor reduces to c-Approx Near Neighbor (log overhead)
 - One can enumerate all approx near neighbors
 - → can solve exact near neighbor problem
 - Other apps: c-approximate Minimum Spanning Tree, clustering, etc.

Approximate algorithms

- Space/time exponential in d [Arya-Mount-et al], [Kleinberg'97], [Har-Peled'02], [Arya-Mount-...]
- Space/time polynomial in d [Kushilevitz-Ostrovsky-Rabani'98], [Indyk-Motwani'98], [Indyk'98], [Gionis-Indyk-Motwani'99], [Charikar'02], [Datar-Immorlica-Indyk-Mirrokni'04], [Chakrabarti-Regev'04], [Panigrahy'06], [Ailon-Chazelle'06]...

Space	Time	Comment	Norm	Ref
dn+n ^{4/ε²}	d * logn /ε² or 1	c=1+ ε	Hamm, I ₂	[KOR'98, IM'98]
$n^{\Omega(1/\epsilon^2)}$	O(1)			[AIP'06]
dn+n ^{1+p(c)}	dn ^{p(c)}	ρ(c)=1/c	Hamm, I ₂	[IM'98], [Cha'02]
		ρ(c)<1/c		[DIIM'04]
dn * logs	dn ^{σ(c)}	$\sigma(c)=O(\log c/c)$	Hamm, I ₂	[lnd'01]
		$\sigma(c)=O(1/c)$		[Pan'06]
dn+n ^{1+p(c)}	dn ^{p(c)}	$\rho(c)=1/c^2+o(1)$	l ₂	[Al'06]
dn * logs	dn ^{o(c)}	$\sigma(c) = O(1/c^2)$	l _o	[Al'06]

Locality-Sensitive Hashing

 Idea: construct hash functions g: R^d → U such that for any points p,q:

Then we can solve the problem by hashing

LSH

[Indyk-Motwani'98, Gionis-Indyk-Motwani'99]

- A family H of functions h: R^d → U is called (P₁,P₂,r,cr)-sensitive, if for any p,q:
 - $\text{ if } ||p-q|| < r \text{ then } Pr[h(p)=h(q)] > P_1$
 - if ||p-q|| > cr then $Pr[h(p)=h(q)] < P_2$
- Example: Hamming distance
 - LSH functions: h(p)=p_i, i.e., the i-th bit of p
 - Probabilities: Pr[h(p)=h(q)] = 1-D(p,q)/d

```
p=10010010
q=11010110
```

LSH Algorithm

We use functions of the form

$$g(p) = \langle h_1(p), h_2(p), ..., h_k(p) \rangle$$

- Preprocessing:
 - Select g₁...g₁
 - For all p∈P, hash p to buckets $g_1(p)...g_1(p)$
- Query:
 - Retrieve the points from buckets $g_1(q)$, $g_2(q)$, ..., until
 - Either the points from all L buckets have been retrieved, or
 - Total number of points retrieved exceeds 2L
 - Answer the query based on the retrieved points
 - Total time: O(dL)

Analysis

- LSH solves c-approximate NN with:
 - Number of hash fun: $L=n^{\rho}$, $\rho=log(1/P1)/log(1/P2)$
 - E.g., for the Hamming distance we have $\rho=1/c$
 - Constant success probability per query q
- Questions:
 - Can we extend this beyond Hamming distance?
 - Yes:
 - embed l₂ into l₁ (random projections)
 - I₁ into Hamming (discretization)
 - Can we reduce the exponent p?

Projection-based LSH

[Datar-Immorlica-Indyk-Mirrokni'04]

- Define $h_{X,b}(p) = \lfloor (p*X+b)/w \rfloor$:
 - $w \approx r$
 - $X=(X_1...X_d)$, where X_i is chosen from:
 - Gaussian distribution (for l₂ norm)
 - "s-stable" distribution* (for l_s norm)
 - b is a scalar
- Similar to the I₂ → I₁ → Hamming route

^{*} I.e., p^*X has same distribution as $||p||_s$ Z, where Z is s-stable

Analysis

- Need to:
 - Compute Pr[h(p)=h(q)] as a function of ||p-q||
 and w; this defines P₁ and P₂
 - For each c choose w that minimizes

$$\rho = \log_{1/P_2}(1/P_1)$$

- Method:
 - For 1₂: computational
 - For general I_s: analytic

$\rho(w)$ for various c's: I_1

$\rho(w)$ for various c's: l_2

$\rho(c)$ for I_2

New LSH scheme

[Andoni-Indyk'06]

- Instead of projecting onto R¹, project onto R^t, for constant t
- Intervals → lattice of balls
 - Can hit empty space, so hash until a ball is hit
- Analysis:
 - $\rho = 1/c^2 + O(\log t / t^{1/2})$
 - Time to hash is t^{O(t)}
 - Total query time: dn¹/c²+o(¹)
- [Motwani-Naor-Panigrahy'06]: LSH in I_2 must have $\rho \ge 0.45/c^2$

Connections to

- [Charikar-Chekuri-Goel-Guha-Plotkin'98]
 - Consider partitioning of R^d using balls of radius R
 - Show that $Pr[Ball(p) \neq Ball(q)] \leq ||p-q||/R * d^{1/2}$
 - Linear dependence on the distance same as Hamming
 - Need to analyze R≈||p-q|| to achieve non-linear behavior!
 (as for the projection on the line)
- [Karger-Motwani-Sudan'94]
 - Consider partitioning of the sphere via random vectors u from N^d(0,1):

p is in Cap(u) if
$$u^*p \ge T$$

- Showed $Pr[Cap(p) = Cap(q)] \le exp[-(2T/||p+q||)^2/2]$
 - Large relative changes to ||p-q|| can yield only small relative changes to ||p+q||

Proof idea

p

- Claim: $\rho = \log(P1)/\log(P2) \rightarrow 1/c^2$
 - P1=Pr(1), P2=Pr(c)
 - Pr(z)=prob. of collision when distance z
- Proof idea:
 - Assumption: ignore effects of mapping into R^t
 - Pr(z) is proportional to the volume of the cap
 - Fraction of mass in a cap is proportional to the probability that the x-coordinate of a random point u from a ball exceeds x
 - Approximation: the x-coordinate of u has approximately normal distribution
 - \rightarrow Pr(x) \approx exp(-A x²)
 - $\rho = \log[\exp(-A1^2)] / \log[\exp(-Ac^2)] = 1/c^2$

New LSH scheme, ctd.

- How does it work in practice ?
- The time t^{O(t)}dn^{1/c²+f(t)} is not very practical
 - Need t≈30 to see some improvement
- Idea: a different decomposition of R^t
 - Replace random balls by Voronoi diagram of a lattice
 - For specific lattices, finding a cell containing a point can be very fast
 →fast hashing

Leech Lattice LSH

- Use Leech lattice in R²⁴, t=24
 - Largest kissing number in 24D: 196560
 - Conjectured largest packing density in 24D
 - 24 is 42 in reverse…
- Very fast (bounded) decoder: about 519 operations [Amrani-Beery'94]
- Performance of that decoder for c=2:

```
- 1/c^2 \\ - 1/c \\ - \text{Leech LSH, any dimension:} \qquad 0.25 \\ - \text{Leech LSH, 24D (no projection):} \qquad \rho \approx 0.36 \\ \rho \approx 0.26
```

Conclusions

- · We have seen:
 - Algorithm for c-NN with dn^{1/c²+o(1)} query time (and reasonable space)
 - Exponent tight up to a constant
 - (More) practical algorithms based on Leech lattice
- We haven't seen:
 - Algorithm for c-NN with dn^{O(1/c²)} query time and dn log n space
- Immediate questions:
 - Get rid of the o(1)
 - ...or came up with a really neat lattice...
 - Tight lower bound
- Non-immediate questions:
 - Other ways of solving proximity problems

Advertisement

- See LSH web page (Google "Locality Sensitive Hashing"):
 - Experimental results (for the '04 version)
 - Pointers to the code