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Modeling

Observation model

r=Hs+v (1)
m x: observed, dim K
m P: source vector, dim P
m H: K x P mixing matrix

m v: additive noise
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Modeling

Taxonomy

One additional assumption is required on sources s;:
m mutually independent sources

m discrete sources

m colored sources

m nonstationary sources
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General Concepts

Principal component Analysis (PCA)

Goal

Given a K-dimensional r.v., &, find U and z such that

m Observation

x=U =z

m z has uncorrelated components z;

NB: Because of lack of uniqueness, U is often assumed to be unitary.
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General Concepts

Independent Component Analysis (ICA)

Goal

Given a K-dimensional r.v., &, find H and s such that

m Observation

x=Hs (2)

m s has mutually statistically independent components s;

[ “Blind” Source Separation: only outputs x; are observed.
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General Concepts

Uniqueness

Inherent indeterminations
if s has independent components s;, so has AP s

where A is invertible diagonal and P permutation

Solutions

If (A, s) solution, then (AAP, PTA™'s) also is.
m “Fssential uniqueness”: unique up to a trivial filter, i.e. a scale-permutation

m Whole equivalence class of solutions = Look for one representative.
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General Concepts

Decorrelation vs Independence

Example 1: Mixture of 2 identically distributed sources

Consider the mixture of two independent sources

I 1 1 S1

To 1 -1 S9
where E{s?} = 1 and E{s;} = 0. Then z; are uncorrelated:
E{a1 22} = B{si} — E{s3} =0
But z; are not independent since, for instance:

E{ai 23} — B{a1}E{z3} = E{si} + E{sy} — 6 #0
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General Concepts

PCA vs ICA

Example 2: 2 sources and 2 sensors

Gaussian Mon Gaussian
g T g .
Bl B
4t o
2t 2
£ ]
of 1] ]
-2t -2
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Applications

Application Areas (1)

m Sensor Array Processing

e Speech
e [Localization with ill calibrated antennas

e Detection and/or extraction with unknown antennas

(eg. sonar buoys, biomedical, audio, nuclear plants...)
e Blind extraction (eg. COMINT: interception, surveillance)

e Localization with reduced diversity (eg. Air traffic control)
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Applications

Application Areas (2)

m Factor Analysis

e Chemometrics
e FEconometrics

e Psychology
m Compression
m Arithmetic Complexity
m Machine Learning

m Exploratory Analysis
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Introduction

General bibliography

m Books on HOS, ICA, or Multi-Way:
Lacoume-Amblard-Comon’97 (but in French)
Hyvarinen-Karhunen-Oja’01 (but dedicated only to FastICA)
Smilde-Bro-Geladi’04 (but dedicated only to Factor Analysis)

Comon-DeLathauwer (will cover more topics, but you have to wait!)

m Other related books:
Kagan-Linnik-Rao’73
McCullagh’87
Nikias-Petropulu’93
Haykin’2000
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Spatial whitening

Standardization via PCA

Definition

PCA is based on second order statistics

m Observed random variable @ of dimension K. Then (U, 2):

x = Uz, U unitary

where Principal Components z; are uncorrelated

1th column w; of U is called ¢th PC' Loading vector

m T'wo possible calculations:

e EVD of Covariance R,: R, = UX*U"
e Sample estimate by SVD: X = UXV"
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Spatial whitening

Summary

Find a linear transform L such that vector & % La has unit covariance. Many
possibilities, including:
m PCA yields & = 21Uz

m Cholesky R, = LL" yields & = L '«

Remarks
m Infinitely many possibilities: L is as good as L @, for any unitary Q.

mIf R, not invertible, then L not invertible (ill-posed). One may use

pseudo-inverse of 3 in PCA to compute L, or regularize R,,.
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PCA by pair sweeping

Plane rotations

Application of a Givens rotation on both sides of a matrix allows to set a pair of

zeros In a symmetric matrix:

(e o\ e\ [x20a)

| R r . X

—s . C . s . Cc . 0 =z X =z

Same result obtained:

m cither by setting 0

m or by maximizing X’s
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PCA by pair sweeping

Jacobi sweeping for PCA

Cyclic by rows/columns algorithm for a 4 x 4 real symmetric matrix

[

a

y

(X 0 2 )

0 X 2z x

xr xTr . .

oo

(Xx():c\

xr . T .

(X:L'x()\
r . . x

r . . X

r X 0 =z
r 0 X =z
\Oxx

(.xa:O\

¥,

X: maximized, x: minimized, 0: canceled, .:

\a.antX)
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Statistical Independence

Definition

Components s of a K-dimensional r.v. s are mutually independent

0

The joint pdf equals the product of marginal pdf’s:

ps(u) = | [ s (wr) (3)

Definition
Components sy, of s are pairwise independent < Any pair of components (s, S¢)

are mutually independent.
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Mutual vs Pairwise independence (1)

Example 3: Pairwise but not Mutual independence

m 3 mutually independent BPSK sources, z; € {—1,1}, 1 <i <3
m Define x4 = x12023. Then x4 is also BPSK, dependent on x;

m 1 are pairwise independent:
plry=a,x4=0b) =plry=0blzy =0a)plr; =a)=
p(rox3 =b/a).p(x; = a)

But x; and x9 3 are BPSK =

p(xaxy =bja)p(r) =a) =1 -1

m But z; obviously not mutually independent, 1 < k < 4

In particular, Cum{x, x9, x3, 24} =1 #0
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Mutual vs Pairwise independence (2)

Darmois’s Theorem (1953)
Let two random variables be defined as linear combinations of independent

random variables x;:

N

N
X1:Zaixi, XQZZbixi
1=1

1=1

Then, it X; and X5 are independent, those x; for which a;b; # 0 are Gaussian.
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Mutual vs Pairwise independence (3)

Corollary
If z = C's, where s; are independent r.v., with at most one of them being

Gaussian, then the following properties are equivalent:
1. Components z; are pairwise independent
2. Components z; are mutually independent

3. C = A P, with A diagonal and P permutation
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Cumulants

Properties of Cumulants

m Multi-linearity (also enjoyed by moments):
Cum{aX,Y,.,Z} = aCum{X,Y,... 7} (4)
Cum{X;+ X», Y, .., Z} = Cum{Xy,Y,..,Z} + Cum{ Xy, Y, .., Z}
m Cancellation: If {X;} can be partitioned into 2 groups of independent r.v.,

then
Cum{Xl, XQ, oy Xr} =0 (5)

m Additivity: If X and Y are independent, then

Cum{X; +VYy, Xo+ Y5, .., X, +Y,} = Cum{Xy, Xo,.., X,}
+ Cum{}/la Yv?)"a}/?“}

m Inequalities, e.g.:
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Optimization Criteria

Contrast criteria: definition

Axiomatic definition

A Contrast optimization criterion T should enjoy 3 properties:

m /nvartance: T should not change under the action of trivial filters

(Permutation-Scale)

m Domination: 1f sources are already separated, any filter should decrease (or

leave unchanged) T

m Discrimination: The maximum achievable value should be reached only when
sources are separated (i.e. all absolute maxima are related to each other by

trivial filters)

NB: idea first developed by Donoho for blind (scalar) equalization [DON81]
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Optimization Criteria

Mutual Information

T —1I(p,) is a contrast

m [nvariant by scale change and permutation
m Always negative

m Null if and only if components are independent
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Optimization Criteria

CoM Family of contrasts

When observations are standardized, and when only wunitary transforms are

considered, then the following are contrast functions:

m If at most 1 source has a null skewness [COM94b]:

P
2 def
To3 = Z(K’mz) y o Riii = sz.
i=1
m If at most 1 source has a null kurtosis [COM94a]:
. i 2 i def "
Tou= Z(’%) o Ry = Cz iz’
i=1

= If at most 1 source has a null standardized Cumulant of order r % p+q > 2,

and for any o > 1:

P
o def * *
Tor = Z \/@Z(.Cé;)\ : mgq&)) = Cum{zi, ..., 2,2, .-+, 2 }
i=1

Vv ZJ
VO
p times q times
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Optimization Criteria

General Family of contrasts

m Theorem All CoM contrasts belong to the larger family :
Ty(z) =Y g(s?]) (6)

where g(-) is convex strictly increasing, and p + g > 2.
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Algorithms

Numerical Algorithms

What problem are they supposed to solve?

m Find Absolute maximum of a rational function in several variables

What kind of algorithms?
m Gradient ascent: the simplest
m Gradient-based ascents (Newton, quasi-Newton, conjugate gradient..)
m Quasi-algebraic algorithms: try to avoid local maxima

m Algebraic algorithms: find all absolute maxima in closed-form
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Algebraic algorithms

The 2-dimensional problem
m Assume data x have been standardized into .

m Then one looks for an estimate z of the source vector s as:

z=Q«x

where @ is unitary, and may be assumed of the form:

Q- cos (3 sinfFe? | 1 1 6 ")
—sinfBe ¥ cosf3 V14600 \ —p* 1

where 0 % tan 8 e/ denotes the complex tangent, and 3 el —n/2, 7/2
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Algebraic algorithms

Solution of the 2-dimensional problem (1)

Closed-form solution for absolute maximum of:
mT4in R

mTo3in R [COM94b]

mToyin R [COM94a)

mTy3inC [dLAMVOI1]

| T174 in C [COMOl]
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Algebraic algorithms

Invariance & Indeterminacy (1)

m There is a whole class of equivalent absolute maxima, which can be deduced

from each other by trivial filtering

m In the 2 X 2 real case, there are 8 equivalent absolute maxima, generated by

two P A transformations:

01 1 0
and

10 0 —1
m In the complex case, there are infinitely many, when ¢ € R.

m Expression (7) fixes this indeterminacy, so that only 2 solutions remain
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Algebraic algorithms

What is the problem in dimension 2 ?

m T, is a homogeneous trigonometric polynomial in (cos 3, sin 3) of degree ar.
m And we want a closed-form (algebraic) solution

m But only polynomials of a single variable of degree at most j can generally be

rooted algebraically

m Our problem: check out whether T, , could be transformed into a particular

function that can be algebraically maximized

I3S
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Algebraic algorithms

Example (1): maximization of : 153 in IR

Ta3 = K}y; + K39y can be proved to be a quadratic form w' B u where

u [cos 203, sin Qﬁ]T

and
def a 3ay/?2
3&4/2 9a2/4+3a,3/2+a1/4

with [dLAMVO1]:

9 9
ar = Y11 T Y222
9 9
a2 = Y12 T V122
asz = 71117122 + Y112 Y222

ag = 71227222 — Y111 Y112

I3S
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Algebraic algorithms

Example (2): maximization of contrast T, in IR

m Input-Output relations

Y cos! B+ 41119 cos® Gsin 3 + 61122 cos? Gsin® B
+ 41992 cos Bsin® B+ Yo sin’ 3

K1

Ko = M sin? B — 471112 cos 3 sin® 3 + 6y1122 cos® Bsin® 3
— 41999 cos® Bsin B + Yo cos 3

mThen e1 4 =K1 + Ky =

Y1+ Y2 Y1112 — Y1222 cos 23

[cos 23 sin 23] N .
Y2 — Y1222 52+ 371122 sin 20

m Conclusion: again entirely algebraic since dominant eigenvector of a matrix

of size < 4.
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Algebraic algorithms

Example (3): maximization of of contrast T;, inC

m Define k; = Cum{z;, z;, 2], 2/}, fy,ff = Cum{z;, z;, 2}, T}

m Then... again a quadratic form

T4 = /£1+/<52:uTBu
with
u' =[cos20B sin2Bcoseg sin2fsin ]
and
Y1111 + Y2022 R{d} —3{d}
B = R{0} 2+ R{mt S 3
—3{0} S{m} 29— R

0 = Y3 — 72
Conclusion: unexpectedly entirely algebraic! [COMO1]
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Quasi-algebraic algorithms

Jacobi Sweeping

Cyclic sweeping with fixed ordering

Example in dimension P = 3:

xr xr <

Carl Jacobi, 1804-1851

I3S
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Quasi-algebraic algorithms

Jacobi Sweeping for tensors

Question: Why not select another ordering, e.g. process pairs having cross

cumulants of largest magnitude?

Response: the computational complexity would be dominated by the

computation of the tensor entries themselves!
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Quasi-algebraic algorithms

Jacobi Sweeping for tensors

Joint Block Algorithm: Sweeping a 3 X 3 X 3 tensor

X x x X x x .
r T x x T x
r T r T T T
x X x| — r .z | — r X x
r rx r . G A
\xx \a:a:X \x:cX}

.. )
X : maximized

z : minimized p by the last Givens rotation [COMS89]

. unchanged |
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Quasi-algebraic algorithms

Influence of ordering

With update based on multilinearity.

Contrast of Comz = Gap of Come

............................................

SWWEENS Sweens
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Quasi-algebraic algorithms

Interpretation in terms of pairwise independence

m Pairs are processed in turns, so as to make outputs as independent as possible
m Ultimately: a set of pairwise independent outputs

m Legitimate because of corollary of Darmois’s theorem (cf.; slide 19)
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Quasi-algebraic algorithms

Interpretation in terms of tensor diagonalization

Explanation for order 3 tensors

m Given a tensor gz, find a matrix @ transforming g into G, =

Z@'jk; QpiQqjQrk gijr such as to maximize:

U3(Q) = Y |Gl

m Theorem: if Q is unitary, then Q2 o

Q
Proof: uses ), QipQjp = i

szk |Gx|* is constant independent of

m Corollary: Maximize 139 < minimize all non diagonal entries

Hence: Approximate “Tensor Diagonalization”
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Quasi-algebraic algorithms

Tensor diagonalization

Warning: Tensors cannot in general be diagonalized by congruent transforms,

even non unitary!

Why?

because they have too many degrees of freedom ...

I3S
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Quasi-algebraic algorithms

Stationary points

Example of diagonalization of real symmetric matrices

m Given a matrix g with components g;;, it is sought for an orthogonal matrix @)

such that 1y is maximized:
(@) = Z G Gij = Z QipQjq Yp-
i p.q
m Stationary points of 1, satisfy for any pair of indices (q,7),q # r:
GogGor = GrrGyr

m Next, d%iy < 0 = Ggr < (Gyy — G,»)?, which proves that

o G, =0, Vq # r yields a maximum
o Gy = Gy, Vg, r yields a minimum

e Other stationary points are saddle points
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Quasi-algebraic algorithms

Stationary points

Procedure applied to real 3rd or 4th order tensors

m Similarly, one can look at relations characterizing local maxima of criteria W3

and W, [COM94b]:

ququqr - GTT?“GQTT - Oa

A2, +4G2, — (Gyy — Gy = (Crry — Gogr)® < 0,
Gog09Gagar = GrrreGgrrr = 0,

G e + 4G 1y — G — 5 G
~(Grrrr = 5 Gl < 0

for any pair of indices (p,q),p # ¢q. As a conclusion, contrary to Vs in the
matrix case, V,. might have theoretically spurious local maxima in the tensor

case, 7 > 2
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Quasi-algebraic algorithms

Tensors as Linear Operators

Overview

m Linear Operator €2 acting on square matrices:

M — Q(M); =Y C) M
kl

admits eigen-matrices N (p), 1 < p < P2
m In the absence of noise, P nonzero eigenvalues

m In practice, retain P dominant eigen-matrices = (i) reduced complexity P2,

and (ii) noise reduction
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Quasi-algebraic algorithms

Joint Approximate Diagonalization (JAD)

Other idea: jointly diagonalize matrix slices

Example of 4 X 4 X 4 tensors

Matrix slices diagonalization # Tensor diagonalization

Performs less well, but computationnally attractive [CS93]
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Quasi-algebraic algorithms

STD (1)

One step forward: Slicing decreases the order

m Similarly, one can try to diagonalize a 4th order tensor T' = [;;r¢] by jointly

diagonalizing 3rd order slices T'(¢)

m Algorithm: Each Givens rotation is obtained again by maximizing a quadratic

form u' B u

m Noise reduction possibility: replace slices by a family of 3rd order tensors

_ CKXKXK (

forming a basis of the map C* consider the 4th order tensor

as a linear map; basis obtained by SVD)
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Quasi-algebraic algorithms

STD (2)

In the real case, B is given as in slide 30 by:

with [dLAMVO1]

B:

ag

as

a4

aq 3&4/2
3@4/2 9a2/4+3a3/2+a1/4

9 9
= E Yi11e T V2220
0

9 9
= E Y1120 T Vi22¢
¢

= Z Y1110 Y1220 Y1120 V2221
(

= E Y1220 Y2220 — Y111 Y1120
¢

I3S
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Criteria

Comparison between CoM, JAD, and STD

P
Teon(Q) = Z | Tal® = Tau,
i—1

P P
Torp(Q) = > ) [Tyl

i=1 j=1
P P P

T ap(Q) = yj S: y: Tijul”

i=1 j=1 k=1

Different Discrimination powers:

TC’o]\/[2(cz> < TSTD(62> < TJAD(C2>

i.e. CoM2 is the best (but may be computationnally heavy, e.g. in C)

I3S
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The End

Conclusion

m [CA is widely used, and related to approximate tensor diagonalization

m But still lack of efficient numerical algorithms
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