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Modeling

Observation model

x = H s + v (1)

x: observed, dim K

P : source vector, dim P

H : K × P mixing matrix

v: additive noise
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Modeling

Taxonomy

One additional assumption is required on sources si:

mutually independent sources

discrete sources

colored sources

nonstationary sources
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General Concepts

Principal component Analysis (PCA)

Goal

Given a K-dimensional r.v., x, find U and z such that

Observation

x = U z

z has uncorrelated components zi

NB: Because of lack of uniqueness, U is often assumed to be unitary.
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General Concepts

Independent Component Analysis (ICA)

Goal

Given a K-dimensional r.v., x, find H and s such that

Observation

x = H s (2)

s has mutually statistically independent components si

➽“Blind” Source Separation: only outputs xi are observed.
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General Concepts

Uniqueness

Inherent indeterminations

if s has independent components si, so has ΛP s

where Λ is invertible diagonal and P permutation

Solutions

If (A, s) solution, then (AΛP , P TΛ−1s) also is.

“Essential uniqueness”: unique up to a trivial filter, i.e. a scale-permutation

Whole equivalence class of solutions ⇒ Look for one representative.
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General Concepts

Decorrelation vs Independence

Example 1: Mixture of 2 identically distributed sources

Consider the mixture of two independent sources x1

x2

 =

 1 1

1 −1

 ·

 s1

s2


where E{s2

i} = 1 and E{si} = 0. Then xi are uncorrelated:

E{x1 x2} = E{s2
1} − E{s2

2} = 0

But xi are not independent since, for instance:

E{x2
1 x

2
2} − E{x2

1}E{x2
2} = E{s4

1} + E{s4
2} − 6 6= 0
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General Concepts

PCA vs ICA

Example 2: 2 sources and 2 sensors
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Applications

Application Areas (1)

Sensor Array Processing

• Speech

• Localization with ill calibrated antennas

• Detection and/or extraction with unknown antennas

(eg. sonar buoys, biomedical, audio, nuclear plants...)

• Blind extraction (eg. ComInt: interception, surveillance)

• Localization with reduced diversity (eg. Air traffic control)
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Applications

Application Areas (2)

Factor Analysis

• Chemometrics

• Econometrics

• Psychology

Compression

Arithmetic Complexity

Machine Learning

Exploratory Analysis
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Introduction

General bibliography

Books on HOS, ICA, or Multi-Way:

Lacoume-Amblard-Comon’97 (but in French)

Hyvarinen-Karhunen-Oja’01 (but dedicated only to FastICA)

Smilde-Bro-Geladi’04 (but dedicated only to Factor Analysis)

Comon-DeLathauwer (will cover more topics, but you have to wait!)

Other related books:

Kagan-Linnik-Rao’73

McCullagh’87

Nikias-Petropulu’93

Haykin’2000
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Spatial whitening

Standardization via PCA

Definition

PCA is based on second order statistics

Observed random variable x of dimension K. Then ∃(U , z):

x = Uz, U unitary

where Principal Components zi are uncorrelated

ith column ui of U is called ith PC Loading vector

Two possible calculations:

• EVD of Covariance Rx: Rx = UΣ2UH

• Sample estimate by SVD: X = UΣV H

I3S



MMDS’06 13/47 c© P.COMON

Spatial whitening

Summary

Find a linear transform L such that vector x̃
def
= Lx has unit covariance. Many

possibilities, including:

PCA yields x̃ = Σ−1 UH x

Cholesky Rx = LLH yields x̃ = L−1 x

Remarks

Infinitely many possibilities: L is as good as LQ, for any unitary Q.

If Rx not invertible, then L not invertible (ill-posed). One may use

pseudo-inverse of Σ in PCA to compute L, or regularize Rx.
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PCA by pair sweeping

Plane rotations

Application of a Givens rotation on both sides of a matrix allows to set a pair of

zeros in a symmetric matrix:
c . s .

. 1 . .

−s . c .

. . . 1

 A


c . −s .

. 1 . .

s . c .

. . . 1

 =


X x 0 x

x . x .

0 x X x

x . x .


Same result obtained:

either by setting 0

or by maximizing X’s

I3S



MMDS’06 15/47 c© P.COMON

PCA by pair sweeping

Jacobi sweeping for PCA

Cyclic by rows/columns algorithm for a 4× 4 real symmetric matrix
. . . .

. . . .

. . . .

. . . .

 →


X 0 x x

0 X x x

x x . .

x x . .

 →


X x 0 x

x . x .

0 x X x

x . x .

 →


X x x 0

x . . x

x . . x

0 x x X

 →


. x x 0

x X 0 x

x 0 X x

0 x x .

 →


. x . x

x X x 0

. x . x

x 0 x X

 →


. . x x

. . x x

x x X 0

x x 0 X


X : maximized, x: minimized, 0: canceled, . : unchanged
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Statistical Independence

Definition

Components sk of a K-dimensional r.v. s are mutually independent

m

The joint pdf equals the product of marginal pdf’s:

ps(u) =
∏
k

psk(uk) (3)

Definition

Components sk of s are pairwise independent⇔Any pair of components (sk, s`)

are mutually independent.
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Mutual vs Pairwise independence (1)

Example 3: Pairwise but not Mutual independence

3 mutually independent BPSK sources, xi ∈ {−1, 1}, 1 ≤ i ≤ 3

Define x4 = x1x2x3. Then x4 is also BPSK, dependent on xi

xk are pairwise independent:

p(x1 = a, x4 = b) = p(x4 = b |x1 = a).p(x1 = a) =

p(x2 x3 = b/a).p(x1 = a)

But x1 and x2 x3 are BPSK ⇒
p(x2 x3 = b/a).p(x1 = a) = 1

2 ·
1
2

But xk obviously not mutually independent, 1 ≤ k ≤ 4

In particular, Cum{x1, x2, x3, x4} = 1 6= 0
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Mutual vs Pairwise independence (2)

Darmois’s Theorem (1953)

Let two random variables be defined as linear combinations of independent

random variables xi:

X1 =

N∑
i=1

ai xi, X2 =

N∑
i=1

bi xi

Then, if X1 and X2 are independent, those xj for which ajbj 6= 0 are Gaussian.
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Mutual vs Pairwise independence (3)

Corollary

If z = C s, where si are independent r.v., with at most one of them being

Gaussian, then the following properties are equivalent:

1. Components zi are pairwise independent

2. Components zi are mutually independent

3. C = ΛP , with Λ diagonal and P permutation

I3S
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Cumulants

Properties of Cumulants

Multi-linearity (also enjoyed by moments):

Cum{αX, Y, .., Z} = α Cum{X, Y, .., Z} (4)

Cum{X1 +X2, Y, .., Z} = Cum{X1, Y, .., Z} + Cum{X2, Y, .., Z}

Cancellation: If {Xi} can be partitioned into 2 groups of independent r.v.,

then

Cum{X1, X2, .., Xr} = 0 (5)

Additivity: If X and Y are independent, then

Cum{X1 + Y1, X2 + Y2, .., Xr + Yr} = Cum{X1, X2, .., Xr}

+ Cum{Y1, Y2, .., Yr}

Inequalities, e.g.:

K2
(3) ≤ K(4) + 2

I3S
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Optimization Criteria

Contrast criteria: definition

Axiomatic definition

A Contrast optimization criterion Υ should enjoy 3 properties:

Invariance: Υ should not change under the action of trivial filters

(Permutation-Scale)

Domination: If sources are already separated, any filter should decrease (or

leave unchanged) Υ

Discrimination: The maximum achievable value should be reached only when

sources are separated (i.e. all absolute maxima are related to each other by

trivial filters)

NB: idea first developed by Donoho for blind (scalar) equalization [DON81]
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Optimization Criteria

Mutual Information

Υ
def
= −I(pz) is a contrast

Invariant by scale change and permutation

Always negative

Null if and only if components are independent

I3S
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Optimization Criteria

CoM Family of contrasts

When observations are standardized, and when only unitary transforms are

considered, then the following are contrast functions:

If at most 1 source has a null skewness [COM94b]:

Υ2,3 =

P∑
i=1

(κiii)
2, κiii

def
= C

z iii

If at most 1 source has a null kurtosis [COM94a]:

Υ2,4 =

P∑
i=1

(κiiii)
2, κiiii

def
= C

z

ii

ii

If at most 1 source has a null standardized Cumulant of order r
def
= p + q > 2,

and for any α ≥ 1:

Υα,r =

P∑
i=1

|κ(q)
i (p)|

α, κ
(q)
i (p)

def
= Cum{zi, . . . , zi︸ ︷︷ ︸

p times

, z∗i , . . . , z
∗
i︸ ︷︷ ︸

q times

}
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Optimization Criteria

General Family of contrasts

Theorem All CoM contrasts belong to the larger family :

Υg(z) =
∑
i

g(|κ(q)
i (p)|) (6)

where g(·) is convex strictly increasing, and p + q > 2.

I3S
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Algorithms

Numerical Algorithms

What problem are they supposed to solve?

Find Absolute maximum of a rational function in several variables

What kind of algorithms?

Gradient ascent: the simplest

Gradient-based ascents (Newton, quasi-Newton, conjugate gradient..)

Quasi-algebraic algorithms: try to avoid local maxima

Algebraic algorithms: find all absolute maxima in closed-form

I3S
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Algebraic algorithms

The 2-dimensional problem

Assume data x have been standardized into x̃.

Then one looks for an estimate z of the source vector s as:

z = Q x̃

where Q is unitary, and may be assumed of the form:

Q =

 cos β sin β eϕ

− sin β e−ϕ cos β

 =
1√

1 + θθ∗

 1 θ

−θ∗ 1

 (7)

where θ
def
= tan β eϕ denotes the complex tangent, and β ∈]− π/2, π/2].
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Algebraic algorithms

Solution of the 2-dimensional problem (1)

Closed-form solution for absolute maximum of:

Υ1,4 in IR

Υ2,3 in IR [COM94b]

Υ2,4 in IR [COM94a]

Υ2,3 in lC [dLdMV01]

Υ1,4 in lC [COM01]
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Algebraic algorithms

Invariance & Indeterminacy (1)

There is a whole class of equivalent absolute maxima, which can be deduced

from each other by trivial filtering

In the 2 × 2 real case, there are 8 equivalent absolute maxima, generated by

two P Λ transformations: 0 1

1 0

 and

 1 0

0 −1


In the complex case, there are infinitely many, when ϕ ∈ IR .

Expression (7) fixes this indeterminacy, so that only 2 solutions remain

I3S
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Algebraic algorithms

What is the problem in dimension 2 ?

Υα,r is a homogeneous trigonometric polynomial in (cos β, sin β) of degree α r.

And we want a closed-form (algebraic) solution

But only polynomials of a single variable of degree at most 4 can generally be

rooted algebraically

Our problem: check out whether Υα,r could be transformed into a particular

function that can be algebraically maximized

I3S
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Algebraic algorithms

Example (1): maximization of : Υ2,3 in IR

Υ2,3 = κ2
111 + κ2

222 can be proved to be a quadratic form uTB u where

u
def
= [cos 2β, sin 2β]T (8)

and

B
def
=

 a1 3 a4/2

3 a4/2 9 a2/4 + 3 a3/2 + a1/4


with [dLdMV01]:

a1 = γ2
111 + γ2

222

a2 = γ2
112 + γ2

122

a3 = γ111 γ122 + γ112 γ222

a4 = γ122 γ222 − γ111 γ112

I3S
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Algebraic algorithms

Example (2): maximization of contrast Υ1,4 in IR

Input-Output relations

κ1 = γ1 cos4 β + 4γ1112 cos3 β sin β + 6γ1122 cos2 β sin2 β

+ 4γ1222 cos β sin3 β + γ2 sin4 β

κ2 = γ1 sin4 β − 4γ1112 cos β sin3 β + 6γ1122 cos2 β sin2 β

− 4γ1222 cos3 β sin β + γ2 cos4 β

Then εΥ1,4 = κ1 + κ2 =

[cos 2β sin 2β]

 γ1 + γ2 γ1112 − γ1222

γ1112 − γ1222
γ1+γ2

2 + 3γ1122

  cos 2β

sin 2β


Conclusion: again entirely algebraic since dominant eigenvector of a matrix

of size < 4.

I3S



MMDS’06 32/47 c© P.COMON

Algebraic algorithms

Example (3): maximization of of contrast Υ1,4 in lC

Define κi = Cum{zi, zi, z∗i , z∗i }, γk`ij = Cum{x̃i, x̃j, x̃∗k, x̃∗`}

Then... again a quadratic form

εΥ1,4 = κ1 + κ2 = uT B u

with

uT = [cos 2β sin 2β cosϕ sin 2β sinϕ]

and

B =


γ1111 + γ2222 <{δ} −={δ}

<{δ} 2γ12
12 + <{γ11

22} ={γ11
22}

−={δ} ={γ11
22} 2γ12

12 −<{γ11
22}

 ;

δ = γ11
12 − γ12

22

Conclusion: unexpectedly entirely algebraic! [COM01]
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Quasi-algebraic algorithms

Jacobi Sweeping

Cyclic sweeping with fixed ordering

Example in dimension P = 3:

x x̃ z

L

Carl Jacobi, 1804-1851
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Quasi-algebraic algorithms

Jacobi Sweeping for tensors

Question: Why not select another ordering, e.g. process pairs having cross

cumulants of largest magnitude?

Response: the computational complexity would be dominated by the

computation of the tensor entries themselves!
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Quasi-algebraic algorithms

Jacobi Sweeping for tensors

Joint Block Algorithm: Sweeping a 3× 3× 3 tensor
X x x

x x x

x x .



x x x

x X x

x x .

 →


x x x

x x x

x x .




X x x

x . x

x x x



x x x

x . x

x x x

 →


x x x

x . x

x x X




. x x

x x x

x x x




. x x

x X x

x x x




. x x

x x x

x x X


X : maximized

x : minimized

. : unchanged

 by the last Givens rotation [COM89]
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Quasi-algebraic algorithms

Influence of ordering

With update based on multilinearity.
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Quasi-algebraic algorithms

Interpretation in terms of pairwise independence

Pairs are processed in turns, so as to make outputs as independent as possible

Ultimately: a set of pairwise independent outputs

Legitimate because of corollary of Darmois’s theorem (cf., slide 19)
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Quasi-algebraic algorithms

Interpretation in terms of tensor diagonalization

Explanation for order 3 tensors

Given a tensor gijk, find a matrix Q transforming g into Gpqr =∑
ijkQpiQqjQrk gijk such as to maximize:

Ψ3(Q)
def
=

∑
i

|Giii|2

Theorem: if Q is unitary, then Ω
def
=

∑
ijk |Gijk|2 is constant independent of

Q

Proof: uses
∑

pQipQjp = δij

Corollary: Maximize Υ3,2 ⇔ minimize all non diagonal entries

Hence: Approximate “Tensor Diagonalization”
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Quasi-algebraic algorithms

Tensor diagonalization

Warning: Tensors cannot in general be diagonalized by congruent transforms,

even non unitary!

Why?

because they have too many degrees of freedom ...
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Quasi-algebraic algorithms

Stationary points

Example of diagonalization of real symmetric matrices

Given a matrix g with components gij, it is sought for an orthogonal matrix Q

such that ψ2 is maximized:

ψ2(G) =
∑
i

G2
ii; Gij =

∑
p,q

QipQjq gpq.

Stationary points of ψ2 satisfy for any pair of indices (q, r), q 6= r:

GqqGqr = GrrGqr

Next, d2ψ2 < 0 ⇔ G2
qr < (Gqq −Grr)

2, which proves that

• Gqr = 0, ∀q 6= r yields a maximum

• Gqq = Grr, ∀q, r yields a minimum

• Other stationary points are saddle points
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Quasi-algebraic algorithms

Stationary points

Procedure applied to real 3rd or 4th order tensors

Similarly, one can look at relations characterizing local maxima of criteria Ψ3

and Ψ4 [COM94b]:

GqqqGqqr −GrrrGqrr = 0,

4G2
qqr + 4G2

qrr − (Gqqq −Gqrr)
2 − (Grrr −Gqqr)

2 < 0;

GqqqqGqqqr −GrrrrGqrrr = 0,

4G2
qqqr + 4G2

qrrr − (Gqqqq −
3

2
Gqqrr)

2

−(Grrrr −
3

2
Gqqrr)

2 < 0.

for any pair of indices (p, q), p 6= q. As a conclusion, contrary to Ψ2 in the

matrix case, Ψr might have theoretically spurious local maxima in the tensor

case, r > 2
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Quasi-algebraic algorithms

Tensors as Linear Operators

Overview

Linear Operator Ω acting on square matrices:

M −→ Ω(M )ij =
∑
k`

Cj`ikMk`

admits eigen-matrices N (p), 1 ≤ p ≤ P 2.

In the absence of noise, P nonzero eigenvalues

In practice, retain P dominant eigen-matrices ⇒ (i) reduced complexity P 2,

and (ii) noise reduction

I3S
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Quasi-algebraic algorithms

Joint Approximate Diagonalization (JAD)

Other idea: jointly diagonalize matrix slices

Example of 4× 4× 4 tensors

Matrix slices diagonalization 6= Tensor diagonalization

Performs less well, but computationnally attractive [CS93]
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Quasi-algebraic algorithms

STD (1)

One step forward: Slicing decreases the order

Similarly, one can try to diagonalize a 4th order tensor T = [γijk`] by jointly

diagonalizing 3rd order slices T (`)

Algorithm: Each Givens rotation is obtained again by maximizing a quadratic

form uTB u

Noise reduction possibility: replace slices by a family of 3rd order tensors

forming a basis of the map lCK → lCK×K×K (consider the 4th order tensor

as a linear map; basis obtained by SVD)
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Quasi-algebraic algorithms

STD (2)

In the real case, B is given as in slide 30 by:

B =

 a1 3 a4/2

3 a4/2 9 a2/4 + 3 a3/2 + a1/4


with [dLdMV01]:

a1 =
∑
`

γ2
111` + γ2

222`

a2 =
∑
`

γ2
112` + γ2

122`

a3 =
∑
`

γ111` γ122` + γ112` γ222`

a4 =
∑
`

γ122` γ222` − γ111` γ112`
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Criteria

Comparison between CoM, JAD, and STD

ΥCoM2(Q) =

P∑
i=1

|Tiiii|2 = Υ2,4, (9)

ΥSTD(Q) =

P∑
i=1

P∑
j=1

|Tiiij|2, (10)

ΥJAD(Q) =

P∑
i=1

P∑
j=1

P∑
k=1

|Tiijk|2 (11)

Different Discrimination powers:

ΥCoM2(Q) ≤ ΥSTD(Q) ≤ ΥJAD(Q)

i.e. CoM2 is the best (but may be computationnally heavy, e.g. in lC)
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The End

Conclusion

ICA is widely used, and related to approximate tensor diagonalization

But still lack of efficient numerical algorithms
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