Compact Data Representations and their Applications

Moses Charikar

Princeton University

Lots and lots of data

- AT&T
- Information about who calls whom
- What information can be got from this data?
- Network router
- Sees high speed stream of packets
- Detect DOS attacks ? fair resource allocation ?

Lots and lots of data

- Typical search engine
- A few billion web pages
- Many many queries every day
- How to efficiently process data?
 - Eliminate near duplicate web pages
 - Query log analysis

Sketching Paradigm

 Construct compact representation (sketch) of data such that

 Interesting functions of data can be computed from compact representation

Why care about compact representations?

Practical motivations

- Algorithmic techniques for massive data sets
- Compact representations lead to reduced space, time requirements
- Make impractical tasks feasible

Theoretical Motivations

- Interesting mathematical problems
- Connections to many areas of research

Questions

- What is the data?
- What functions do we want to compute on the data?
- How do we estimate functions on the sketches?
- Different considerations arise from different combinations of answers
- Compact representation schemes are functions of the requirements

What is the data?

- Sets, vectors, points in Euclidean space, points in a metric space, vertices of a graph.
- Mathematical representation of objects (e.g. documents, images, customer profiles, queries).

Distance/similarity functions

- Distance is a general metric, i.e satisfies triangle inequality
- Normed space

$$x = (x_1, x_2, ..., x_d)$$
 $y = (y_1, y_2, ..., y_d)$

$$d(x, y) = \left(\sum_{i=1}^{d} / x_i - y_i / p\right)^{1/p}$$

$$L_p norm \qquad L_1, L_2, L_{\infty}$$

 Other special metrics (e.g. Earth Mover Distance)

Estimating distance from sketches

- Arbitrary function of sketches
 - Information theory, communication complexity question.
- Sketches are points in normed space
 - Embedding original distance function in normed space. [Bourgain '85] [Linial, London, Rabinovich '94]
- Original metric is (same) normed space
 - Original data points are high dimensional
 - Sketches are points low dimensions
 - Dimension reduction in normed spaces
 [Johnson Lindenstrauss '84]

Streaming algorithms

 Perform computation in one (or constant) pass(es) over data using a small amount of storage space

storage

input

- Availability of sketch function facilitates streaming algorithm
- Additional requirements sketch should allow:
 - Update to incorporate new data items
 - Combination of sketches for different data sets

Talk Outline:

Glimpse of Compact Representation Techniques

Dimension reduction

- Similarity preserving hash functions
 - sketching vector norms
 - sketching sets of points:Earth Mover Distance (EMD)

Low Distortion Embeddings

• Given metric spaces (X_1, d_1) & (X_2, d_2) , embedding $f: X_1 \rightarrow X_2$ has distortion D if ratio of distances changes by at most D

"Dimension Reduction" —

- Original space high dimensional
- Make target space be of "low" dimension, while maintaining small distortion

Dimension Reduction in L₂

- n points in Euclidean space (L₂ norm) can be mapped down to O((log n)/ε²) dimensions with distortion at most 1+ε.
 [Johnson Lindenstrauss '84]
- Two interesting properties:
 - Linear mapping
 - Oblivious choice of linear mapping does not depend on point set
 - Quite simple [JL84, FM88, IM98, DG99, Ach01]:
 Even a random +1/-1 matrix works...
- Many applications...

Dimension reduction for L₁

- [C,Sahai '02]
 Linear embeddings are not good for dimension reduction in L₁
- There exist O(n) points in L_1 in n dimensions, such that any *linear mapping* with distortion δ needs n/δ^2 dimensions

Dimension reduction for L₁

- [C, Brinkman '03]
 Strong lower bounds for dimension reduction in L₁
- There exist n points in L_1 , such that any embedding with constant distortion δ needs n^{1/δ^2} dimensions
- Simpler proof by [Lee, Naor '04]
- Does not rule out other sketching techniques

Talk Outline

Dimension reduction

- Similarity preserving hash functions
 - sketching vector norms
 - sketching sets of points:Earth Mover Distance (EMD)

Similarity Preserving Hash Functions

- Similarity function sim(x,y), distance d(x,y)
- Family of hash functions F with probability distribution such that

$$\Pr_{h \in F}[h(x) = h(y)] = sim(x, y)$$

 $\Pr_{h \in F}[h(x) \neq h(y)] = d(x, y)$

Applications

 Compact representation scheme for estimating similarity

$$x \to (h_1(x), h_2(x), \dots, h_k(x))$$

 $y \to (h_1(y), h_2(y), \dots, h_k(y))$

 Approximate nearest neighbor search [Indyk,Motwani '98]
 [Kushilevitz,Ostrovsky,Rabani '98]

Sketching Set Similarity:

Minwise Independent Permutations

[Broder, Manasse, Glassman, Zweig '97] [Broder, C, Frieze, Mitzenmacher '98]

$$\operatorname{prob}(\min(\sigma(S_1)) = \min(\sigma(S_2)) = \frac{|S_1 \cap S_2|}{|S_1 \cup S_2|}$$

Existence of SPH schemes

[C '02]

- sim(x,y) admits a similarity preserving hashing scheme if
 - ∃ family of hash functions *F* such that

$$\Pr_{h \in F}[h(x) = h(y)] = sim(x, y)$$

If sim(x,y) admits an SPH scheme then 1-sim(x,y) is a distance metric isometrically embeddable in the Hamming cube.

Random Hyperplane Rounding based SPH

Collection of vectors

$$sim(u, v) = 1 - \frac{\arccos(u, v)}{\pi}$$

 Pick random hyperplane through origin (normal r)

$$h_{\vec{r}}(\vec{u}) = \begin{cases} 1 & \text{if } \vec{r} \cdot \vec{u} \ge 0 \\ 0 & \text{if } \vec{r} \cdot \vec{u} < 0 \end{cases}$$

- Sketch is a bit vector
- [Goemans, Williamson '94]

Sketching L₁

- Design sketch for vectors to estimate L₁ norm
- Hash function to distinguish between small and large distances [KOR '98]
 - Map L₁ to Hamming space
 - □ Bit vectors $a=(a_1,a_2,...,a_n)$ and $b=(b_1,b_2,...,b_n)$
 - □ Distinguish between distances $\leq (1-\epsilon)n/k$ versus $\geq (1+\epsilon)n/k$
 - XOR random set of k bits
 - Pr[h(a)=h(b)] differs by constant in two cases

Sketching L₁ via stable distributions

- = a=(a₁,a₂,...,a_n) and b=(b₁,b₂,...,b_n)
- Sketching L₂

 - f(a)-f(b) has Gaussian distribution scaled by |a-b|₂
 - □ Form many coordinates, estimate |a-b|₂ by taking L₂ norm
- Sketching L₁

 - f(a)-f(b) has Cauchy distribution scaled by |a-b|₁
 - Form many coordinates, estimate |a-b|₁ by taking median
 [Indyk '00] -- streaming applications

Earth Mover Distance (EMD): Bipartite/Bichromatic matching

Minimum cost matching between two sets of points.

Point weights = multiple copies of points

Fast estimation of bipartite matching [Agarwal, Varadarajan '04]

Goal: Sketch point set to enable estimation of min cost matching

Tree approximations for Euclidean points

distortion $O(d \log \Delta)$ [Bartal '96, CCGGP '98]

EMD approximation [C'02, Indyk, Thaper '03]

- Construct vector from recursive decomposition
- Coordinate for each region in decomposition
 number of points in the region
- L₁ difference of vectors for P and Q gives estimate of EMD(P,Q)

Image Similarity: Matching Sets of Features [Grauman, Darrell]

Pyramid match: a new similarity measure over sets of vectors that efficiently forms an implicit partial matching

- linear time complexity
- positive-definite function (a kernel)

Demonstrated effectiveness for retrieval, recognition, and regression tasks with local image features

Content Based Similarity Search

with Qin Lv, William Josephson, Zhe Wang, Perry Cook, Matthew Hoffman, Kai Li

- Traditional search tools inadequate for high dimensional data
 - Exact match
 - Keyword-based search
- Need content-based similarity search
- Generic search engine for different data types
 - □ images, audio, 3D shapes, ...

Similarity Search Engine Architecture

Top 36 results for 247053.jpg, select more objects to refine search, or click any object to start new search.

Conclusions

- Compact representations at the heart of several algorithmic techniques for large data sets
 - Compact representations tailored to applications
 - Effective for different kinds of data