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Lots and lots of data

AT&T
Information about who calls whom
What information can be got from this data ?

Network router
Sees high speed stream of packets
Detect DOS attacks ? 
fair resource allocation ?
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Lots and lots of data

Typical search engine
A few billion web pages
Many many queries every day
How to efficiently process data ?

Eliminate near duplicate web pages
Query log analysis 



4

Sketching Paradigm

Construct compact representation (sketch) of 
data such that

Interesting functions of data can be computed 
from compact representation estimated
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Why care about compact 
representations ?

Practical motivations
Algorithmic techniques for massive data sets
Compact representations lead to reduced space, 
time requirements
Make impractical tasks feasible

Theoretical Motivations
Interesting mathematical problems
Connections to many areas of research
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Questions
What is the data ?
What functions do we want to compute on the 
data ?
How do we estimate functions on the 
sketches ?

Different considerations arise from different 
combinations of answers

Compact representation schemes are 
functions of the requirements
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What is the data ?

Sets, vectors, points in Euclidean space, 
points in a metric space, vertices of a graph.

Mathematical representation of objects 
(e.g. documents, images, customer profiles, 
queries).
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Distance/similarity functions

Distance is a general metric, i.e satisfies 
triangle inequality

Normed space
x = (x1, x2, …, xd)     y = (y1, y2, …, yd)

Other special metrics 
(e.g. Earth Mover Distance)
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Estimating distance from sketches
Arbitrary function of sketches

Information theory, communication complexity 
question.

Sketches are points in normed space
Embedding original distance function in normed
space. [Bourgain ’85]  [Linial,London,Rabinovich ’94]

Original metric is (same) normed space
Original data points are high dimensional
Sketches are points low dimensions
Dimension reduction in normed spaces
[Johnson Lindenstrauss ’84]
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Streaming algorithms
Perform computation in one (or constant) pass(es) 
over data using a small amount of storage space

Availability of sketch function facilitates streaming 
algorithm
Additional requirements -
sketch should allow:

Update to incorporate new data items
Combination of sketches for different data sets

input

storage
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Talk Outline: 
Glimpse of Compact Representation Techniques

Dimension reduction

Similarity preserving hash functions
sketching vector norms
sketching sets of points:
Earth Mover Distance (EMD)



12

Low Distortion Embeddings
Given metric spaces (X1,d1) & (X2,d2),
embedding f: X1 → X2 has distortion D if  
ratio of distances changes by at most D

“Dimension Reduction” –
Original space high dimensional
Make target space be of “low” dimension, 
while maintaining small distortion

ff

http://humanities.ucsd.edu/courses/kuchtahum4/pix/earth.jpghttp://humanities.ucsd.edu/courses/kuchtahum4/pix/earth.jpghttp://www.physast.uga.edu/~jss/1010/ch10/earth.jpghttp://www.physast.uga.edu/~jss/1010/ch10/earth.jpg
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Dimension Reduction in L2
n points in Euclidean space (L2 norm) can be 
mapped down to O((log n)/ε2) dimensions 
with distortion at most 1+ε.
[Johnson Lindenstrauss ‘84]

Two interesting properties:
Linear mapping
Oblivious – choice of linear mapping does 
not depend on point set
Quite simple [JL84, FM88, IM98, DG99, Ach01]:
Even a random +1/-1 matrix works…

Many applications…



14

Dimension reduction for L1

[C,Sahai ‘02]
Linear embeddings are not good for 
dimension reduction in L1

There exist O(n) points in L1 in n dimensions, 
such that any linear mapping with distortion δ
needs n/δ2 dimensions
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Dimension reduction for L1

[C, Brinkman ‘03]
Strong lower bounds for dimension reduction 
in L1

There exist n points in L1 , such that any
embedding with constant distortion δ needs 
n1/δ2 dimensions

Simpler proof by [Lee,Naor ’04]

Does not rule out other sketching techniques



16

Talk Outline

Dimension reduction

Similarity preserving hash functions
sketching vector norms
sketching sets of points:
Earth Mover Distance (EMD)
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Similarity Preserving Hash Functions

Similarity function sim(x,y), distance d(x,y)
Family of hash functions F with probability 
distribution such that

Pr [ ( ) ( )] ( , )h F h x h y sim x y∈ = =
Pr [ ( ) ( )] ( , )h F h x h y d x y∈ ≠ =
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Applications

Compact representation scheme for 
estimating similarity

Approximate nearest neighbor search 
[Indyk,Motwani ’98] 
[Kushilevitz,Ostrovsky,Rabani ‘98]

1 2

1 2

( ( ), ( ), , ( ))
( ( ), ( ), , ( ))

k

k

x h x h x h x
y h y h y h y

K

K

→
→



20

Sketching Set Similarity:
Minwise Independent Permutations
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[Broder,Manasse,Glassman,Zweig ‘97]
[Broder,C,Frieze,Mitzenmacher ‘98]        
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Existence of SPH schemes

sim(x,y) admits a similarity preserving 
hashing scheme if 
∃ family of hash functions F such that 

If sim(x,y) admits an SPH scheme then 
1-sim(x,y) is a distance metric isometrically
embeddable in the Hamming cube.

Pr [ ( ) ( )] ( , )h F h x h y sim x y∈ = =

[C ‘02]
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Random Hyperplane Rounding based 
SPH

Collection of vectors

Pick random hyperplane
through origin (normal r )

Sketch is a bit vector
[Goemans,Williamson ‘94]
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Sketching L1

Design sketch for vectors to estimate L1 norm

Hash function to distinguish between small 
and large distances [KOR ’98]

Map L1 to Hamming space
Bit vectors a=(a1,a2,…,an) and b=(b1,b2,…,bn)
Distinguish between distances 
≤ (1-ε)n/k versus  ≥ (1+ε)n/k
XOR random set of k bits
Pr[h(a)=h(b)] differs by constant in two cases
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Sketching L1 via stable distributions 
a=(a1,a2,…,an) and b=(b1,b2,…,bn)
Sketching L2

f(a) = Σi ai Xi     f(b) = Σi bi Xi
Xi independent Gaussian
f(a)-f(b) has Gaussian distribution scaled by |a-b|2
Form many coordinates, estimate |a-b|2 by taking L2 norm

Sketching L1

f(a) = Σi ai Xi     f(b) = Σi bi Xi
Xi independent Cauchy distributed
f(a)-f(b) has Cauchy distribution scaled by |a-b|1
Form many coordinates, estimate |a-b|1 by taking median
[Indyk ’00]    -- streaming applications
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Earth Mover Distance (EMD): 
Bipartite/Bichromatic matching

Minimum cost matching between two sets of points.
Point weights ≡ multiple copies of points
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Goal: Sketch point set to enable estimation of min cost matching

Fast estimation of bipartite matching  [Agarwal,Varadarajan ’04]
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Tree approximations for Euclidean points

distortion O(d log Δ)    [Bartal ’96, CCGGP ’98]



27

EMD approximation

Construct vector from recursive 
decomposition
Coordinate for each region in decomposition

number of points in the region
L1 difference of vectors for P and Q gives 
estimate of EMD(P,Q)

[C’02, Indyk,Thaper ’03]
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Image Similarity: Matching Sets of Features
[Grauman, Darrell]

Pyramid match: a new similarity measure over 
sets of vectors that efficiently forms an implicit 
partial matching

• linear time complexity 
• positive-definite function (a kernel)

Demonstrated effectiveness for retrieval, recognition, 
and regression tasks with local image features
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Content Based Similarity Search
with Qin Lv, William Josephson, Zhe Wang,  Perry Cook, Matthew Hoffman, Kai Li

Traditional search tools inadequate for high 
dimensional data

Exact match
Keyword-based search

Need content-based similarity search

Generic search engine for different data types
images, audio, 3D shapes, …



30

Similarity Search Engine Architecture

Pre-processing

Query time
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Conclusions
Compact representations at the heart of several 
algorithmic techniques for large data sets

Compact representations tailored to applications

Effective for different kinds of data


