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Lots and lots of data

AT&T
Information about who calls whom
What information can be got from this data ?

Network router
Sees high speed stream of packets

Detect DOS attacks ?
fair resource allocation ?



Lots and lots of data

Typical search engine
A few billion web pages
Many many queries every day

How to efficiently process data ?
o Eliminate near duplicate web pages
o Query log analysis



‘ Sketching Paradigm

= Construct compact representation (sketch) of
data such that

= Interesting functions of data can be computed”
fromm compact representation estimated
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Why care about compact

representations r

Practical motivations
o Algorithmic techniques for massive data sets

o Compact representations lead to reduced space,
time requirements

o Make impractical tasks feasible

Theoretical Motivations
0 Interesting mathematical problems
o Connections to many areas of research



Questions

What is the data ?

What functions do we want to compute on the
data ?

How do we estimate functions on the
sketches ?

Different considerations arise from different
combinations of answers

Compact representation schemes are
functions of the requirements



What is the data ?

Sets, vectors, points in Euclidean space,
points in a metric space, vertices of a graph.

Mathematical representation of objects
(e.g. documents, images, customer profiles,
qgueries).



Distance/similarity functions

Distance is a general metric, i.e satisfies
triangle inequality

Normed space
X=(X1,X2, -"de) y=(y1’y2’ ""yd)

1/
dx )= (Y0 -y P
L, norm L, L, L

©.0)

Other special metrics
(e.g. Earth Mover Distance)



Estimating distance from sketches

= Arbitrary function of sketches

o Information theory, communication complexity
guestion.

= Sketches are points in normed space

o Embedding original distance function in normed
space. [Bourgain '85] [Linial,London,Rabinovich '94]

= Original metric is (same) normed space
o Original data points are high dimensional
o Sketches are points low dimensions

o Dimension reduction in normed spaces
[Johnson Lindenstrauss '84]



Streaming algorithms

Perform computation in one (or constant) pass(es)
over data using a small amount of storage space

| storage |

—

Availability of sketch function facilitates streaming
algorithm

Additional requirements -
sketch should allow:

o Update to incorporate new data items
o Combination of sketches for different data sets

10



Talk Outline:

Glimpse of Compact Representation Techniques

Dimension reduction

Similarity preserving hash functions
0 sketching vector norms

0 sketching sets of points:
Earth Mover Distance (EMD)
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Low Distortion Embeddings

Given metric spaces (X;,d;) & (X,,d,),
embedding f: X, — X, has distortion D if

ratio of distances changes by at most D

“Dimension Reduction” —
o Original space high dimensional

o Make target space be of “low” dimension,
while maintaining small distortion
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Dimension Reduction in L,

n points in Euclidean space (L, nhorm) can be
mapped down to O((log n)/e?) dimensions
with distortion at most 1+¢.

[Johnson Lindenstrauss ‘84]

Two interesting properties:

o Linear mapping

o Oblivious — choice of linear mapping does
not depend on point set

2 Quite simple [JL84, FM88, IM98, DG99, Ach01]:
Even a random +1/-1 matrix works...

Many applications...
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Dimension reduction for L,

[C,Sahai ‘02]
Linear embeddings are not good for
dimension reduction in L,

There exist O(n) points in L, in n dimensions,
such that any linear mapping with distortion 6
needs n/6% dimensions
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Dimension reduction for L,

[C, Brinkman ‘03]
Strong lower bounds for dimension reduction
in L,

There exist n points in L, , such that any
embedding with constant distortion 6 needs

n'/%° dimensions
Simpler proof by [Lee,Naor '04]

Does not rule out other sketching techniques



Talk Outline

Dimension reduction

Similarity preserving hash functions
0 sketching vector norms

0 sketching sets of points:
Earth Mover Distance (EMD)
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‘ Similarity Preserving Hash Functions
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= Similarity function sim(x,y), distance d(x,y)
= Family of hash functions F with probability

distribution such t

DrheF[

DrheF[

N(X) =

N(X) =

nat

N(y)]= sim(x, y)

(Y)]=d(x,y)
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‘ Applications

= Compact representation scheme for
estimating similarity

X — (h (%), h,(X),...,h (X))
y — (h(y), h,(Y),....h (y))

= Approximate nearest neighbor search
[Indyk,Motwani "98]
[Kushilevitz,Ostrovsky,Rabani ‘98]
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Sketching Set Similarity:

Minwise Independent Permutations

[Broder,Manasse,Glassman,Zweig ‘97]
[Broder,C,Frieze,Mitzenmacher ‘98]

similarity = [S:11S, |
. .'-> min(o(S,))

prob(min(o(S,) = min(o(S,)) =

15,05, |
S, US, |
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Existence of SPH schemes [C02]

sim(x,y) admits a similarity preserving
hashing scheme if
- family of hash functions F such that

Prce [N(X) = h(y)] = sim(X, y)

If sim(x,y) admits an SPH scheme then
1-sim(x,y) Is a distance metric isometrically
embeddable in the Hamming cube.
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‘Random Hyperplane Rounding based
SPH

= Collection of vectors
arccos(u, v)

sim(u,v) =1
T
= Pick random hyperplane

through origin (normal r )

1 ifr-u>0

h.(U) =
() [O if 7-0<0

= Sketch is a bit vector
s [Goemans,Williamson ‘94]
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Sketching 1.,

Design sketch for vectors to estimate L, norm

Hash function to distinguish between small
and large distances [KOR "98]

o Map L, to Hamming space

o Bit vectors a=(a,,a,,...,a,,) and b=(b,,b,,...,b)

o Distinguish between distances
< (1-¢)n/k versus > (1+€)n/k

0 XOR random set of k bits
o Pr[h(a)=h(b)] differs by constant in two cases
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Sketching I, via stable distributions

a=(a,,a,,...,a,) and b=(b4,b,,...,b,)
Sketching L,
o fa)=2,a X f(b)=2 b X
X, independent Gaussian
o f(a)-f(b) has Gaussian distribution scaled by |a-b|,
o Form many coordinates, estimate |a-b|, by taking L, norm

Sketching L,
o f(a)=2.a X, f(b)=2. b X
X, independent Cauchy distributed
a f(a)-f(b) has Cauchy distribution scaled by |a-b|,

o Form many coordinates, estimate |a-b|, by taking median
[Indyk '00] -- streaming applications
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‘ Farth Mover Distance (EMD):
Bipartite/Bichromatic matching

= Minimum cost matching between two sets of points.
= Point weights = multiple copies of points

Fast estimation of bipartite matching [Agarwal,Varadarajan '04]

Goal: Sketch point set to enable estimation of min cost matching



Tree approximations for Fuclidean points

distortion O(d log A) [Bartal '96, CCGGP '98]
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EMD approximation [C'02, Indyk Thaper 03]

Construct vector from recursive
decomposition

Coordinate for each region in decomposition
o number of points in the region

L, difference of vectors for P and Q gives
estimate of EMD(P,Q)

27



Image Similarity: Matching Sets of Features
|Grauman, Darrell]

Pyramid match: a new similarity measure over
sets of vectors that efficiently forms an implicit
partial matching

* linear time complexity
 positive-definite function (a kernel)

Demonstrated effectiveness for retrieval, recognition,
and regression tasks with local image features
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Content Based Similarity Search
with Qin Lv, William Josephson, Zhe Wang, Perry Cook, Matthew Hoffman, Kai Li

Traditional search tools inadequate for high
dimensional data

o Exact match
o Keyword-based search

Need content-based similarity search

Generic search engine for different data types
0 Images, audio, 3D shapes, ...
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‘ Similarity Search Engine Architecture
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Conclusions

Compact representations at the heart of several
algorithmic techniques for large data sets

o Compact representations tailored to applications

o Effective for different kinds of data
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