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Qualitative Properties of
Data Sets

• Clustering

• “Loopiness” and “Holes” in the data

• Dimension

• Presence of Flares



Idea: Study Probability
Density Functions

Qualitatively

Think of data set as being sampled from
a probability distribution

Can be obtained from the data set using
a density estimator

How does one study density functions qual-
itatively?



Qualitative Analysis of
Functions in 1D

• In trying to find functional dependen-
cies of one variable with another, of-
ten useful to change coördinates via
transformations

• When a function grows rapidly, useful

to consider its logarithm

• Amounts to applying coördinate change
y → log(y) to the y-coördinate



• Also useful to perform coordinate change

in x-coördinate

• Scales so that features and properties
are more clearly visible

• Simultaneous coördinate changes also
useful, e.g. log-log plots

• Need for coördinate changes suggests
we don’t have the “right” coördinates

• Right coördinates often clear in physics,
perhaps less so in biology



No Preferred Coördinates

• Study properties or quantities which
don’t change under arbitrary changes
of coördinates

• Such quantities have a discrete or com-
binatorial character

• Examples:

1. Number of local maxima

2. Number of local minima

3. Total ordering (in the x-direction)

on the collection of local maxima

or minima

4. Partial ordering in the y-direction

of maxima or minima



Alternate Viewpoint

• Study Excursion sets for f

• E(f,−, r) = {x|f (x) ≤ r} and E(f, +, r) =
{x|f (x) ≥ r}

• Connected components of excursion sets
reflect the presence of local maxima
and minima, and therefore qualitative
properties of f

E(f,+,r)

E(f,-,r)



Components of E(f,−, r)
vary with r

Components can be “born” or can merge
with increasing r



Combinatorial diagrams
track components

Diagram encodes all information required
to reconstruct the function up to contin-
uous coördinate change



Topological Properties

• The number of connected components
of a space is a topological property

• Don’t change if we recoördinatize the
space using any continuous coördinate
change

• Don’t change if I stretch and deform
the space without tearing it

• Insensitive to size but encodes an ab-
stract closeness relationship

• In 1D, components are main topolog-
ical property

• In higher dimensions, wide variety of
behaviors possible



• Region is connected, but has “holes”

• Don’t vanish if I stretch or deform with-
out tearing



• In 3D, more variety is possible

• Tunnels and voids are distinct phe-
nomena

• Spaces with a knotted circle removed
are different from those with a stan-
dard circle removed



Qualitative Analysis in
Higher Dimensions

• Functions f : Rn → R studied qualita-
tively using topological properties of
excursion sets

• In 2D, holes in excursion set reflect
minima

• Saddles reflected in dividing of a hole
in excursion set into two smaller holes

• Maxima occur when holes are filled in





How to make precise sense
of presence of holes?

• Formalism called algebraic topology makes
rigorous counts and classification of holes

• Uses linear algebra to obtain hole counts
in various dimensions from ranks of
certain matrices

• For each space X, creates Betti num-
bers βk(X), one for each k ≥ 0

• βk(X) counts the number of k-dimensional
holes

• When X given in closed form, homol-
ogy calculations can be carried out ef-
fectively by hand



      Examples

† 

Sn

† 

b0 =b1=1
bi = 0 for i>1

† 

b0 =1 b1 = 2

bi = 0 for i >1

† 

b0 =b2 =1
bi = 0 otherwise

† 

b0 =bn =1
bi = 0 otherwise

† 

b0 =b2 =1, b1= 2
bi = 0 for i>2



Remarks

• β0(X) counts the number of connected
components in X

• Betti numbers of excursion sets can
be used to predict presence of criti-
cal points of various types, i.e saddles,
maxima, etc.

• Unlike the 1D case, homology does
not tell the whole story. Many differ-
ent spaces have same Betti numbers

• The rigorous definition of homology
requires highly infinite methods. Fi-
nite calculation methods are possible
when the space is presented in a com-
binatorial way, but they do not apply
in general

• Adaptation of the ideas to situation
where we only have points sampled
from an object is necessary if the meth-
ods are to be applied to real world sit-
uations



Homology of Point Clouds

Point cloud data: finite but large set of
points X sampled from Euclidean space,
or even a more general metric space.

If we believe points of X are obtained by
sampling (perhaps with noise) from a ge-
ometric object X, how to build a space
using only X which is believably a good
representation of X?

Solution: Persistent homology (Edels-
brunner, Letscher, and Zomorodian). Builds
an increasing family of simplicial com-
plexes attached to X.

Uses all complexes in the family, together
with the inclusions of one in the next



Vietoris-Rips Complexes

V R(X, ε) is a simplicial complex (union

of intervals, triangles, and higher dimen-

sional analogues) with vertex set equal

to X, and where {x0, x1, . . . , xn} spans a n-

simplex if and only if

d(xi, xj) ≤ ε for all 0 ≤ i, j,≤ n

Note that the complexes grow as ε does

Note that the construction depends only
on the choice of a metric. Could come
from anywhere



Persistence

• Just as in the analysis of birth times
and merging times for components, it
is possible to define analogues for higher
dimensional homology

• One tracks the presence of holes in
each complex V (X, ε) as well as the val-
ues of ε when they are “born” and
when they “die”

• Sometimes, no single value of ε gives
the correct answer

• Holes which have a very short lifetime
are considered artifacts, coming from
small irregularities of sampling or noise

• Holes with a longer lifetime represent
actual geometric properties of the space
X





Output

• These informal ideas have been for-
malized into software

• The analogues to Betti numbers in non-
persistent homology are bar codes, i.e.
finite unions of intervals

• 1D barcodes - left represents a cir-
cle, right represents an object with 5
holes. Note: vertical placement of in-
tervals has no significance, for display
only

• 0D barcodes would simply count num-
ber of components, i.e. would count
clusters



• The only input required for the method
is a set with a metric

• The metric can be arbitrary, not nec-
essarily Euclidean. For example, “edit”
style metrics which are used in the
analysis of sequences in genetics would
work, as would correlation metrics

• Even a metric isn’t necessary, any mea-
sure of dissimilarity could work



When are these techniques
useful?

• Whenever one does not have an ob-
vious choice of preferred coördinates

• When the data comes in terms of coördinates
which have little relation to any un-
derlying theory, and the transforma-
tion laws are non manageable

• When the data is coördinatized in a
non-smooth way, so that standard lin-
ear approximation methods do not ap-
ply

• When the data is intrinsically non-Euclidean,
such as in spaces of genetic sequences
with an edit distance metric



Example 1: High Contrast

Patches in Natural Images

• Question: What can be said statis-
tically about 3×3 patches occurring in
images taken with a digital camera?

• Only “high contrast” patches are in-
teresting, rest are essentially constant

• Lee, Pedersen, and Mumford constructed
a data set of 8.5×106 such high contrast
patches, working from a database of
c:a 4500 images taken by van Hateren
and van der Schaaf

• Data set sits in R9. After normaliza-
tions to set the mean intensity and to-
tal contrast to fixed values, on S7 ⊆ R8

• What can be said about this set, or
about the regions of highest density?



Results (de Silva, Ishkanov,
Zomorodian, C.)

k=300,  T = 25% K=15, T=30%

• k is a parameter determining the den-
sity estimator. Large k means a smooth,
unlocalized estimator, small k means a
more localized estimator

• T is a percentage threshhold, i.e. we
consider the T% densest points as mea-
sured by the estimator.





• Points are concentrated around a 2D
object whose topology is that of a Klein
bottle

• Identifications are made on the bound-
ary

• Very highest density occurs on a cir-
cle, labelled in red in the picture



• Suggests a theoretical model in which
patches have intensity functions given
by quadratic polynomials in two vari-
ables of the form q(λ(x, y)), where q is
quadratic in one variable and λ is lin-
ear in x and y

• The topology of this space of quadrat-
ics is correct

• Even if one guesses such a model, it
doesn’t fit the data well

• Due to the fact that we don’t know
what the right coördinatization of the
the gray scale values should be

• Also possible that polynomial functions
are too smooth, and that more piece-
wise linear functions should be used



Example 2: Images

• Each of the faces of a regular tetra-
hedron is given a gray scale shading,
different for each face

• Tetrahedron undergoes rotations through
the entire family of 3D rotations, and
images of it are taken by a black/white
digital camera

• Each image taken can be viewed as a
point in “pixel space”, i.e. as a vector
with a gray scale value as a coördinate
at each pixel

• Question: Can one recover the stim-
ulus space (the space of 3D rotations)
from this high dimensional data set?



Comments

• The images can be viewed as an exotic
coördinatization of the space of rota-
tions

• No individual coördinate has any par-
ticular significance for the structure of
the space. If a single pixel is off, we
can still detect the nature of the pic-
ture. Only the coördinates in the ag-
gregate matter

• No reasonable theoretical model for
the coördinate transformation relating
more standard coördinates to the pixel
coördinates

• The coördinatization is highly non-smooth.
Standard linear methods for dimen-
sion estimation do not apply directly



Results (Rannaud, Shen,
Wei, de Silva, C. )

• This experiment was carried out “syn-
thetically”, creating a data set of 5K
points

• The dimension was estimated topolog-
ically by computing the Betti num-
bers of a small neighborhood, with a
smaller neighborhood removed

• Dimension of three was observed, agree-
ing with actual dimension of the space
of 3D rotations



Example 3: Neuroscience

• Study of the responses to primary vi-
sual cortex to stimuli

• Each neuron creates a spike train, i.e.
collection of firing times

• Observe spike trains from arrays of
neurons

• Different ways to create metrics on spike
train arrays

• Binning creates Euclidean vectors of
spike counts - get Euclidean metric

• Distance between pairs of spike trains
can also be computed by minimizing
penalty associated to family of moves,
involving moving a firing or deleting/adding
one (essentially non-Euclidean). “Time
code” metric



Responses to families of
stimuli

• Given a family of stimuli parametrized
by a geometric object, can one recover
the geometry of the family using the
resulting spike trains?

• In particular, neurons have both phase
and orientation sensitivity

• If one presents stimuli with varying
orientation or varying phase, or with
both varying simultaneously, can one
see that detected in the spike trains

• Orientation typically provides a “stronger
signal”

• Our group has had substantial success
in performing this when the orienta-
tion and phase are presented simulta-
neously. Geometry of stimulus space
is a “Klein bottle”



Comparison with other
methods

• Aronov, Reich, Mechler, and Victor
confront the “weakness” of the phase
signal directly

• Macaque monkey is presented with a
moving grating with fixed orientation

• ARMV obtain a data set, which is given
a time code metric

• Question: Is the resulting space a
circle, as is the space of stimuli, due
to the periodicity?



The ARMV procedure

• Find an optimal embedding of the data
set in Euclidean space using MDS. Op-
timal means that the metric is dis-
torted as little as possible relative to
the Euclidean metric

• Find the best fitting ellipse to the em-
bedded Euclidean data

• If the length of the minor axis is suf-
ficiently large relative to the length
of the major axis, they conclude that
they are seeing a circle

• Their results confirm the hypothesis
that the space is a circle



What we would do with

ARMV data

• Construct our V-R complex on the data
with the time code metric directly

• Compute the barcodes and confirm that
the first Betti number is one

• Comments:

1. Doesn’t involve embedding in Eu-

clidean space, which introduces dis-

tortion

2. Doesn’t involve fitting to a particu-

lar geometric model, which can be

deceiving

3. Gets directly at the core question,

which is whether the space has a

loop in it, given by periodicity


