
Applications of Random Matrices
in Spectral Computations and

Machine Learning

Dimitris Achlioptas
UC Santa Cruz

This talk

Viewpoint:
use randomness to “transform” the data

This talk

Viewpoint:
use randomness to “transform” the data

Random Projections

Fast Spectral Computations

Sampling in Kernel PCA

The Setting

The Setting

n d

n d

n × d

The Setting

n d

n d

n × d

The Setting

n d

n d

n × d

P

Output: AP

The Johnson-Lindenstrauss lemma

The Johnson-Lindenstrauss lemma

Algorithm:
Projecting onto a random hyperplane (subspace) of dimension

succeeds with probability

Applications

Approximation algorithms [Charikar’02]

Hardness of approximation [Trevisan ’97]

Learning mixtures of Gaussians [Arora, Kannan ‘01]

Approximate nearest-neighbors [Kleinberg ’97]

Data-stream computations [Alon et al. ‘99, Indyk ‘00]

Min-cost clustering [Schulman ‘00]

….
Information Retrieval (LSI) [Papadimitriou et al. ‘97]

How to pick a random hyperplane

How to pick a random hyperplane
Take where
the are independent

random variables

[Johnson Lindenstrauss 82]

[Dasgupta Gupta 99]

[Indyk Motwani 99]

How to pick a random hyperplane
Take where
the are independent

random variables

Intuition:
Each column of P points to a
uniformly random direction in

How to pick a random hyperplane
Take where
the are independent

random variables

Intuition:
Each column of P points to a
uniformly random direction in
Each column is an unbiased,
independent estimator of

(via its squared inner product)

How to pick a random hyperplane
Take where
the are independent

random variables

Intuition:
Each column of P points to a
uniformly random direction in
Each column is an unbiased,
independent estimator of

(via its squared inner product)

is the average estimate
(since we take the sum)

How to pick a random hyperplane
Take where
the are independent

random variables

With orthonormalization:
Estimators are “equal”
Estimators are “uncorrelated”

How to pick a random hyperplane
Take where
the are independent

random variables

With orthonormalization:
Estimators are “equal”
Estimators are “uncorrelated”

Without orthonormalization:

How to pick a random hyperplane
Take where
the are independent

random variables

With orthonormalization:
Estimators are “equal”
Estimators are “uncorrelated”

Without orthonormalization:

Same thing!

Orthonormality: Take #1

Random vectors in high-dimensional
Euclidean space

are very nearly orthonormal.

Orthonormality: Take #1

Random vectors in high-dimensional
Euclidean space

are very nearly orthonormal.

Do they have to be uniformly random?

Is the Gaussian distribution magical?

JL with binary coins
Take where
the are independent
random variables with

JL with binary coins

Benefits:
Much faster in practice
Only operations (no)

Fewer random bits
Derandomization

Slightly smaller(!) k

Take where
the are independent
random variables with

∗±

JL with binary coins
Take where
the are independent
random variables with

Preprocessing with a
randomized FFT

[Ailon, Chazelle ‘06]

Let’s at least
look at the data

The Setting

n d

n d

n × d

P

Output: AP

Low Rank Approximations

Spectral Norm:

Low Rank Approximations

Spectral Norm:

Frobenius Norm:

Low Rank Approximations

Spectral Norm:

Frobenius Norm:

Low Rank Approximations

Spectral Norm:

Frobenius Norm:

Low Rank Approximations

Spectral Norm:

Frobenius Norm:

How to compute Ak

Start with a random

How to compute Ak

Start with a random

Repeat until fixpoint

Have each row in A vote for x:

How to compute Ak

Start with a random

Repeat until fixpoint

Have each row in A vote for x:

Synthesize a new candidate by combining the

rows of A according to their enthusiasm for x:

(This is power iteration on . Also known as PCA.)

How to compute Ak

Start with a random

Repeat until fixpoint

Have each row in A vote for x:

Synthesize a new candidate by combining the

rows of A according to their enthusiasm for x:

(This is power iteration on . Also known as PCA.)

Project A on subspace orthogonal to x and repeat

PCA for Denoising

Assume that we perturb the entries of a matrix A
by adding independent Gaussian noise

PCA for Denoising

Claim: If σ is not “too big” then the optimal
projections for are “close” to those for A.

Assume that we perturb the entries of a matrix A
by adding independent Gaussian noise

PCA for Denoising

Claim: If σ is not “too big” then the optimal
projections for are “close” to those for A.

Assume that we perturb the entries of a matrix A
by adding independent Gaussian noise

Intuition:
• The perturbation vectors are nearly orthogonal

PCA for Denoising

Assume that we perturb the entries of a matrix A
by adding independent Gaussian noise

Claim: If σ is not “too big” then the optimal
projections for are “close” to those for A.

Intuition:
• The perturbation vectors are nearly orthogonal
• No small subspace accommodates many of them

Rigorously
Lemma: For any matrices A and

Rigorously
Lemma: For any matrices A and

Perspective: For any fixed x we have w.h.p.

Two new ideas

A rigorous criterion for choosing k:

Stop when A-Ak has

“as much structure as” a random matrix

Two new ideas

A rigorous criterion for choosing k:

Stop when A-Ak has

“as much structure as” a random matrix

Computation-friendly noise:

Two new ideas

A rigorous criterion for choosing k:

Stop when A-Ak has

“as much structure as” a random matrix

Computation-friendly noise:

Inject data-dependent noise

Quantization

Quantization

Quantization

Quantization

Sparsification

Sparsification

Sparsification

Sparsification

Accelerating spectral computations
By injecting sparsification/quantization “noise”
we can accelerate spectral computations:

• Fewer/simpler arithmetic operations
• Reduced memory footprint

Accelerating spectral computations
By injecting sparsification/quantization “noise”
we can accelerate spectral computations:

• Fewer/simpler arithmetic operations
• Reduced memory footprint

Amount of “noise” that can be tolerated
increases with redundancy in data

Accelerating spectral computations
By injecting sparsification/quantization “noise”
we can accelerate spectral computations:

• Fewer/simpler arithmetic operations
• Reduced memory footprint

Amount of “noise” that can be tolerated
increases with redundancy in data

L2 error can be quadratically better than “Nystrom”

Orthonormality: Take #2

Matrices with independent, 0-mean entries
are

“white noise” matrices

A scalar analogue

A scalar analogue

Crude quantization at extremely high rate

A scalar analogue

Crude quantization at extremely high rate +
low-pass filter

A scalar analogue

Crude quantization at extremely high rate +
low-pass filter

A scalar analogue

Crude quantization at extremely high rate +
low-pass filter = 1-bit CD player (“Bitstream”)

Accelerating spectral computations
By injecting sparsification/quantization “noise”
we can accelerate spectral computations:

• Fewer/simpler arithmetic operations
• Reduced memory footprint

Amount of “noise” that can be tolerated
increases with redundancy in data

L2 error can be quadratically better than “Nystrom”

Useful even for exact computations

Accelerating exact computations

Kernels

Kernels & Support Vector Machines

Red and Blue pointclouds
Which linear separator (hyperplane)?

Maximum margin

Optimal can be expressed by inner
products with (a few) data points

Not always linearly separable

Population density

Kernel PCA

Kernel PCA
We can also compute the SVD via the spectrum of

d

n

n

n

d

n

Kernel PCA
We can also compute the SVD via the spectrum of

d

n

n

n

d

n

Each entry in AAT is the inner product of two inputs

Kernel PCA
We can also compute the SVD via the spectrum of

d

n

n

n

d

n

Each entry in AAT is the inner product of two inputs

Replace inner product with a kernel function

Kernel PCA
We can also compute the SVD via the spectrum of

d

n

n

n

d

n

Each entry in AAT is the inner product of two inputs

Replace inner product with a kernel function
Work implicitly in high-dimensional space

Kernel PCA
We can also compute the SVD via the spectrum of

d

n

n

n

d

n

Each entry in AAT is the inner product of two inputs

Replace inner product with a kernel function
Work implicitly in high-dimensional space
Good linear separators in that space

From linear to nonFrom linear to non--linear PCAlinear PCA
||X-Y||p kernel illustrates how the contours of the first 2 components
change from straight lines for p=2 to non-linea for p=1.5, 1 and 0.5.

From Schölkopf and Smola, Learning with kernels, MIT 2002

Kernel PCA with Gaussian KernelKernel PCA with Gaussian Kernel
KPCA with Gaussian kernels. The contours follow the cluster densities!

First two kernel
PCs separate the
data nicely.

Linear PCA has only 2 components, but kernel PCA has more, since
the space dimension is usually large (in this case infinite)

KPCA in brief

Good News:
- Work directly with non-vectorial inputs

KPCA in brief

Good News:
- Work directly with non-vectorial inputs
- Very powerful:

e.g. LLE, Isomap, Laplacian Eigenmaps [Ham et al. ‘03]

KPCA in brief

Good News:
- Work directly with non-vectorial inputs
- Very powerful:

e.g. LLE, Isomap, Laplacian Eigenmaps [Ham et al. ‘03]

Bad News:

n2 kernel evaluations are too many….

KPCA in brief

Good News:
- Work directly with non-vectorial inputs
- Very powerful:

e.g. LLE, Isomap, Laplacian Eigenmaps [Ham et al. ‘03]

Bad News:

n2 kernel evaluations are too many….

Good News: [Shaw-Taylor et al. ‘03]

good generalization rapid spectral decay

So, it’s enough to sample…

d

n

n

n

d

n

In practice, 1% of the data is more than enough

In theory, we can go down to n × polylog(n)

Important Features are Preserved

Open Problems

How general is this “stability under noise”?

For example, does it hold for
Support Vector Machines?

When can we prove such stability in a black-box
fashion, i.e. as with matrices?

Can we exploit if for data privacy?

	This talk
	This talk
	The Setting
	The Setting
	The Setting
	The Setting
	The Johnson-Lindenstrauss lemma
	The Johnson-Lindenstrauss lemma
	Applications
	How to pick a random hyperplane
	How to pick a random hyperplane
	How to pick a random hyperplane
	How to pick a random hyperplane
	How to pick a random hyperplane
	How to pick a random hyperplane
	How to pick a random hyperplane
	How to pick a random hyperplane
	Orthonormality: Take #1
	Orthonormality: Take #1
	JL with binary coins
	JL with binary coins
	JL with binary coins
	The Setting
	Low Rank Approximations
	Low Rank Approximations
	Low Rank Approximations
	Low Rank Approximations
	Low Rank Approximations
	How to compute Ak
	How to compute Ak
	How to compute Ak
	How to compute Ak
	PCA for Denoising
	PCA for Denoising
	PCA for Denoising
	PCA for Denoising
	Rigorously
	Rigorously
	Two new ideas
	Two new ideas
	Two new ideas
	Quantization
	Quantization
	Quantization
	Quantization
	Sparsification
	Sparsification
	Sparsification
	Sparsification
	Accelerating spectral computations
	Accelerating spectral computations
	Accelerating spectral computations
	Orthonormality: Take #2
	A scalar analogue
	A scalar analogue
	A scalar analogue
	A scalar analogue
	A scalar analogue
	Accelerating spectral computations
	Kernels
	Kernels & Support Vector Machines
	Kernel PCA
	Kernel PCA
	Kernel PCA
	Kernel PCA
	Kernel PCA
	Kernel PCA
	From linear to non-linear PCA
	Kernel PCA with Gaussian Kernel
	KPCA in brief
	KPCA in brief
	KPCA in brief
	KPCA in brief
	So, it’s enough to sample…
	Open Problems

