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Random Projections

Fast Spectral Computations

Sampling in Kernel PCA
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The Johnson-Lindenstrauss lemma

Algorithm:
Projecting onto a random hyperplane (subspace) of dimension

succeeds with probability



Applications

Approximation algorithms                  [Charikar’02]

Hardness of approximation               [Trevisan ’97]

Learning mixtures of Gaussians  [Arora, Kannan ‘01]

Approximate nearest-neighbors       [Kleinberg ’97]

Data-stream computations      [Alon et al. ‘99, Indyk ‘00]

Min-cost clustering [Schulman ‘00]

….
Information Retrieval (LSI)       [Papadimitriou et al. ‘97]
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Take                     where
the         are independent

random variables

[Johnson Lindenstrauss 82]

[Dasgupta Gupta 99]

[Indyk Motwani 99]
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Take                     where
the         are independent

random variables

Intuition:
Each column of  P points to a 
uniformly random direction in 
Each column is an unbiased,
independent estimator of

(via its squared inner product)

is the average estimate
(since we take the sum)  
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How to pick a random hyperplane
Take                     where
the         are independent

random variables

With orthonormalization:
Estimators are “equal”
Estimators are “uncorrelated”

Without orthonormalization: 

Same thing!
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Orthonormality: Take #1

Random vectors in high-dimensional 
Euclidean space

are very nearly orthonormal. 

Do they have to be uniformly random?

Is the Gaussian distribution magical?
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JL with binary coins

Benefits:
Much faster in practice 
Only     operations     (no    )

Fewer random bits
Derandomization

Slightly smaller(!) k

Take                     where
the         are independent
random variables with

∗±



JL with binary coins
Take                     where
the         are independent
random variables with

Preprocessing with a
randomized FFT

[Ailon, Chazelle ‘06]



Let’s at least 
look at the data
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How to compute Ak

Start with a random

Repeat until fixpoint

Have each row in A vote for x:

Synthesize a new candidate by combining the 

rows of A according to their enthusiasm for x:

(This is power iteration on        . Also known as PCA.)

Project A on subspace orthogonal to x and repeat
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PCA for Denoising

Assume that we perturb the entries of a matrix A
by adding independent Gaussian noise

Claim: If σ is not “too big” then the optimal        
projections for      are “close” to those for A.

Intuition: 
• The perturbation vectors are nearly orthogonal
• No small subspace accommodates many of them



Rigorously
Lemma: For any matrices A and 



Rigorously
Lemma: For any matrices A and 

Perspective: For any fixed x we have                           w.h.p.
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Two new ideas 

A rigorous criterion for choosing k:

Stop when A-Ak has 

“as much structure as” a random matrix

Computation-friendly noise:

Inject data-dependent noise
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By injecting sparsification/quantization “noise”
we can accelerate spectral computations:

• Fewer/simpler arithmetic operations
• Reduced memory footprint

Amount of “noise” that can be tolerated 
increases with redundancy in data

L2 error can be quadratically better than “Nystrom”



Orthonormality: Take #2

Matrices with independent, 0-mean entries 
are

“white noise” matrices
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A scalar analogue

Crude quantization at extremely high rate +
low-pass filter = 1-bit CD player (“Bitstream”)



Accelerating spectral computations
By injecting sparsification/quantization “noise”
we can accelerate spectral computations:

• Fewer/simpler arithmetic operations
• Reduced memory footprint

Amount of “noise” that can be tolerated 
increases with redundancy in data

L2 error can be quadratically better than “Nystrom”

Useful even for exact computations



Accelerating exact computations
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Kernels & Support Vector Machines

Red and Blue pointclouds
Which linear separator (hyperplane)?

Maximum margin

Optimal can be expressed by inner 
products with (a few) data points



Not always linearly separable



Population density
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Kernel PCA
We can also compute the SVD via the spectrum of

d

n

n

n

d

n

Each entry in AAT is the inner product of two inputs

Replace inner product with a kernel function
Work implicitly in high-dimensional space
Good linear separators in that space



From linear to nonFrom linear to non--linear PCAlinear PCA
||X-Y||p kernel illustrates how the contours of the first 2 components 
change from straight lines for p=2 to non-linea for p=1.5, 1 and 0.5.

From Schölkopf and Smola, Learning with kernels, MIT 2002 



Kernel PCA with Gaussian KernelKernel PCA with Gaussian Kernel
KPCA with Gaussian kernels. The contours follow the cluster densities! 

First two kernel 
PCs separate the 
data nicely.

Linear PCA has only 2 components, but kernel PCA has more, since
the  space dimension is usually large (in this case infinite)
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KPCA in brief

Good News:
- Work directly with non-vectorial inputs
- Very powerful:

e.g. LLE, Isomap, Laplacian Eigenmaps [Ham et al. ‘03]

Bad News:

n2 kernel evaluations are too many….

Good News: [Shaw-Taylor et al. ‘03]

good generalization                 rapid spectral decay



So, it’s enough to sample…

d

n

n

n

d

n

In practice, 1% of the data is more than enough

In theory, we can go down to  n × polylog(n)



Important Features are Preserved



Open Problems

How general is this “stability under noise”?

For example, does it hold for
Support Vector Machines?

When can we prove such stability in a black-box 
fashion, i.e. as with matrices? 

Can we exploit if for data privacy?
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