Applications of Random Matrices in Spectral Computations and Machine Learning

Dimitris Achlioptas
UC Santa Cruz

This talk

Viewpoint:

use randomness to "transform" the data

This talk

Viewpoint:

use randomness to "transform" the data

- Random Projections
- Fast Spectral Computations
- Sampling in Kernel PCA

Input: Set S of n points in \mathbf{R}^d

Output: Set S' of n points in \mathbf{R}^k which is "like" S k is "affordable/right"

d is "too big"

Input: Set S of n points in \mathbf{R}^d

d is "too big"

Output: Set S' of n points in \mathbf{R}^k which is "like" S

k is "affordable/right"

We will always represent n points in \mathbf{R}^d as an $n \times d$ matrix.

$$S \to A \in \mathbf{R}^{n \times d}$$

Input: Set S of n points in \mathbf{R}^d

d is "too big"

Output: Set S' of n points in \mathbf{R}^{k} which is "like" S

k is "affordable/right"

We will always represent n points in \mathbf{R}^d as an n imes d matrix.

$$S \to A \in \mathbf{R}^{n \times d}$$

Solution 1: Compute the SVD of $A = UDV^T$

Input: Set S of n points in \mathbf{R}^d

d is "too big"

Output: Set S' of n points in \mathbf{R}^{k} which is "like" S

k is "affordable/right"

We will always represent n points in \mathbf{R}^d as an n imes d matrix.

$$S \to A \in \mathbf{R}^{n \times d}$$

Solution 1: Compute the SVD of $A = UDV^T$

Solution 2: Compute? Naah.. Flip coins to form $P \in \mathbf{R}^{d imes k}$

Output: AP

The Johnson-Lindenstrauss lemma

JL-lemma: For every set S of n points in \mathbf{R}^d and every $\epsilon>0$ there exists $f:\mathbf{R}^d\to\mathbf{R}^k$, where $k=O(\epsilon^{-2}\log n)$, such that for all pairs $u,v\in S$ $(1-\epsilon)|u-v|^2\leq |f(u)-f(v)|^2\leq (1+\epsilon)|u-v|^2\ .$

The Johnson-Lindenstrauss lemma

JL-lemma: For every set S of n points in \mathbf{R}^d and every $\epsilon>0$ there exists $f:\mathbf{R}^d\to\mathbf{R}^k$, where $k=O(\epsilon^{-2}\log n)$, such that for all pairs $u,v\in S$ $(1-\epsilon)|u-v|^2\leq |f(u)-f(v)|^2\leq (1+\epsilon)|u-v|^2\;.$

Algorithm:

Projecting onto a random hyperplane (subspace) of dimension

$$k = \frac{4 + 2\beta}{\epsilon^2 / 2 - \epsilon^3 / 3} \log n$$

succeeds with probability $1 - 1/n^{\beta}$

Applications

Approximation algorithms

[Charikar'02]

Hardness of approximation

[Trevisan '97]

Learning mixtures of Gaussians [Arora, Kannan '01]

Approximate nearest-neighbors [Kleir

[Kleinberg '97]

Data-stream computations

[Alon et al. '99, Indyk '00]

Min-cost clustering

[Schulman '00]

•

Information Retrieval (LSI)

[Papadimitriou et al. '97]

- Take $P(i,j) = r_{ij}$ where the $\{r_{ij}\}$ are independent N(0,1) random variables
- $P \leftarrow \operatorname{Orthonormalize}(P)$ [Indyk Iviotwani 99]

 [Johnson Lindenstrauss 82]

• Take $P(i,j)=r_{ij}$ where the $\{r_{ij}\}$ are independent N(0,1) random variables

Intuition:

• Each column of P points to a uniformly random direction in ${f R}^d$.

• Take $P(i,j) = r_{ij}$ where the $\{r_{ij}\}$ are independent N(0,1) random variables

Intuition:

- Each column of P points to a uniformly random direction in ${f R}^d$.
- Each column is an unbiased, independent estimator of $|\alpha|^2$ (via its squared inner product)

• Take $P(i,j)=r_{ij}$ where the $\{r_{ij}\}$ are independent N(0,1) random variables

Intuition:

- Each column of P points to a uniformly random direction in \mathbf{R}^d .
- Each column is an unbiased, independent estimator of $|\alpha|^2$ (via its squared inner product)
- $|\alpha P|^2$ is the average estimate (since we take the sum)

• Take $P(i,j)=r_{ij}$ where the $\{r_{ij}\}$ are independent N(0,1) random variables

With orthonormalization:

- Estimators are "equal"
- Estimators are "uncorrelated"

• Take $P(i,j)=r_{ij}$ where the $\{r_{ij}\}$ are independent N(0,1) random variables

With orthonormalization:

- Estimators are "equal"
- Estimators are "uncorrelated"

Without orthonormalization:

• Take $P(i,j)=r_{ij}$ where the $\{r_{ij}\}$ are independent N(0,1) random variables

With orthonormalization:

- Estimators are "equal"
- Estimators are "uncorrelated"

Without orthonormalization:

Same thing!

Orthonormality: Take #1

Random vectors in high-dimensional Euclidean space are very nearly orthonormal.

Orthonormality: Take #1

Random vectors in high-dimensional Euclidean space are very nearly orthonormal.

Do they have to be uniformly random?

Is the Gaussian distribution magical?

JL with binary coins

• Take $P(i,j) = r_{ij}$ where the $\{r_{ij}\}$ are independent random variables with

$$r_{ij} = \begin{cases} +1 & \text{with probability} & 1/2 \\ -1 & \cdots & 1/2 \end{cases}$$

JL with binary coins

• Take $P(i,j) = r_{ij}$ where the $\{r_{ij}\}$ are independent random variables with

$$r_{ij} = \begin{cases} +1 & \text{with probability} & 1/2 \\ -1 & \cdots & 1/2 \end{cases}$$

Benefits:

- Much faster in practice
- Only \pm operations (no *)
- Fewer random bits
- Derandomization
- Slightly smaller(!) k

JL with binary coins

• Take $P(i,j) = r_{ij}$ where the $\{r_{ij}\}$ are independent random variables with

$$r_{ij} = \begin{cases} +1 & \text{with probability} & 1/2 \\ -1 & \cdots & 1/2 \end{cases}$$

 Preprocessing with a randomized FFT

[Ailon, Chazelle '06]

$$O\left(d\log d + \min\{d\varepsilon^{-2}\log n, \varepsilon^{p-4}\log^{p+1} n\}\right)$$

Let's at least look at the data

Input: Set S of n points in \mathbf{R}^d

d is "too big"

Output: Set S' of n points in \mathbf{R}^{k} which is "like" S

k is "affordable/right"

We will always represent n points in \mathbf{R}^d as an n imes d matrix.

$$S \to A \in \mathbf{R}^{n \times d}$$

Solution 2: Compute? Naah.. Flip coins to form $P \in \mathbf{R}^{d imes k}$

Output: AP

Spectral Norm:
$$||A||_2 = \max_{||x||=1} ||Ax||$$

Spectral Norm:
$$||A||_2 = \max_{||x||=1} ||Ax||$$

Frobenius Norm:
$$\|A\|_F = \left(\sum_{i,j} A_{ij}^2\right)^{1/2} = \underset{\|x\|=1}{\operatorname{Avg}} \|Ax\|$$

Spectral Norm:
$$||A||_2 = \max_{||x||=1} ||Ax||$$

Frobenius Norm:
$$\|A\|_F = \left(\sum_{i,j} A_{ij}^2\right)^{1/2} = \underset{\|x\|=1}{\operatorname{Avg}} \|Ax\|$$

For any matrix A, there is a well defined matrix A_k that is the "best" rank k approximation to A for many norms.

Spectral Norm:
$$||A||_2 = \max_{||x||=1} ||Ax||$$

Frobenius Norm:
$$||A||_F = \left(\sum_{i,j} A_{ij}^2\right)^{1/2} = \text{Avg } ||Ax||$$

For any matrix A, there is a well defined matrix A_k that is the "best" rank k approximation to A for many norms.

For any rank
$$k$$
 matrix B ,
$$\frac{\|A - A_k\|_2}{\|A - A_k\|_F} \le \|A - B\|_E$$

Spectral Norm:
$$||A||_2 = \max_{||x||=1} ||Ax||$$

Frobenius Norm:
$$||A||_F = \left(\sum_{i,j} A_{ij}^2\right)^{1/2} = \text{Avg } ||Ax||$$

 A_k is the maximizer of $\|AP\|$ over all projections P into \mathbf{R}^k

• Start with a random $x \in \mathbf{R}^d$

- Start with a random $x \in \mathbf{R}^d$
- Repeat until fixpoint
 - Have each row in A vote for x: $y = Ax \in \mathbf{R}^n$

- Start with a random $x \in \mathbf{R}^d$
- Repeat until fixpoint
 - Have each row in A vote for x: $y = Ax \in \mathbf{R}^n$
 - Synthesize a new candidate by combining the rows of A according to their enthusiasm for x:

$$x \leftarrow \frac{A^T y}{\|A^T y\|} \in \mathbf{R}^d$$

(This is power iteration on A^TA . Also known as PCA.)

- Start with a random $x \in \mathbf{R}^d$
- Repeat until fixpoint
 - Have each row in A vote for x: $y = Ax \in \mathbf{R}^n$
 - Synthesize a new candidate by combining the rows of A according to their enthusiasm for x:

$$x \leftarrow \frac{A^T y}{\|A^T y\|} \in \mathbf{R}^d$$

(This is power iteration on A^TA . Also known as PCA.)

ullet Project A on subspace orthogonal to x and repeat

PCA for Denoising

• Assume that we perturb the entries of a matrix A by adding independent Gaussian noise $N(0,\sigma)$

$$\widehat{A} = A + G$$

PCA for Denoising

• Assume that we perturb the entries of a matrix A by adding independent Gaussian noise $N(0,\sigma)$

$$\widehat{A} = A + G$$

• Claim: If σ is not "too big" then the optimal projections for \widehat{A} are "close" to those for A.

PCA for Denoising

• Assume that we perturb the entries of a matrix A by adding independent Gaussian noise $N(0,\sigma)$

$$\widehat{A} = A + G$$

• Claim: If σ is not "too big" then the optimal projections for \widehat{A} are "close" to those for A.

Intuition:

The perturbation vectors are nearly orthogonal

PCA for Denoising

• Assume that we perturb the entries of a matrix A by adding independent Gaussian noise $N(0,\sigma)$

$$\widehat{A} = A + G$$

• Claim: If σ is not "too big" then the optimal projections for \widehat{A} are "close" to those for A.

Intuition:

- The perturbation vectors are nearly orthogonal
- No small subspace accommodates many of them

Rigorously

Lemma: For any matrices A and \widehat{A}

$$||A - \widehat{A}_k||_2 \le ||A - A_k||_2 + 2||A - \widehat{A}||_2$$

Rigorously

Lemma: For any matrices A and \widehat{A}

$$||A - \widehat{A}_k||_2 \le ||A - A_k||_2 + 2||A - \widehat{A}||_2$$

Theorem [Füredi Komlos] Let R be an $n \times d$ random matrix whose entries are independent random variables with mean 0 and variance at most σ^2 . Then with [very] high probability,

$$||R||_2 \le 4\sigma\sqrt{n}$$

Perspective: For any fixed x we have $||Rx||_2 \sim \sigma \sqrt{n}$ w.h.p.

Two new ideas

• A rigorous criterion for choosing k:

Stop when A- A_k has "as much structure as" a random matrix

Two new ideas

A rigorous criterion for choosing k:

Stop when A- A_k has "as much structure as" a random matrix

Computation-friendly noise:

Two new ideas

A rigorous criterion for choosing k:

Stop when A- A_k has "as much structure as" a random matrix

Computation-friendly noise:

Inject data-dependent noise

Consider the matrix \widehat{A} , defined as

$$\hat{A}_{ij} = \left\{ egin{array}{ll} +1 & \mbox{with probability } 1/2 + A_{ij}/2 \\ -1 & \mbox{with probability } 1/2 - A_{ij}/2 \end{array}
ight.$$

Consider the matrix \widehat{A} , defined as

$$\hat{A}_{ij} = \left\{ egin{array}{ll} +1 & \mbox{with probability } 1/2 + A_{ij}/2 \\ -1 & \mbox{with probability } 1/2 - A_{ij}/2 \end{array}
ight.$$

ullet The expected value of \widehat{A}_{ij} is A_{ij} .

Consider the matrix \widehat{A} , defined as

$$\hat{A}_{ij} = \left\{ egin{array}{ll} +1 & \mbox{with probability } 1/2 + A_{ij}/2 \\ -1 & \mbox{with probability } 1/2 - A_{ij}/2 \end{array}
ight.$$

- ullet The expected value of \widehat{A}_{ij} is A_{ij} .
- ullet The variance of each \widehat{A}_{ij} is at most 1.

Consider the matrix \widehat{A} , defined as

$$\widehat{A}_{ij} = \left\{ egin{array}{ll} +1 & \mbox{with probability } 1/2 + A_{ij}/2 \\ -1 & \mbox{with probability } 1/2 - A_{ij}/2 \end{array}
ight.$$

- ullet The expected value of \widehat{A}_{ij} is A_{ij} .
- ullet The variance of each \widehat{A}_{ij} is at most 1.
- ullet Each entry in \widehat{A} can be represented by a single bit.

Consider the matrix \widehat{A} , defined as

$$\hat{A}_{ij} = \left\{ egin{array}{ll} A_{ij}/p & \mbox{with probability } p \\ 0 & \mbox{with probability } 1-p \end{array}
ight.$$

for some 0 .

Consider the matrix \widehat{A} , defined as

$$\widehat{A}_{ij} = \left\{ egin{array}{ll} A_{ij}/p & \mbox{with probability } p \\ 0 & \mbox{with probability } 1-p \end{array}
ight.$$

for some 0 .

ullet The expected value of \widehat{A}_{ij} is A_{ij} .

Consider the matrix \widehat{A} , defined as

$$\widehat{A}_{ij} = \left\{ egin{array}{ll} A_{ij}/p & \mbox{with probability } p \\ 0 & \mbox{with probability } 1-p \end{array} \right.$$

for some 0 .

- ullet The expected value of \widehat{A}_{ij} is A_{ij} .
- The variance of each \widehat{A}_{ij} is at most 1/p.

Consider the matrix \widehat{A} , defined as

$$\widehat{A}_{ij} = \left\{ egin{array}{ll} A_{ij}/p & \mbox{with probability } p \\ 0 & \mbox{with probability } 1-p \end{array} \right.$$

for some 0 .

- ullet The expected value of \widehat{A}_{ij} is A_{ij} .
- The variance of each \widehat{A}_{ij} is at most 1/p.
- \widehat{A} is much sparser than A.

- By injecting sparsification/quantization "noise" we can accelerate spectral computations:
 - Fewer/simpler arithmetic operations
 - Reduced memory footprint

- By injecting sparsification/quantization "noise" we can accelerate spectral computations:
 - Fewer/simpler arithmetic operations
 - Reduced memory footprint
- Amount of "noise" that can be tolerated increases with redundancy in data

- By injecting sparsification/quantization "noise" we can accelerate spectral computations:
 - Fewer/simpler arithmetic operations
 - Reduced memory footprint
- Amount of "noise" that can be tolerated increases with redundancy in data
- L2 error can be quadratically better than "Nystrom"

Orthonormality: Take #2

Matrices with independent, 0-mean entries are

"white noise" matrices

Crude quantization at extremely high rate

Crude quantization at extremely high rate + low-pass filter

Crude quantization at extremely high rate + low-pass filter

Crude quantization at extremely high rate + low-pass filter = 1-bit CD player ("Bitstream")

- By injecting sparsification/quantization "noise" we can accelerate spectral computations:
 - Fewer/simpler arithmetic operations
 - Reduced memory footprint
- Amount of "noise" that can be tolerated increases with redundancy in data
- L2 error can be quadratically better than "Nystrom"
 - Useful even for exact computations

Accelerating exact computations

Kernels

Kernels & Support Vector Machines

- Red and Blue pointclouds
- Which linear separator (hyperplane)?

Maximum margin

 Optimal can be expressed by inner products with (a few) data points

Not always linearly separable

Population density

We can also compute the SVD via the spectrum of

• Each entry in AA^T is the inner product of two inputs

- Each entry in AA^T is the inner product of two inputs
- Replace inner product with a kernel function

- Each entry in AA^T is the inner product of two inputs
- Replace inner product with a kernel function
- Work implicitly in high-dimensional space

- Each entry in AA^T is the inner product of two inputs
- Replace inner product with a kernel function
- Work implicitly in high-dimensional space
- Good linear separators in that space

From linear to non-linear PCA

 $||X-Y||^p$ kernel illustrates how the contours of the first 2 components change from straight lines for p=2 to non-linea for p=1.5, 1 and 0.5.

From Schölkopf and Smola, Learning with kernels, MIT 2002

Kernel PCA with Gaussian Kernel

KPCA with Gaussian kernels. The contours follow the cluster densities!

First two kernel PCs separate the data nicely.

Linear PCA has only 2 components, but kernel PCA has more, since the space dimension is usually large (in this case infinite)

Good News:

Work directly with non-vectorial inputs

Good News:

- Work directly with non-vectorial inputs
- Very powerful:

e.g. LLE, Isomap, Laplacian Eigenmaps [Ham et al. '03]

Good News:

- Work directly with non-vectorial inputs
- Very powerful:

e.g. LLE, Isomap, Laplacian Eigenmaps [Ham et al. '03]

Bad News:

 n^2 kernel evaluations are too many....

Good News:

- Work directly with non-vectorial inputs
- Very powerful:

e.g. LLE, Isomap, Laplacian Eigenmaps [Ham et al. '03]

Bad News:

 n^2 kernel evaluations are too many....

Good News:

[Shaw-Taylor et al. '03]

good generalization \iff rapid spectral decay

So, it's enough to sample...

- In practice, 1% of the data is more than enough
- In theory, we can go down to $n \times \text{polylog}(n)$

Important Features are Preserved

Each feature/eigenvector of K has an associated eigenvalue.

Each eigenvalue measures the *importance* of the corresponding feature for reconstructing K.

- ullet Let B(t) be an orthonormal basis for those features which have eigenvalue at least t in K.
- Let $B_{\perp}(t)$ be an orthonormal basis for the complement of B(t).
- Similarly for $\widehat{B}(t), \widehat{B}_{\perp}(t)$

Theorem 2 For every $\xi_1 > \xi_2$

$$\left| \hat{B}^T(\xi_1) B_{\perp}(\xi_2) \right|_2 \le \frac{|K - K|_2}{\xi_1 - \xi_2}$$

Open Problems

How general is this "stability under noise"?

 For example, does it hold for Support Vector Machines?

 When can we prove such stability in a black-box fashion, i.e. as with matrices?

Can we exploit if for data privacy?