Outline	Motivation 000	HodgeRank on Random Graphs	Application 00000	Discussions

HodgeRank on Random Graphs

Yuan Yao

School of Mathematical Sciences Peking University

July 18, 2011

Outline	Motivation 000	HodgeRank on Random Graphs	Application 00000	Discussions

1 Motivation

Crowdsourcing Ranking on Internet

2 HodgeRank on Random Graphs

- HodgeRank on Graphs
- Random Graph Models
- Online Learning Algorithms

3 Application

Subjective Video Quality Evaluation

4 Discussions

Outline

Motivation

HodgeRank on Random Graphs

Application

<ロト < 同ト < 三ト

Discussions

Crowdsourcing Ranking on Internet

Crowdsourcing Ranking on Internet

Figure: Start from a movie - The Social Network

Outline	Motivation ○●○	HodgeRank on Random Graphs	Application 00000	Discussions
Crowdsourcing Ranki	ng on Internet			

1	\sim		C
vlean	C	pinion	Score
	~	P	

MOS	Quality	Impairment
5	Excellent	Imperceptible
4	Good	Perceptible but not annoying
3	Fair	Slightly annoying
2	Poor	Annoying
1	Bad	Very annoying

widely used for evaluation of videos, as well books and movies, etc., but

- Ambiguity in definition of the scale;
- Difficult to verify whether a participant gives false ratings either intentionally or carelessly.

Outline	Motivation ○○●	HodgeRank on Random Graphs	Application 00000	Discussions
Crowdsourcing Ran	king on Internet			
Paired (Comparisons	;		

- Individual decision process in paired comparison is simpler than in the typical MOS test, as the five-scale rating is reduced to a dichotomous choice;
- But the paired comparison methodology leaves a heavier burden on participants with a larger number ⁿ₂ of comparisons
- Moreover, raters and item pairs enter the system in a dynamic and random way;

Here we introduce:

Hodge Decomposition on Random Graphs for paired comparisons

\cap	+1	in	
0	u		

Motivatio

HodgeRank on Random Graphs

Application

Discussions

HodgeRank on Graphs

Pairwise Ranking Graphs

On a graph
$$G = (V, E)$$
,

$$\min_{\boldsymbol{s}\in\mathrm{R}^{|V|}}\sum_{\alpha,(i,j)\in \boldsymbol{E}}\omega_{ij}^{\alpha}(\boldsymbol{s}_i-\boldsymbol{s}_j-\boldsymbol{Y}_{ij}^{\alpha})^2,$$

- α for raters
- ω_{ij}^{α} is an indicator or confidence weight • Y_{ij}^{α} is 1 if rater α prefers *i* to *j* and -1 otherwise

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

.⊒ . ►

Outline	Motivation 000	HodgeRank on Random Graphs 0●00000000000000000000000000000000000	Application 00000	Discussions
HodgeRank on Graphs				

Equivalently, in weighted Least Square

$$\min_{s\in\mathrm{R}^{|V|}}\sum_{\{i,j\}\in E}\omega_{ij}(s_i-s_j-\hat{Y}_{ij})^2,$$

where

- $\hat{Y}_{ij} = (\sum_{\alpha} \omega_{ij}^{\alpha} Y_{ij}^{\alpha}) / (\sum_{\alpha} \omega_{ij}^{\alpha})$, skew-symmetric matrix • $\omega_{ij} = \sum_{\alpha} \omega_{ij}^{\alpha}$
- Inner product induced on R^E , $\langle u, v \rangle_{\omega} = \sum u_{ij} v_{ij} \omega_{ij}$ where u, v skew-symmetric

Note: NP-hard Kemeny Optimization, or Minimimum-Feedback-Arc-Set:

$$\min_{\boldsymbol{s}\in\mathrm{R}^{|V|}}\sum_{\alpha,\{i,j\}\in E}\omega_{ij}^{\alpha}(\operatorname{sign}(\boldsymbol{s}_{i}-\boldsymbol{s}_{j})-\hat{Y}_{ij}^{\alpha})^{2},$$

Outline	Motivation 000	HodgeRank on Random Graphs	Application 00000	Discussions
HodgeRank on	Graphs			
Linear	Models in	Statistics		

Let π_{ij} be the probability that *i* is preferred to *j*. The family of linear models assumes that

$$\pi_{ij} = \Phi(s_i - s_j)$$

for some symmetric cumulated distributed function Φ . Reversely, given an observation $\hat{\pi}$, define

$$\hat{Y}_{ij} = \Phi^{-1}(\hat{\pi}_{ij})$$

One would like $\hat{Y}_{ij} \approx \hat{s}_i - \hat{s}_j$ for some $\hat{s} : V \to \mathbb{R}$ (in least squares, e.g.).

Outline	Motivation 000	HodgeRank on Random Graphs	Application 00000	Discussions
HodgeRank on Graph	าร			

Examples of Linear Models

1. Uniform model:

$$\hat{Y}_{ij} = 2\hat{\pi}_{ij} - 1. \tag{1}$$

2. Bradley-Terry model:

$$\hat{Y}_{ij} = \log \frac{\hat{\pi}_{ij}}{1 - \hat{\pi}_{ij}}.$$
(2)

3. Thurstone-Mosteller model:

$$\hat{Y}_{ij} = \Phi^{-1}(\hat{\pi}_{ij}).$$

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-x/[2\sigma^2(1-\rho)]^{1/2}}^{\infty} e^{-\frac{1}{2}t^2} dt.$$
(3)

4. Angular transform model:

$$\hat{Y}_{ij} = \arcsin(2\hat{\pi}_{ij} - 1). \tag{4}$$

Outline	Motivation 000	HodgeRank on Random Graphs 000000000000000000000000000000000000	Application 00000	Discu
HodgeRank or	n Graphs			

HodgeRank on Graphs [Jiang-Lim-Y.-Ye 2011]

Every \hat{Y} admits an orthogonal decomposition adapted to G, $\hat{Y} = \hat{Y}^{(1)} + \hat{Y}^{(2)} + \hat{Y}^{(3)}$, (5)

where

$$\hat{Y}_{ij}^{(1)} = \hat{s}_i - \hat{s}_j, \text{ for some } \hat{s} \in \mathbf{R}^V,$$
(6)

$$\hat{Y}_{ij}^{(2)} + \hat{Y}_{jk}^{(2)} + \hat{Y}_{ki}^{(2)} = 0, \text{ for each } \{i, j, k\} \in T,$$
 (7)

$$\sum_{j \sim i} \omega_{ij} \hat{Y}_{ij}^{(2)} = 0, \text{ for each } i \in V.$$
(8)

Harmonic and Triangular Curl

Figure: Left: example of $\hat{Y}^{(2)}$, harmonic; Right: example of $\hat{Y}^{(3)}$, curl.

< 同 ▶

Outline	Motivation 000	HodgeRank on Random Graphs 000000●00000000000	Application 00000	Discussions
HodgeRank on	Graphs			
Globa	Rating Sco	ore		

The minimal norm least square solution \hat{s} satisfies the normal eq.

$$\Delta_0 \hat{\mathbf{s}} = \delta_0^* \hat{\mathbf{Y}},\tag{9}$$

where

Δ₀ = δ₀^{*} · δ₀ is the unnormalized graph Laplacian defined by (Δ₀)_{ii} = ∑_{j~i} ω_{ij} and (Δ₀)_{ij} = -ω_{ij}
δ₀ : R^V → R^E defined by (δ₀v)(i, j) = v_i - v_j
δ₀^{*} = δ₀^TW : R^E → R^V, W = diag(ω_{ij}), the adjoint of δ₀
Spielman-Teng, Koutis-Miller-Peng et al. give provable almost-linear algorithms with suitable preconditioners

Outline	Motivation 000	HodgeRank on Random Graphs	Application 00000	Discussions
HodgeRank on Graphs				

Local vs. Global Inconsistencies

Residues $\hat{Y}^{(2)}$ and $\hat{Y}^{(3)}$ accounts for inconsistencies, in different nature, which can be used to analyze rater's credibility or videos' confusion level .

- Define a 3-clique complex $\chi_G = (V, E, T)$ where
 - T collects all 3-cliques (complete subgraphs) $\{i, j, k\}$
- $\hat{Y}^{(3)}_{ij}$, the local inconsistency, triangular curls • $\hat{Y}^{(3)}_{ij} + \hat{Y}^{(3)}_{jk} + \hat{Y}^{(3)}_{ki} \neq 0$, $\{i, j, k\} \in T$
- $\hat{Y}^{(2)}$, the global inconsistency, harmonic ranking

• $\hat{Y}^{(2)}$ vanishes if 1-homology of χ_{G} vanishes

• harmonic ranking is a circular coordinate and generally non-sparse \Rightarrow fixed tournament issue

Outline	Motivation 000	HodgeRank on Random Graphs	Application 00000	Discussions	
HodgeRank on Graphs					
1-D Hodge Laplacian					

Define 1-coboundary map

$$\begin{split} \delta_1 &: \quad \mathfrak{sl}(E) \subset \mathbb{R}^{V \times V} \to \mathbb{R}^{V \times V \times V} \\ X &\mapsto \pm (X_{ij} + X_{jk} + X_{ki})_{ijk} \end{split}$$

where $\mathfrak{sl}(E)$ is skew-symmetric matrix on E.

- δ_1^* is the adjoint of δ_1 .
- Define 1-Laplacian

$$\Delta_1 = \delta_0 \circ \delta_0^* + \delta_1^* \circ \delta_1$$

$$dim(\ker \Delta_1) = \beta_1$$

$$\hat{Y}^{(2)} = \operatorname{proj}_{\ker \Delta_1} \hat{Y}$$

Outline	Motivation 000	HodgeRank on Random Graphs	Application 00000	Discussions
De la Carl Mail	all a			

Random Graph Models

Random Graph Models for Crowdsourcing

- Recall that in crowdsourcing ranking on internet,
 - unspecified raters compare item pairs randomly
 - online, or sequentially sampling
- random graph models for experimental designs
 - *P* a distribution on random graphs, invariant under permutations (relabeling)

• Generalized de Finetti's Theorem [Aldous 1983, Kallenberg 2005]: P(i,j) (*P* ergodic) is an uniform mixture of

$$h(u, v) = h(v, u) : [0, 1]^2 \to [0, 1],$$

h unique up to sets of zero-measure

• Erdös-Rényi: $P(i,j) = P(edge) = \int_0^1 \int_0^1 h(u,v) du dv =: p$

Outline	Motivation 000	HodgeRank on Random Graphs	Application 00000	Discussions		
Random Graph N	Random Graph Models					
Why T	opology?					

To get a faithful ranking, two topological conditions important:

- Connectivity: G is connected, then an unique global ranking is possible;
- Loop-free: χ_G is loop-free, if one would like to avoid the fixed-tournament issue when Harmonic ranking is large.

Motivatio

HodgeRank on Random Graphs

Application 00000 Discussions

Random Graph Models

Persistent Homology: online algorithm for topological change of evolutionary graphs

- vertice, edges, and triangles etc.
 sequentially added
- online update of homology
- O(m) for surface embeddable complex; and O(m³) in general (m number of simplex)

Figure: Persistent Homology Barcodes

Image: Image:

Outline	Motivation 000	HodgeRank on Random Graphs ○○○○○○○○○○○○○○○	Application 00000	Discussions
Random Graph Models				

Phase Transitions in Erdös-Rényi Random Graphs

э

∃ >

< ∃ >

Outline	Motivation 000	HodgeRank on Random Graphs ○○○○○○○○○○○●○○○○	Application 00000	Discussions

Phase Transitions of Large Random Graphs

For an Erdos-Renyi random graph G(n, p) with *n* vertices and each edge independently emerging with probability p(n),

- (Erdös-Rényi 1959) One phase-transition for β_0
 - $p << 1/n^{1+\epsilon}~(orall \epsilon > 0)$, almost always disconnected
 - p >> log(n)/n, almost always connected
- (Kahle 2009) Two phase-transitions for β_k (k ≥ 1)
 p << n^{-1/k} or p >> n^{-1/(k+1)}, almost always β_k vanishes;
 n^{-1/k} << p << n^{-1/(k+1)}, almost always β_k is nontrivial

For example: with n = 16, 75% distinct edges included in *G*, then χ_G with high probability is connected and loop-free. In general, $O(n \log(n))$ samples for connectivity and $O(n^{3/2})$ for loop-free.

• • = • • = •

An Intuition from Random Matrix Theory

Concentration of eigenvalues (Chung-Radcliffe 2011)

$$|\lambda_i(ilde{\Delta}_0) - \lambda_i(ilde{\Delta}_0)| \leq O\left(\sqrt{np\lograc{n}{\delta}}
ight)$$

where

$$ar{\Delta}_0(i,j) = n p l_n - p e e^T = \left\{egin{array}{cc} -p, & i
eq j \ (n-1)p, & i=j \end{array}
ight.$$

has one eigenvalue 0, and one eigenvalue np of multiplicity n-1 $p >> n^{-1} \log n$, almost always large eigenvalues $np = \Omega(1)$; $p << n^{-1-\epsilon}$, almost always small eigenvalues np = o(1);

Outline	Motivation 000	HodgeRank on Random Graphs ○○○○○○○○○○○○○○	Application 00000	Discussions
Random Graph Mod	lels			

I-Laplacian Splits

$$\tilde{\Delta}_{1}^{(l)}(ij,kl) = \delta_{0} \circ \delta_{0}^{*} = \begin{cases} 2X_{ij} \rightarrow 2p, & \{i,j\} = \{k,l\} \\ \xi_{ij,kl}^{(l)} X_{ij} X_{jk} \rightarrow \xi_{ij,kl}^{(l)} p^{2}, & \text{otherwise} \end{cases}$$

where lower-coincidence number $\xi_{ij,kl}^{(l)} = \pm 1$ if $|\{i,j\} \cap \{k,l\}| = 1$ and 0 otherwise.

$$\tilde{\Delta}_{1}^{(u)}(ij,kl) = \delta_{1}^{*} \circ \delta_{1} = \begin{cases} \sum_{ij\tau \in T} X_{ij} X_{j\tau} X_{\tau i} \to \frac{(np)(np^{2})^{n}}{\log np^{2}}, & ij = kl \\ \xi_{ij,kl}^{(u)} X_{ij} X_{jk} X_{ki} \to \xi_{ij,kl}^{(u)} p^{3}, & \text{otherwise} \end{cases}$$

where upper-coincidence number $\xi_{ij,kl}^{(u)} = \pm 1$ if $|\{i, j\} \cup \{k, l\}| = 3$ and 0 otherwise.

Forman (2003): *Ric*_{Δ1}(ij) = diagonal - sum of abs(off-diag)
 p << n⁻¹ or *p* >> n^{-1/2}, Δ1 strongly diagonal dominant

Outline	Motivation	HodgeRank on Random Graphs	Application	Discussions
		000000000000000000000000000000000000000		
	A lange with lange			

Online HodgeRank as Stochastic Approximations

Robbins-Monro (1951) algorithm for $\bar{A}x = \bar{b}$

$$x_{t+1} = x_t - \gamma_t (A_t x_t - b_t), \quad \mathbb{E}(A_t) = \overline{A}, \ \mathbb{E}(b_t) = b$$

Now consider $\Delta_0 s = \delta_0^* \hat{Y}$, with new rating $Y_t(i_{t+1}, j_{t+1})$

$$s_{t+1}(i_{t+1}) = s_t(i_{t+1}) - \gamma_t[s_t(i_{t+1}) - s_t(j_{t+1}) - Y_t(i_{t+1}, j_{t+1})]$$

$$s_{t+1}(j_{t+1}) = s_t(j_{t+1}) + \gamma_t[s_t(i_{t+1}) - s_t(j_{t+1}) - Y_t(i_{t+1}, j_{t+1})]$$

Note:

- updates only occur locally on edge $\{i_{t+1}, j_{t+1}\}$
- initial choice: $s_0 = 0$ or any vector $\sum_i s_0(i) = 0$
- step size (Smale-Yao 2006, Ying-Pontil 2007, etc.)
 γ_t = (t + c)^{-θ} (θ ∈ (0, 1])
 γ_t = const(T), .e.g. 1/T where T is total sample size

Averaging Process (Ruppert 1988; Y. 2010)

A second stage averaging process, following s_{t+1} above

$$z_{t+1} = \frac{t}{t+1} z_t + \frac{1}{t+1} s_{t+1}$$

with $z_0 = s_0$. Note:

- Averaging process speeds up convergence for various choices of γ_t
- One often choose $\gamma_t = c$ to track dynamics
- In this case, z_t converges to \hat{s} (population solution), with probability 1δ , in the (optimal) rate

$$\|z_t - \hat{s}\| \leq O\left(t^{-1/2} \cdot \kappa(\Delta_0) \cdot \log^{1/2} \frac{1}{\delta}\right)$$

イロト イポト イラト イラト

Outline	Motivation 000	HodgeRank on Random Graphs	Application ●0000	Discussions	
Subjective Video Quality Evaluation					
Data Description					

- Dataset: LIVE Database
- 10 different reference videos and 15 distorted versions of each reference, for a total of 160 videos.
- 32 rounds of complete comparisons are collected from 209 observers in lab. Because each round needs 1200 paired comparisons, the total number of comparisons for 32 rounds is 38400 = 32 × 1200.
- Note: we do not use the subjective scores in LIVE, we only borrow the video sources it provides.

Figure: Data collected from PKU junior undergraduates.

Application 00000 Subjective Video Quality Evaluation

HodgeRank with Complete Data

Figure: Angular Transform and Uniform models are the best two.

< □ > < 同 >

- ∢ ⊒ → HodgeRank on Random Graphs Application 00000

Subjective Video Quality Evaluation

Globa/Harmonic and Local/Triangular Inconsistency

Figure: Harmonic inconsistency accounts for more than 50% total inconsistency before 25% edges, and rapidly drops to zero after 70% edges ($p \sim n^{-1/2}$)

< □ > < 同 >

Outline	Motivation 000	HodgeRank on Random Graphs	Application 000●0	Discussions		
Subjective Video Quality Evaluation						
Sampling	g Efficiency					

Table 3: Kendall's τ and inconsistency of of Exp-III.

	min	mean	max	std
Kendall's τ	0.8067	0.9337	0.9857	0.0415
Inconsistency	0.1623	0.2256	0.3777	0.0606

æ

HodgeRank on Random Graphs Application 00000

Subjective Video Quality Evaluation

Convergence of Online Learning Algorithms

2500 3000 3500 4000

< ロ > < 同 > < 回 > < 回 > < □ > <

3

Outline	Motivation 000	HodgeRank on Random Graphs	Application 00000	Discussions
Discu	ssions			

- Erdös-Rényi random graphs give the simpliest sampling scheme, comparable to I.I.D. sampling in machine learning
- General random graphs (unlabeled) can use nonparametric models derived from generalized de Finetti's theorem (Bickel, Chen 2009)
- For computational concern, consider random graphs with small condition numbers, e.g. expanders
- For balancing concern, consider random *k*-regular graphs
- For top ranked videos, preference attachement models
- Markov sampling (Aldous, Vazirani 1990; Smale, Zhou 2007)
- Concentration inequalities with dependent random variables for high-dim Laplacians

Outline	Motivation 000	HodgeRank on Random Graphs 000000000000000000000000000000000000	Application 00000	Discussions

Acknowledgement

- Reference: Xu et al. ACM Multimedia 2011, to appear.
- Experiments:
 - Qianqian Xu (Chinese Academy of Sciences)
 - Bowei Yan (Peking University)
- Discussions:
 - Tingting Jiang (Peking University)
 - Qingming Huang (Chinese Academy of Sciences)
 - Lek-Heng Lim (U Chicago)
 - Sayan Mukherjee (Duke)
 - Gunnar Carlsson (Stanford)
 - Steve Smale (City University of Hong Kong)
 - Shmuel Weinberger (U Chicago)
 - Yinyu Ye (Stanford)