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Crowdsourcing Ranking on Internet

Crowdsourcing Ranking on Internet

Figure: Start from a movie – The Social Network
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Crowdsourcing Ranking on Internet

Mean Opinion Score

widely used for evaluation of videos, as well books and movies,
etc., but

Ambiguity in definition of the scale;

Difficult to verify whether a participant gives false ratings
either intentionally or carelessly.
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Crowdsourcing Ranking on Internet

Paired Comparisons

Individual decision process in paired comparison is simpler
than in the typical MOS test, as the five-scale rating is
reduced to a dichotomous choice;

But the paired comparison methodology leaves a heavier
burden on participants with a larger number

(n
2

)
of

comparisons

Moreover, raters and item pairs enter the system in a dynamic
and random way;

Here we introduce:

Hodge Decomposition on Random Graphs
for paired comparisons

Yuan Yao HodgeRank on Random Graphs



Outline Motivation HodgeRank on Random Graphs Application Discussions

HodgeRank on Graphs

Pairwise Ranking Graphs

On a graph G = (V ,E ),

min
s∈R|V |

∑
α,(i ,j)∈E

ωαij (si − sj − Y α
ij )2,

α for raters

ωαij is an indicator or confidence weight

Y α
ij is 1 if rater α prefers i to j and −1 otherwise
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HodgeRank on Graphs

Equivalently, in weighted Least Square

min
s∈R|V |

∑
{i ,j}∈E

ωij(si − sj − Ŷij)
2,

where

Ŷij = (
∑

α ω
α
ijY

α
ij )/(

∑
α ω

α
ij ), skew-symmetric matrix

ωij =
∑

α ω
α
ij

Inner product induced on RE , 〈u, v〉ω =
∑

uijvijωij where u, v
skew-symmetric

Note: NP-hard Kemeny Optimization, or
Minimimum-Feedback-Arc-Set:

min
s∈R|V |

∑
α,{i ,j}∈E

ωαij (sign(si − sj)− Ŷ α
ij )2,
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HodgeRank on Graphs

Linear Models in Statistics

Let πij be the probability that i is preferred to j . The family of
linear models assumes that

πij = Φ(si − sj)

for some symmetric cumulated distributed function Φ. Reversely,
given an observation π̂, define

Ŷij = Φ−1(π̂ij)

One would like Ŷij ≈ ŝi − ŝj for some ŝ : V → R (in least squares,
e.g.).
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HodgeRank on Graphs

Examples of Linear Models

1. Uniform model:

Ŷij = 2π̂ij − 1. (1)

2. Bradley-Terry model:

Ŷij = log
π̂ij

1− π̂ij
. (2)

3. Thurstone-Mosteller model:

Ŷij = Φ−1(π̂ij). (3)

Φ(x) =
1√
2π

∫ ∞
−x/[2σ2(1−ρ)]1/2

e−
1
2
t2
dt.

4. Angular transform model:

Ŷij = arcsin(2π̂ij − 1). (4)
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HodgeRank on Graphs

HodgeRank on Graphs [Jiang-Lim-Y.-Ye 2011]

Every Ŷ admits an orthogonal decomposition adapted to G ,

Ŷ = Ŷ (1) + Ŷ (2) + Ŷ (3), (5)

where
Ŷ

(1)
ij = ŝi − ŝj , for some ŝ ∈ RV , (6)

Ŷ
(2)
ij + Ŷ

(2)
jk + Ŷ

(2)
ki = 0, for each {i , j , k} ∈ T , (7)∑

j∼i
ωij Ŷ

(2)
ij = 0, for each i ∈ V . (8)
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HodgeRank on Graphs

Harmonic and Triangular Curl
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Figure: Left: example of Ŷ (2), harmonic; Right: example of Ŷ (3), curl.
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HodgeRank on Graphs

Global Rating Score

The minimal norm least square solution ŝ satisfies the normal eq.

∆0ŝ = δ∗0Ŷ , (9)

where

∆0 = δ∗0 · δ0 is the unnormalized graph Laplacian defined by
(∆0)ii =

∑
j∼i ωij and (∆0)ij = −ωij

δ0 : RV → RE defined by (δ0v)(i , j) = vi − vj

δ∗0 = δT0 W : RE → RV , W = diag(ωij), the adjoint of δ0

Spielman-Teng, Koutis-Miller-Peng et al. give provable
almost-linear algorithms with suitable preconditioners
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HodgeRank on Graphs

Local vs. Global Inconsistencies

Residues Ŷ (2) and Ŷ (3) accounts for inconsistencies, in different
nature, which can be used to analyze rater’s credibility or videos’
confusion level .

Define a 3-clique complex χG = (V ,E ,T ) where
• T collects all 3-cliques (complete subgraphs) {i , j , k}
Ŷ (3), the local inconsistency, triangular curls

• Ŷ (3)
ij + Ŷ

(3)
jk + Ŷ

(3)
ki 6= 0 , {i , j , k} ∈ T

Ŷ (2), the global inconsistency, harmonic ranking
• Ŷ (2) vanishes if 1-homology of χG vanishes
• harmonic ranking is a circular coordinate and generally
non-sparse ⇒ fixed tournament issue
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HodgeRank on Graphs

1-D Hodge Laplacian

Define 1-coboundary map

δ1 : sl(E ) ⊂ RV×V → RV×V×V

X 7→ ±(Xij + Xjk + Xki )ijk

where sl(E ) is skew-symmetric matrix on E .

δ∗1 is the adjoint of δ1.

Define 1-Laplacian

∆1 = δ0 ◦ δ∗0 + δ∗1 ◦ δ1

dim(ker ∆1) = β1

Ŷ (2) = projker ∆1
Ŷ
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Random Graph Models

Random Graph Models for Crowdsourcing

Recall that in crowdsourcing ranking on internet,
• unspecified raters compare item pairs randomly
• online, or sequentially sampling

random graph models for experimental designs
• P a distribution on random graphs, invariant under
permutations (relabeling)
• Generalized de Finetti’s Theorem [Aldous 1983, Kallenberg
2005]: P(i , j) (P ergodic) is an uniform mixture of

h(u, v) = h(v , u) : [0, 1]2 → [0, 1],

h unique up to sets of zero-measure
• Erdös-Rényi: P(i , j) = P(edge) =

∫ 1
0

∫ 1
0 h(u, v)dudv =: p

Yuan Yao HodgeRank on Random Graphs



Outline Motivation HodgeRank on Random Graphs Application Discussions

Random Graph Models

Why Topology?

To get a faithful ranking, two topological conditions important:

Connectivity: G is connected, then an unique global ranking is
possible;

Loop-free: χG is loop-free, if one would like to avoid the
fixed-tournament issue when Harmonic ranking is large.
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Random Graph Models

Persistent Homology: online algorithm for topological
change of evolutionary graphs

Figure: Persistent Homology Barcodes

vertice, edges, and
triangles etc.
sequentially added

online update of
homology

O(m) for surface
embeddable complex;
and O(m3) in general
(m number of
simplex)
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Random Graph Models

Phase Transitions in Erdös-Rényi Random Graphs
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Random Graph Models

Phase Transitions of Large Random Graphs

For an Erdos-Renyi random graph G (n, p) with n vertices and each
edge independently emerging with probability p(n),

(Erdös-Rényi 1959) One phase-transition for β0

• p << 1/n1+ε (∀ε > 0), almost always disconnected
• p >> log(n)/n, almost always connected

(Kahle 2009) Two phase-transitions for βk (k ≥ 1)
• p << n−1/k or p >> n−1/(k+1), almost always βk vanishes;
• n−1/k << p << n−1/(k+1), almost always βk is nontrivial

For example: with n = 16, 75% distinct edges included in G , then
χG with high probability is connected and loop-free. In general,
O(n log(n)) samples for connectivity and O(n3/2) for loop-free.
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Random Graph Models

An Intuition from Random Matrix Theory

Concentration of eigenvalues (Chung-Radcliffe 2011)

|λi (∆̃0)− λi (∆̄0)| ≤ O

(√
np log

n

δ

)
where

∆̄0(i , j) = npIn − peeT =

{
−p, i 6= j
(n − 1)p, i = j

has one eigenvalue 0, and one eigenvalue np of multiplicity n − 1

p >> n−1 log n, almost always large eigenvalues np = Ω(1);

p << n−1−ε, almost always small eigenvalues np = o(1);
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Random Graph Models

1-Laplacian Splits

∆̃
(l)
1 (ij , kl) = δ0 ◦ δ∗0 =

{
2Xij → 2p, {i , j} = {k , l}
ξ

(l)
ij ,klXijXjk → ξ

(l)
ij ,klp

2, otherwise

where lower-coincidence number ξ
(l)
ij ,kl = ±1 if |{i , j} ∩ {k , l}| = 1

and 0 otherwise.

∆̃
(u)
1 (ij , kl) = δ∗1◦δ1 =

{ ∑
ijτ∈T XijXjτXτ i → (np)(np2)n

log np2 , ij = kl

ξ
(u)
ij ,klXijXjkXki → ξ

(u)
ij ,klp

3, otherwise

where upper-coincidence number ξ
(u)
ij ,kl = ±1 if |{i , j} ∪ {k , l}| = 3

and 0 otherwise.

Forman (2003): Ric∆̄1
(ij) = diagonal - sum of abs(off-diag)

p << n−1 or p >> n−1/2, ∆̄1 strongly diagonal dominant
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Online Learning Algorithms

Online HodgeRank as Stochastic Approximations

Robbins-Monro (1951) algorithm for Āx = b̄

xt+1 = xt − γt(Atxt − bt), E(At) = Ā, E(bt) = b

Now consider ∆0s = δ∗0Ŷ , with new rating Yt(it+1, jt+1)

st+1(it+1) = st(it+1)− γt [st(it+1)− st(jt+1)− Yt(it+1, jt+1)]

st+1(jt+1) = st(jt+1) + γt [st(it+1)− st(jt+1)− Yt(it+1, jt+1)]

Note:

updates only occur locally on edge {it+1, jt+1}
initial choice: s0 = 0 or any vector

∑
i s0(i) = 0

step size (Smale-Yao 2006, Ying-Pontil 2007, etc.)
• γt = (t + c)−θ (θ ∈ (0, 1])
• γt = const(T ), .e.g. 1/T where T is total sample size
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Online Learning Algorithms

Averaging Process (Ruppert 1988; Y. 2010)

A second stage averaging process, following st+1 above

zt+1 =
t

t + 1
zt +

1

t + 1
st+1

with z0 = s0.
Note:

Averaging process speeds up convergence for various choices
of γt

One often choose γt = c to track dynamics

In this case, zt converges to ŝ (population solution), with
probability 1− δ, in the (optimal) rate

‖zt − ŝ‖ ≤ O

(
t−1/2 · κ(∆0) · log1/2 1

δ

)
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Subjective Video Quality Evaluation

Data Description

Dataset: LIVE Database
10 different reference videos and 15 distorted versions of each
reference, for a total of 160 videos.
32 rounds of complete comparisons are collected from 209
observers in lab. Because each round needs 1200 paired
comparisons, the total number of comparisons for 32 rounds is
38400 = 32× 1200.
Note: we do not use the subjective scores in LIVE, we only
borrow the video sources it provides.

Figure: Data collected from PKU junior undergraduates.
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Subjective Video Quality Evaluation

HodgeRank with Complete Data

Figure: Angular Transform and Uniform models are the best two.
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Subjective Video Quality Evaluation

Globa/Harmonic and Local/Triangular Inconsistency

Figure: Harmonic inconsistency accounts for more than 50% total
inconsistency before 25% edges, and rapidly drops to zero after 70%
edges (p ∼ n−1/2)
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Subjective Video Quality Evaluation

Sampling Efficiency
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Subjective Video Quality Evaluation

Convergence of Online Learning Algorithms
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Discussions

Erdös-Rényi random graphs give the simpliest sampling
scheme, comparable to I.I.D. sampling in machine learning

General random graphs (unlabeled) can use nonparametric
models derived from generalized de Finetti’s theorem (Bickel,
Chen 2009)

For computational concern, consider random graphs with
small condition numbers, e.g. expanders

For balancing concern, consider random k-regular graphs

For top ranked videos, preference attachement models

Markov sampling (Aldous, Vazirani 1990; Smale, Zhou 2007)

Concentration inequalities with dependent random variables
for high-dim Laplacians
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