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1 Introduction

We will discuss some results from two papers, the first
[IBSSS| ”An Abstract Hodge Theory” is joint work
with L. Bartholdi, T. Schick and S. Smale, and the
second [SS| ” Abstract and Classical Hodge-De Rham
Theory is joint work with S. Smale.
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In [BSSS], a version of Hodge and De Rham theory
was proposed for metric spaces, which would describe
the topology at a fixed scale. It was shown that the
cohomology was isomorphic to the classical De Rham
cohomology at small scales in the case of a Riemann-
ian manifold M. In [SS], concrete chain maps were
constructed between the classical differential forms
on M and the chain complex constructed in [BSSS],
which induce isomorphisms on cohomology.

2 Classical De Rham and Hodge Theory

Let M be a smooth, compact manifold of dimension
n. We will denote by QF(M), k& = 0,1,...,n the
smooth differential k forms. Thus, Q°(M) = C>°(M)
and for z € M and w € QF (M), w(x) is an alternating
k-linear function on the tangent space at xr. Further-
more, let di : QF(M) — QFFY(M) be the exterior
derivative. Then

dp+10dp =0
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and we have the De Rham co-chain complex

0— QM) S ') S S an M) S0

Since d* = 0, Imd C Kerd and we can form the
quotient space, which is the De Rham cohomology:

Ker dj.
Hf)R(M) — Tm dj,_1

The De Rham theorem states that H¥ (M) is a topo-
logical invariant of M and is in fact isomorphic to the
singular cohomology of M.

Now suppose that M has a Riemannian metric <
., >, (a smoothly varying inner product on T,.M).
Then there is an induced inner product on the al-
ternating k-tensors on 1, M, and thus on differential
forms:

< w,b >:/ <w(x),0(x) >, dr
M

for w,0 € QF(M), where dx is the volume form on
M. The exterior derivative

d: QF (M) — QFFL (M)
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has a formal adjoint
d* : QF L — QF (M)

also a first order linear differential operator. The
Hodge Laplacian is the second order elliptic opera-

tor
A =dd* +d*d : Q¥ (M) — QF (M)

The classical Hodge theorem is

Hodge Theorem. For k = 0,...,n, we have the
orthogonal direct sum decomposition

QF (M) = Image (d) ® Image (d*) ® Kernel A

and Kernel A is isomorphic to HY »(M).

3 Abstract De Rham/Hodge Theory

In [BSSS| we propose, and partially develop an anal-

ogous Hodge-De Rham theory for metric spaces. Let
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X, d be a compact metric space (even for example a
finite data set). Also, let u be a Borel probability

measure on X. We will also fix a scale a > 0. On the
k + 1 fold product of X

Xl X x...x X
we define the metric

d" T (z,y) = ,L.:Dgaxkd(af@', Y;)

for z,y € X**t1. We denote by D**! the diagonal
{(t,...,t):t € X} in X*T1 and the a neighborhood
of the diagonal

Ul = { € XFHL . @* (g, DPTY) < )

That is = (xq,...,2) € UL if and only if there
is a t € X such that d(z;,t) < a forall i =0,..., k.
Such a t is called a witness for z. The set of witnesses
for x is called the witness set wy (), and x € UFT!
precisely when

W (T) = m?:OBa(aji) # 0
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The product measure ! induces a measure on U}
and the basic spaces of co-chains (analogous to k-
forms ) are the alternating real valued L? functions
on UKL L2(U*T1). We define the co-boundary op-
erator

5 L2(UF) — L2(UF)

by

k

6]8(3307 Tt 7£Ek) — Z(_l)i+1f($07 Tt 7'@717 e 7$k)

1=0

Proposition. The operator
0 Ly(Uy) — La(Us™)

s a bounded operator of Hilbert spaces, and d od = 0.

The following co-chain complex is analogous to the
De Rham complex

0— L2(X) D L2(UH S .. S w2y S .
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and we denote the corresponding cohomology by

_Ker5
“  Imé

k
HEY,

This can be thought of as a cohomology at scale «.
From the above proposition, d has a bounded adoint

5 1 LA(UEY) - 12(UF)

and one can show that is given by

5*]0(3307---7331@—1) — (k—f—2)/ f(t,CCO,...,ZI]k_l)dt

S
where
Seoan, =it € X : (t,xo,...,o4_1) € U
The corresponding Hodge operator at scale o
Ao =060%+6%0: L2 (UM — L2(UF)

is a bounded, self adjoint positive operator of Hilbert
spaces. A natural question in this context is
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Hodge Question at Scale a. Under what condi-
tions on X,d, u,a do we have

LU = Imé @ Im6* @ Ker A o

and Ker Ay o s isomorphic to Hfg .

In [BSSS] some sufficient conditions are given on «
and d. Roughly, the witness set

we : UFT = IC(X)

must be continuous (here K(X) is the metric space
of compact subsets of X with the Hausdorff metric),
and the radius of intersections of a balls must be
controlled. As a special case, it is shown to be con-
sistent with the classical Hodge/De rham theory for
Riemannian manifolds at small scales.

Theorem. Let X, g be a compact Riemannian man-
ifold. Then for a > 0 sufficitently small, the answer
to the Hodge question above is affirmative, and fur-
thermore Ker Ay, o, is isomorphic to HY (X)) as well
as H?,?,a'



The proof is a bit lengthy and is carried out using a
bi-complex argument.

4 An Explicit Isomorphism

The proof of the theorem in [BSSS| does not give an
explicit isomorphism between HY (X) and H 52’(1.
In [SS], we construct a a co-chain map (in the case of
a Riemannian manifold and small /) between the De
Rham complex and the L?, o complex which induces
isomorphisms on cohomology. Let M be a compact
Riemannian manifold, and let a > 0 be small enough
so that closed balls of radius 2a are strictly convex.
We construct a co-chain map, that is for each £, a
linear map

U QF(M) — L2(UF
such that
Vod=0oW

For (zq, ..., x1) € UM we define a smooth k-simplex
S(xg, ..., o) in M inductively on k. S(xqg, 1) is just
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the minimizing geodesic from xy to x1. S(zg,x1,x2)
is the union of geodesics from x5 to points on S(xq, x1),
and so on. We then define

o : QF (M) — LU

by
(\If()w)(afo,...,ajk) :/ W
S(xOr'ka)

In general, Yow will not be alternating, unless k£ =
0,1 or M has constant curvature. We therefore alter-
nate Wow and define

Vw(zg, ..., o) = Alt (Pow)(zq, ..., Tk)

Theorem. ¥ is a co-chain map of co-chain com-
plexes, and induces an isomorphism on cohomology.

The proof that W is a co-chain map is essentially
Stoke’s theorem. The proof that W is an isomorphism

on cohomology follows from essentially constructing
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a left inverse for ¥, and using the fact from|BSSS]
that the cohomology groups have the same dimen-
sion. To describe the left inverse, which we will call @,
note that Ww is actually a smooth alternating func-
tion. That is, W is really a co-chain map into the
sub-complex

0— C®(X) 2 CoU2) % ... L oWk S ...

In [BSSS]| it was shown that the inclusion map from
this complex to the L? complex induces an isomor-
phism on cohomology, thus it suffices to define the

left inverse ® on smooth alternating functions. In
fact, if we define ® : C°(UK+1) — QF (M) by

(L)) (v1,...,v) =D f(p,t1,... te)(v1,. .., vk)

for p € M and vy,...,v; € T,M (derivatives taken
at t; = p), then it can be shown that &V = Id.
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5 Further results

It is shown that in general, for a harmonic 1 form w,
Ww is harmonic in the abstract sense, and so V¥ is an
isomorhism between harmonic 1 forms, and harmonic
functions on U2. For the flat nm-dimensional torus,
¥ takes harmonic k-forms to harmonic functions on
URT! for all k. We conjecture that this might be true
for constant curvature in general.

For k£ = 0, we can compare the classical and abstract
Hodge Laplacian since both act on functions on M.
When appropriately scaled, the a-Laplacian is close
to the classical Laplacian.

Theorem. There is a universal constant c,, such that
for a C? function f on M, we have

|Af = o "2 A0 fllow < C| fllcsa
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