Stratification Learning through Homology Inference
 ICIAM 2011

Sayan Mukherjee

Departments of Statistical Science, Computer Science, Mathematics
Institute for Genome Sciences \& Policy, Duke University Joint work with:
Bei Wang (University of Utah), Paul Bendich (Duke University)

July 18, 2011
(1) Introduction

- Local homology and persistence
(2) Homology inference theorems
(3) Algorithmics
- Simulated examples

4 Conclusion

Manifold learning

Manifold learning

1. Build better predictive models, dimension reduction.

Manifold learning

Manifold learning

1. Build better predictive models, dimension reduction.
2. Function estimation: fewer variables/more compact representation.

Manifold learning

Manifold learning

1. Build better predictive models, dimension reduction.
2. Function estimation: fewer variables/more compact representation.
3. Modeling parameter space: faster mixing in Markov chains.

Stratification learning

Stratification learning: singularities, mixed dimension

Stratification

1. Decompose into manifold pieces (strata).
2. Pieces fit "nicely" - Whitney conditions.

Stratification learning

Clustering: points whose local structure glue together nicely belong to the same cluster.

Sampling a stratified space

Remove the problems of singularities and varying dimension:

- M_{1} : a mixture model. Lebesgue measure $\mu_{i}\left(\mathbb{S}_{i}\right)$ on the closure of each maximal strata, with corresponding density ν_{i}

$$
f(x)=\sum_{i=1}^{K} \frac{1}{K} \nu_{i}(X=x)
$$

Sampling a stratified space

Remove the problems of singularities and varying dimension:

- M_{1} : a mixture model. Lebesgue measure $\mu_{i}\left(\mathbb{S}_{i}\right)$ on the closure of each maximal strata, with corresponding density ν_{i}

$$
f(x)=\sum_{i=1}^{K} \frac{1}{K} \nu_{i}(X=x)
$$

- M_{2} : replace \mathbb{X} by a slightly thickened version $\mathbb{X} \equiv \mathbb{X}_{\delta}$. Placing an appropriate measure on the highest dimensional strata to ensure that lower dimensional strata will be sampled from.

Informal learning statement

Given $U=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \stackrel{i i d}{\sim} f(x)$ for what n can we state with probability $1-\delta$ that we correctly group points in the same strata together.

Stratification learning at multi-scale

Our goal: clustering points, study multi-scale stratified structure.

Coming up next: a gentle introduction to local homology and persistence.

Local structure

Points in the same strata have same local structure.

x

y

Local homology

Local homology is a tool to study local structure.

What is homology? Count "components" or "holes".

cookie

cookie with holes

basketball

Local homology intersection map

How are local structures of two nearby points "glued together"? Map local structure to the neighborhood intersection.

kernel not empty \equiv local structures disappear during mapping \Rightarrow not the same local structure.

Local homology intersection map

Cokernel not empty \equiv extra local structures exist in the intersection \Rightarrow not the same local structure.

Local homology intersection map

Kernel/cokernel both empty \equiv local structures have one-to-one correspondance \Rightarrow same local structure.

Persistent homology philosophy

Persistent homology studies multi-scale features ("holes") of spaces:

1. If the space is known, gives multi-scale representation of its features.
2. Given a point cloud sample, it describes features at different resolution. It separates features from noise.
3. Here, we explain the theories assuming ideal spaces, later on replacing the spaces with point cloud samples.

Persistent homology

A tool to study multiscale features ("holes") of space.
Some holes are larger (more persistent) than others. We simulate the scale by "thickening" the space.

Persistent homology

A tool to study multiscale features ("holes") of space.
Some holes are larger (more persistent) than others. We simulate the scale by "thickening" the space.

Persistent homology

A tool to study multiscale features ("holes") of space.
Some holes are larger (more persistent) than others. We simulate the scale by "thickening" the space.

Persistent homology

A tool to study multiscale features ("holes") of space.
Some holes are larger (more persistent) than others. We simulate the scale by "thickening" the space.

Persistent homology

A tool to study multiscale features ("holes") of space.
Some holes are larger (more persistent) than others. We simulate the scale by "thickening" the space.

Persistent homology

A tool to study multiscale features ("holes") of space.
Some holes are larger (more persistent) than others. We simulate the scale by "thickening" the space.

Kernel persistent homology

Study extra local structure in the kernel with high persistence.

Kernel persistent homology: example

Kernel persistent homology: example

Kernel persistent homology: example

Kernel persistent homology: example

Kernel persistent homology: example

Kernel persistent homology for point cloud

Persistence diagram stability

If two spaces are ϵ close (Haussdorff) the diagrams are ϵ close (Wasserstein).

Kernel persistence diagram stability

Kernel persistence diagram stability

What ϵ ?

Minimum feature size

Minimum feature size (mfs) : minimum non-zero thickening parameter where local structures changes.

Local topological homology inference

Given ϵ-approximation where $\epsilon<\mathrm{mfs} / 4$, if (co)kernel persistence diagrams contain no points in $[0, \epsilon] \times[3 \epsilon, \infty]$ then x, y are locally equivalent, $x \sim_{r} y$.

Local homology inference theorem

Theorem (Local homology theorem)

Given an ϵ-sample U from \mathbb{X}. For a pair of points $p, q \in \mathbb{R}^{d}$ with $m f s(p, q, r) \geq 4 \epsilon, p \sim_{r} q$ iff

$$
\operatorname{Dgm}\left(\operatorname{ker} \phi_{p, q}^{U}\right)[\epsilon, 3 \epsilon] \cup \operatorname{Dgm}\left(\operatorname{cok} \phi_{p, q}^{U}\right)[\epsilon, 3 \epsilon]=\emptyset
$$

Strata inference theorem

Theorem (Strata clustering theorem)

Given an ϵ-sample U from \mathbb{X} with $m f s(p, q, r) \geq 4 \epsilon \forall p, q \in U$, each cluster C_{i} is the transitive closure of $p, q \in U$ with $p \sim_{r} q$.

Points in each C_{i} belong to the same stratum (at resolution r).

Probabilistic local homology inference

$$
U=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \stackrel{i i d}{\sim} f(x) .
$$

For $n>n_{0}$ with prob $\geq 1-\xi$ we can infer local homology where $n_{0}(\xi, r, m f s, \operatorname{vol}(\mathbb{X}))$.

If we do not sample enough points, locally the homology inference fails.

Probabilistic local homology inference

Theorem (Probabilistic local homology theorem)

Let $U=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \stackrel{i i d}{\sim} f(x)$ For a pair of points $p, q \in U$ with $\rho=m f s(p, q, r)$ and

$$
v(\rho)=\inf _{x \in \mathbb{X}} \frac{\operatorname{vol}\left(B_{\rho / 24}(x) \cap \mathbb{X}\right)}{\operatorname{vol}(\mathbb{X})}
$$

If

$$
n \geq n_{0}=\frac{1}{v(\rho)}\left(\log \frac{1}{v(\rho)}+\log \frac{1}{\xi}\right)
$$

then $p \sim_{r} q$ with prob $\geq 1-\xi$.

Probabilistic homology inference

Theorem (Probabilistic homology theorem)

Let $U=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \stackrel{i i d}{\sim} f(x)$, set $\rho_{\min }=\min _{p, q \in U} \operatorname{mfs}(p, q, r)$ and

$$
v\left(\rho_{\min }\right)=\inf _{x \in \mathbb{X}} \frac{\operatorname{vol}\left(B_{\rho_{\min } / 24}(x) \cap \mathbb{X}\right)}{\operatorname{vol}(\mathbb{X})}
$$

Each cluster C_{i} is the transitive closure of $p, q \in U$ with $p \sim_{r} q$. Points in each C_{i} belong to the same stratum (at resolution r).

Compute simplicial complexes

Compute local structure through simplicial complexes.

Compute simplicial complexes

Compute local structure through simplicial complexes.

Graph embedding

- Weight matrix: $W(p, q)=h\left(\operatorname{Dgm}\left(\operatorname{ker} \phi_{p, q}^{U}\right), \operatorname{Dgm}\left(\operatorname{cok} \phi_{p, q}^{U}\right)\right)$.

Graph embedding

- Weight matrix: $W(p, q)=h\left(\operatorname{Dgm}\left(\operatorname{ker} \phi_{p, q}^{U}\right), \operatorname{Dgm}\left(\operatorname{cok} \phi_{p, q}^{U}\right)\right)$.
- $D(p, p)=\sum_{q} W(p, q)$

Graph embedding

- Weight matrix: $W(p, q)=h\left(\operatorname{Dgm}\left(\operatorname{ker} \phi_{p, q}^{U}\right), \operatorname{Dgm}\left(\operatorname{cok} \phi_{p, q}^{U}\right)\right)$.
- $D(p, p)=\sum_{q} W(p, q)$
- Graph Laplacian: $L=D-W$

Graph embedding

- Weight matrix: $W(p, q)=h\left(\operatorname{Dgm}\left(\operatorname{ker} \phi_{p, q}^{U}\right), \operatorname{Dgm}\left(\operatorname{cok} \phi_{p, q}^{U}\right)\right)$.
- $D(p, p)=\sum_{q} W(p, q)$
- Graph Laplacian: $L=D-W$
- Eigen-decomposition: $L v=\lambda v$

Graph embedding

- Weight matrix: $W(p, q)=h\left(\operatorname{Dgm}\left(\operatorname{ker} \phi_{p, q}^{U}\right), \operatorname{Dgm}\left(\operatorname{cok} \phi_{p, q}^{U}\right)\right)$.
- $D(p, p)=\sum_{q} W(p, q)$
- Graph Laplacian: $L=D-W$
- Eigen-decomposition: $L v=\lambda v$
- Embed: $\Phi(p): p \rightarrow\left(v_{1}(p), \ldots, v_{m}(p)\right), \quad \forall p \in U$

Graph embedding

- Weight matrix: $W(p, q)=h\left(\operatorname{Dgm}\left(\operatorname{ker} \phi_{p, q}^{U}\right), \operatorname{Dgm}\left(\operatorname{cok} \phi_{p, q}^{U}\right)\right)$.
- $D(p, p)=\sum_{q} W(p, q)$
- Graph Laplacian: $L=D-W$
- Eigen-decomposition: $L v=\lambda v$
- Embed: $\Phi(p): p \rightarrow\left(v_{1}(p), \ldots, v_{m}(p)\right), \quad \forall p \in U$
- Cluster: n points in \mathbb{R}^{m-1}.

Data

Distance based weight matrix 3D embedding

Ker/Cok weight matrix 3D embedding

Open problems

- Faster algorithms in practice: Rips/Witness complexes, dimension reduction, random projection.

Open problems

- Faster algorithms in practice: Rips/Witness complexes, dimension reduction, random projection.
- Scaling with dimension.

Open problems

- Faster algorithms in practice: Rips/Witness complexes, dimension reduction, random projection.
- Scaling with dimension.
- Robustness of clustering, combinatorial Laplacian.

Open problems

- Faster algorithms in practice: Rips/Witness complexes, dimension reduction, random projection.
- Scaling with dimension.
- Robustness of clustering, combinatorial Laplacian.
- Fractional weights between pairs of points, probabilistic inference.

Open problems

- Faster algorithms in practice: Rips/Witness complexes, dimension reduction, random projection.
- Scaling with dimension.
- Robustness of clustering, combinatorial Laplacian.
- Fractional weights between pairs of points, probabilistic inference.
- Estimation of dimension of strata.

Towards Stratification Learning through Homology Inference http://ftp.stat.duke.edu/WorkingPapers/10-18.html

Acknowledgments

Herbert Edelsbrunner, John Harer, Shmuel Weinberger, Partha Niyogi, Mikael Vejdemo-Johansson, David Cohen-Steiner, Dmitriy Morozov, Yuriy Mileyko, Chao Chen, Brittany Terese Fasy, Michael Kerber

Acknowledgments

Herbert Edelsbrunner, John Harer, Shmuel Weinberger, Partha Niyogi, Mikael Vejdemo-Johansson, David Cohen-Steiner, Dmitriy Morozov, Yuriy Mileyko, Chao Chen, Brittany Terese Fasy, Michael Kerber

Funding:

- Center for Systems Biology at Duke
- NSF DMS and CCF
- AFOSR
- NIH

