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Manifold learning

Manifold learning

1. Build better predictive models, dimension reduction.

2. Function estimation: fewer variables/more compact
representation.

3. Modeling parameter space: faster mixing in Markov chains.
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Stratification learning

Stratification learning: singularities, mixed dimension
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Stratification

= + + +

1. Decompose into manifold pieces (strata).

2. Pieces fit “nicely” – Whitney conditions.
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Stratification learning

Clustering: points whose local structure glue together nicely
belong to the same cluster.
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Sampling a stratified space

Remove the problems of singularities and varying dimension:

M1 : a mixture model. Lebesgue measure µi(Si) on the
closure of each maximal strata, with corresponding density νi

f(x) =

K∑
i=1

1

K
νi(X = x).

M2 : replace X by a slightly thickened version X ≡ Xδ.
Placing an appropriate measure on the highest dimensional
strata to ensure that lower dimensional strata will be sampled
from.
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Informal learning statement

Given U = {x1, x2, ..., xn}
iid∼ f(x) for what n can we state with

probability 1− δ that we correctly group points in the same strata
together.
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Stratification learning at multi-scale

Our goal: clustering points, study multi-scale stratified structure.

r1 r2

Coming up next: a gentle introduction to local homology and
persistence.
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Local structure

Points in the same strata have same local structure.

y

y

x

x
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Local homology

Local homology is a tool to study local structure.

What is homology? Count “components” or “holes”.

cookie cookie with holes basketball
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Local homology intersection map

How are local structures of two nearby points “glued together”?
Map local structure to the neighborhood intersection.

γ1
α1 β1

γ1 β1
α1

α2

α3

α2

α3

f g

kerf

yx

x y

kernel not empty ≡ local structures disappear during mapping ⇒
not the same local structure.
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Local homology intersection map

γ1α1 β1

α1 γ1 β1

f g

γ2

γ2

cokf

β2

β2

x y

x y

Cokernel not empty ≡ extra local structures exist in the
intersection ⇒ not the same local structure.
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Local homology intersection map

Kernel/cokernel both empty ≡ local structures have one-to-one
correspondance ⇒ same local structure.
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α1 γ1 β1
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x y

x y
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Persistent homology philosophy

Persistent homology studies multi-scale features (“holes”) of spaces:

1. If the space is known, gives multi-scale representation of its features.

2. Given a point cloud sample, it describes features at different
resolution. It separates features from noise.

3. Here, we explain the theories assuming ideal spaces, later on
replacing the spaces with point cloud samples.
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Persistent homology

A tool to study multiscale features (“holes”) of space.
Some holes are larger (more persistent) than others.
We simulate the scale by “thickening” the space.
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Kernel persistent homology

Study extra local structure in the kernel with high persistence.

(a) (b)

(c)

yxyx

yx
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Kernel persistent homology: example
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Kernel persistent homology: example
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Kernel persistent homology: example
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Kernel persistent homology: example
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Kernel persistent homology for point cloud
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Persistence diagram stability

If two spaces are ε close (Haussdorff) the diagrams are ε close
(Wasserstein).
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Kernel persistence diagram stability
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Kernel persistence diagram stability
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Minimum feature size

Minimum feature size (mfs) : minimum non-zero thickening
parameter where local structures changes.
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Local topological homology inference

Given ε-approximation where ε < mfs/4, if (co)kernel persistence
diagrams contain no points in [0, ε]× [3ε,∞] then x, y are locally
equivalent, x ∼r y.
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Local homology inference theorem

Theorem (Local homology theorem)

Given an ε-sample U from X. For a pair of points p, q ∈ Rd with
mfs(p, q, r) ≥ 4ε, p ∼r q iff

Dgm(kerφUp,q)[ε, 3ε] ∪Dgm(cokφUp,q)[ε, 3ε] = ∅.
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Strata inference theorem

Theorem (Strata clustering theorem)

Given an ε-sample U from X with mfs(p, q, r) ≥ 4ε ∀p, q ∈ U , each
cluster Ci is the transitive closure of p, q ∈ U with p ∼r q.

Points in each Ci belong to the same stratum (at resolution r).
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Probabilistic local homology inference

U = {x1, x2, ..., xn}
iid∼ f(x).

For n > n0 with prob ≥ 1− ξ we can infer local homology where
n0(ξ, r,mfs, vol (X)).

If we do not sample enough points, locally the homology inference fails.
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Probabilistic local homology inference

Theorem (Probabilistic local homology theorem)

Let U = {x1, x2, ..., xn}
iid∼ f(x) For a pair of points p, q ∈ U with

ρ = mfs(p, q, r) and

v(ρ) = inf
x∈X

vol (Bρ/24(x) ∩ X)

vol (X)
.

If

n ≥ n0 =
1

v(ρ)

(
log

1

v(ρ)
+ log

1

ξ

)
,

then p ∼r q with prob ≥ 1− ξ.
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Probabilistic homology inference

Theorem (Probabilistic homology theorem)

Let U = {x1, x2, ..., xn}
iid∼ f(x), set ρmin = minp,q∈U mfs(p, q, r)

and

v(ρmin) = inf
x∈X

vol (Bρmin/24(x) ∩ X)

vol (X)
.

Each cluster Ci is the transitive closure of p, q ∈ U with p ∼r q.

Points in each Ci belong to the same stratum (at resolution r).
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Compute simplicial complexes

Compute local structure through simplicial complexes.
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Compute simplicial complexes

Compute local structure through simplicial complexes.
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Graph embedding

Weight matrix: W (p, q) = h(Dgm(kerφUp,q),Dgm(cokφUp,q)).

D(p, p) =
∑

qW (p, q)

Graph Laplacian: L = D −W
Eigen-decomposition: Lv = λv

Embed: Φ(p) : p→ (v1(p), ..., vm(p)), ∀p ∈ U
Cluster: n points in Rm−1.
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Data
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Distance based weight matrix 3D embedding
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Ker/Cok weight matrix 3D embedding
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Open problems

Faster algorithms in practice: Rips/Witness complexes,
dimension reduction, random projection.

Scaling with dimension.

Robustness of clustering, combinatorial Laplacian.

Fractional weights between pairs of points, probabilistic
inference.

Estimation of dimension of strata.
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Paper for talk

Towards Stratification Learning through Homology Inference
http://ftp.stat.duke.edu/WorkingPapers/10-18.html
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