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Motivating example

Vector Poisson equation on a plane domain

curl curl u − grad div u = f in Ω (mod H),

u · n = 0, curl u × n = 0, u ⊥ H on ∂Ω

Just the Hodge Laplacian for 1-forms: d∗d u + d d∗ u = f (mod H)

Weak formulation: find u ∈ H(curl) ∩ H̊(div)∩H⊥ such that∫
Ω

(curl u·curl v+div u div v) dx =

∫
Ω

f ·v dx , v ∈ H(curl)∩H̊(div)∩H⊥

Variational formulation:

u = arg min
H(curl)∩H̊(div)∩H⊥

(
1
2

∫
Ω
| curl u|2 + | div u|2 dx −

∫
Ω

f · u dx)
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Standard finite elements do not work

f = (0, x)

f = (−1, 0)

P1 elements

P1 elements
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Hilbert complexes
and their

discretization

Hilbert complexes

We view the exterior derivative d as a closed unbounded operator
L2Λk → L2Λk+1 with domain

HΛk = { u ∈ L2Λk | du ∈ L2Λk+1 }.

Resulting structure is a closed Hilbert complex, which abstracts the
de Rham complex:

Hilbert spaces W 0, W 1, . . . , W n;

Densely defined closed operators W k dk

−→ W k+1 with domain
V k ⊂ W k and closed range Bk+1, satisfying:

dk−1 ◦ dk = 0 (i.e., Bk ⊂ Zk := ker dk ⊂ V k )

Defining ‖v‖2
V k = ‖v‖2

W k + ‖dv‖2
W k+1 , we get a complex of Hilbert spaces

0→ V 0 d−→ V 1 d−→ · · · d−→ V n → 0

with associated cohomology spaces Zk/Bk
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Properties of closed Hilbert complexes

Adjoint complex: d∗k is densely-defined, closed, w/ closed range

0← V ∗0
d∗←− V ∗1

d∗←− · · · d∗←− V ∗n ← 0

Abstract Hodge Laplacian: d d∗ + d∗d : W k → W k

Harmonic forms: Zk/Bk ≡ Zk ∩Bk⊥ = ker(d d∗ + d∗d) := Hk

Hodge decomposition: W k = Bk ⊕ Hk︸ ︷︷ ︸
Zk

⊕ B∗k︸︷︷︸
Zk⊥

Poincaré inequality: ∃ c such that ‖u‖ ≤ c‖du‖ ∀u ∈ Zk⊥ ∩ V k
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Mixed formulation of the (abstract) Hodge Laplacian

σ = d∗u, dσ + d∗du = f (mod H), u ⊥ H

Weak formulation: Given f ∈ W k , find σ ∈ V k−1, u ∈ V k , p ∈ Hk :

〈σ, τ〉 − 〈dτ, u〉 = 0 ∀τ ∈ V k−1

〈dσ, v〉+ 〈du, dv〉+〈p, v〉 = 〈f , v〉 ∀v ∈ V k

〈u, q〉 = 0 ∀q ∈ Hk

Variational formulation:

1
2
〈σ, σ〉 − 1

2
〈du, du〉 − 〈dσ, u〉−〈u, p〉+ 〈f , u〉 → saddle point
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Well-posedness of the mixed formulation

Theorem: ∀ (σ, u, p) ∈ V k−1×V k×Hk ∃ (τ, v , q) ∈ V k−1×V k×Hk

1. Bounded: ‖τ‖V + ‖v‖V + ‖q‖ ≤ C(‖σ‖V + ‖u‖V + ‖p‖)

2. Coercing: B ≥ c(‖σ‖2
V + ‖u‖2

V + ‖p‖2)

where B := 〈σ, τ〉 − 〈dτ, u〉+ 〈dσ, v〉+ 〈du, dv〉+ 〈p, v〉 − 〈u, q〉.

Hodge decompose u = dη + s + z with η ∈ (Zk−1)⊥, s ∈ Hk , z ∈ (Zk )⊥

Choose τ = σ − εη, v = u + dσ + p, q = p − s:

B = ‖σ‖2 + ‖dσ‖2 + ε‖dη‖2 + ‖s‖2 + ‖du‖2 + ‖p‖2 − ε〈σ, η〉.

ε〈σ, η〉 ≤ 1
2‖σ‖

2 + ε2

2 ‖η‖
2; and, by Poincaré ineq, ‖η‖ ≤ cP‖dη‖, so

ε = c−2
P =⇒

B(σ, u, p; τ, v , q) ≥ c(‖σ‖2 +‖dσ‖2 +‖dη‖2 +‖s‖2 +‖du‖2
V +‖p‖2).

But, Poincaré ineq also gives ‖z‖ ≤ cP‖dz‖ = cP‖du‖.
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Discretization

We now want to discretize the mixed formulation with f.d. subspaces
V k

h ⊂ V k indexed by h (Galerkin). Of course we assume

inf
vh∈V k

h

‖v − vh‖V → 0 as h→ 0 ∀v ∈ V (A)

It turns out that there are two more key assumptions.

Subcomplex assumption (SC): d(V k
h ) ⊂ V k+1

h
“structure-

preserving

discretization”The subcomplex

· · · dk−1

−−−→ V k
h

dk

−→ V k+1
h

dk+1

−−→ · · ·
is itself a Hilbert complex so we have discrete harmonic forms Hk

h,
discrete Hodge decomp, and discrete Poincaré ineq with constant cP,h.

Bounded Cochain Projection assumption (BCP): ∃πk
h : V k → V k

h

· · · −−→ V k dk

−−→ V k+1 −−→ · · ·yπk
h

yπk+1
h

· · · −−→ V k
h

dk

−−→ V k+1
h −−→ · · ·

πk
h V -bounded, uniform in h

πk
h a projection

πk+1
h dk = dkπk

h
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Stability theorem

Theorem

Let (V k , dk ) be a Hilbert complex and V k
h finite dimensional

subspaces satisfying A, SC, and BCP. Then

πh induces an isomorphism on cohomology for h small

gap
(
Hk ,Hk

h

)
→ 0

The discrete Poincaré inequality ‖ω‖ ≤ c‖dω‖, ω ∈ Zk⊥
h ,

holds with c independent of h

Galerkin’s method is stable

Proof of discrete Poincaré inequality: Given ω ∈ Zk⊥
h , define

η ∈ Zk⊥ ⊂ V k by dη = dω. By the Poincaré inequality,
‖η‖ ≤ cP‖dω‖, whence ‖η‖V ≤ c′‖dω‖, so it is enough to show that
‖ω‖ ≤ c′′‖η‖V . Now, ω − πhη ∈ V k

h and, by SC and BCP,
d(ω − πhη) = dω − πhdω = 0, so ω − πhη ∈ Zk

h. Thus
ω ⊥ (ω − πhη), so ‖ω‖ ≤ ‖πhη‖ by Pythagoras. Result follows since
πh is bounded. Note cP,h+ ≤ (c2

P + 1)1/2‖πh‖.
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Convergence of Galerkin’s method

Since we have uniform control of the Poincaré constant cP,h, the
well-posedness argument applied on the discrete level gives stability.
From stability we get the basic energy estimate, which is quasi-optimal
plus a small consistency error term if there are harmonic forms.

Notation: for w ∈ V k , E(w) := infw∈V k
h
‖w − v‖V

Theorem
Assume SC and BCP. Then

‖σ−σh‖V +‖u−uh‖V +‖p−ph‖V ≤ c[ E(σ)+E(u)+E(p)+ε ]

where
ε ≤ inf

v∈V k
h

E(PBu)× sup
r∈Hk

‖r‖=1

E(r).

Improved estimates can then be derived using duality techniques.
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Finite element
differential forms

FE differential forms, the concrete realization of FEEC

How to construct FE subspaces of HΛk satisfying SP and BCP?

FEEC reveals that there are precisely two natural families:

Pr Λ
k (T ) and P−r Λk (T )

form degree
triangulation

polynomial degree

Like all finite element spaces they are constructed from
shape functions and degrees of freedom on each simplex T .

Shape fns for Pr Λ
k : polynomial k -forms of degree ≤ r .

Shape fns for P−r Λk defined via Koszul differential κ : Λk+1 → Λk :

(κω)x (v1, . . . , vk ) = ωx (x , v1, · · · , vk )

P−r Λk (T ) = Pr−1Λk (T ) + κPr−1Λk+1(T )
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Degrees of freedom

DOF for Pr Λ
k (T ): to a subsimplex f of dimension d we associate

ω 7→
∫

f
trf ω ∧ η, η ∈ P−r+k−d Λd−k (f )

Theorem. These DOFs are unisolvent and the resulting finite
element space satisfies

Pr Λ
k (T ) = {ω ∈ HΛk (Ω) : ω|T ∈ Pr Λ

k (T ) ∀T ∈ T }

DOF for P−r Λk (T ) (Hiptmair ’99):

ω 7→
∫

f
trf ω ∧ η, η ∈ Pr+k−d−1Λd−k (f )

+ similar theorem. . .
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The P−r Λk family in 2D

P−r Λ0 P−r Λ1 P−r Λ2

Lagrange Raviart-Thomas DG

r = 1

r = 2

r = 3
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The P−r Λk family in 3D

P−r Λ0 P−r Λ1 P−r Λ2 P−r Λ3

Lagrange Nédélec edge I R-T-N face DG

r = 1

r = 2

r = 3
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The Pr Λ
k family in 2D

Pr Λ
0 Pr Λ

1 Pr Λ
2

Lagrange BDM DG

r = 1

r = 2

r = 3
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Finite element de Rham subcomplexes

We don’t only want spaces, we also want them to fit together into
discrete de Rham complexes with BCP.

One such FEdR subcomplex uses P−
r Λk spaces of constant degree r :

0→ Pr
−Λ0(T )

d−−→ Pr
−Λ1(T )

d−−→ · · · d−−→ Pr
−Λn(T )→ 0

0→ grad−−→ curl−−→ div−−→ → 0

Whitney ’57

0→ grad−−→ curl−−→ div−−→ → 0

Another uses Pr Λ
k spaces with decreasing degree:

0→ Pr Λ
0(T )

d−−→ Pr−1Λ1(T )
d−−→ · · · d−−→ Pr−nΛn(T )→ 0

Sullivan ’75
These are extreme cases. For every r ∃ 2n−1 such FEdR subcomplexes.
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Finite element de Rham subcomplexes on cubes

Tensor-product

→ →

→ → →

“Serendipity”
(DNA-Awanou
’11)

→ →

→ → →

18 / 25

The elasticity
complex

Mixed finite elements for elasticity

Find stress σ : Ω→ S = Rn×n
sym , displacement u : Ω→ V = Rn such

that
Aσ = ε(u), divσ = f∫

Ω

(
1
2

Aσ :σ + divσ · u + f · u
)

dx
σ,u−−−−−−−−−→

H(div;S)×L2(V)
saddle point

Search for stable finite elements dates back to the ’60s, very limited success.

�[Mixed �nite elements were] achieved by Raviart and Thomas in the
case of the heat conduction problem discussed previously. Extension
to the full stress problem is di�cult and as yet such elements have not
been successfully noted.�

� Zienkiewicz, Taylor, Zhu
The Finite Element Method: Its Basis & Fundamentals, 6th ed., 2005

With FEEC, this is no longer true. Now, lots of elements.
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The elasticity complex in 2D

The elasticity system is the n-Hodge Laplacian associated to a
complex:

Airy potential stress load
↓ ↓ ↓

0→ H2(Ω)
J−−→ H(div,Ω;S)

div−−→ L2(Ω;R2)→0

Jφ =

(
∂2

yφ −∂xyφ

−∂xyφ ∂2
xφ

)
, the Airy stress function, is second order!

The question is: how to discretize this sequence? This simplest
element (DNA-Winther ’02) involves 21 stress degrees of freedom. It
provides a Hilbert subcomplex with bounded cochain projections.

0→ J−−→ div−−→ →0
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The elasticity complex in 3D

displacement strain stress load
↓ ↓ ↓ ↓

0→H1(Ω;R3)
ε−−→ H(J,Ω;S)

J−−→ H(div,Ω;S)
div−−→ L2(Ω;R3)→0

J = curl T curl
The simplest FE subcomplex involves 162 DOFs for stress
(DNA-Awanou-Winther ’08).

Much simpler nonconforming elements can be devised: 12 stress DOF
in 2D (DNA-Winter ’03), 36 in 3D (DNA-Awanou-Winther ’11)

0→ J−−→ div−−→ →0
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The elasticity complex with weak symmetry

To obtain simpler conforming elements we went back to an old idea,
enforcing the symmetry of the stress tensor, skwσ = 0, via a
Lagrange multiplier (Fraeijs de Veubeke ’65, Amara-Thomas ’79,
DNA-Brezzi-Douglas ’84).

∫
Ω

(
1
2

Aσ :σ + divσ · u + f · u
)

dx
σ,u−−−−−−−−−→

H(div;S)×L2(V)
S.P.∫

Ω

(
1
2

Aσ :σ + divσ · u + σ :p + f · u
)

dx
σ,u,p−−−−−−−−−−−−−−→

H(div;M)×L2(V)×L2(K)
S.P.

The associated elasticity complex:

displacement rotation strain
↓ ↓ ↓

0→H1(Ω;R3)×L2(Ω,K)
(grad,−I)−−−−−→ H(J,Ω;M)

J−−→

J−−→ H(div,Ω;M)

(
div
skw

)
−−−−→ L2(Ω;R3)×L2(Ω;K)→0

↑ ↑ ↑
stress load couple
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The key to discretizations of the elasticity complex

The elasticity complex can be derived from the de Rham complex
through a form of the BGG resolution.
BGG can be applied to finite element de Rham subcomplexes, to get
finite element subcomplexes of the elasticity complex.

Theorem (AFW ’06, 07):

Choose two subcomplexes of the de Rham complex satisfying BCP:

0 −−→ V 0
h

grad−−→ V 1
h

curl−−→ V 2
h

div−−→ V 3
h −−→ 0

0 −−→ Ṽ 0
h

grad−−→ Ṽ 1
h

curl−−→ Ṽ 2
h

div−−→ Ṽ 3
h −−→ 0

Suppose that satisfy a surjectivity hypothesis. (Roughly, for each DOF
of V 2

h there is a corresponding DOF of Ṽ 1
h .)

Then


stress: Ṽ 2

h (R3)
displacement: Ṽ 3

h (R3)
rotation: V 3

h (K)

 is a stable element choice.
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The simplest choice

0→ grad−−→ curl−−→ div−−→ → 0

0→ grad−−→ curl−−→ div−−→ → 0

σ u p
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Features of the new mixed elements

Based on HR formulation with weak symmetry; very natural

Lowest degree element is very simple: full P1 for stress, P0 for
displacement and rotation

Works for every polynomial degree

Works the same in 2 and 3 (or more) dimensions

Robust to material constraints like incompressibility

Provably stable and convergent

Has been widely implemented. Elastostatics, elastodynamics,
viscoelasticity, . . .

Have opened the way for many other elements: Awanou, Boffi,
Brezzi, Cockburn, Demkowicz, Fortin, Gopalakrishnan, Guzman,
Qiu, . . .
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