Hodge theory, Hilbert complexes, and finite element differential forms

Douglas N. Arnold

Vector Poisson equation on a plane domain

$$
\begin{aligned}
& \text { curl curl } u \text { - grad div } u=f \text { in } \Omega(\bmod \mathfrak{5}), \\
& u \cdot n=0, \text { curl } u \times n=0, u \perp \mathfrak{5} \text { on } \partial \Omega
\end{aligned}
$$

Just the Hodge Laplacian for 1 -forms: $\quad d^{*} d u+d d^{*} u=f(\bmod 5)$

Motivating example

Weak formulation: find $u \in H($ curl $) \cap \grave{H}($ div $) \cap)^{\perp}$ such that

- Motivating examples
(2) Hilbert complexes and their discretization
- Finite element differential forms
- The elasticity complex

Joint with R. Falk and R. Winther. Primary reference:
Finite element exterior calculus: From Hodge theory to numerical stability, Bull. AMS 2010, pp. 281-354

FEEC:
Hilbert complex framework + finite element diff'l forms + applications
\longrightarrow
$\int_{\Omega}(\operatorname{curl} u \cdot \operatorname{curl} v+\operatorname{div} u \operatorname{div} v) d x=\int_{\Omega} f \cdot v d x, \quad v \in H($ curl $) \cap \dot{H}($ div $)$

Variational formulation:

$$
u=\underset{H(\text { curl) }) \dot{H}(\text { div }) \cap \mathcal{H}^{\perp}}{\arg \min }\left(\frac{1}{2} \int_{\Omega}|\operatorname{curl} u|^{2}+|\operatorname{div} u|^{2} d x-\int_{\Omega} f \cdot u d x\right)
$$

Standard finite elements do not work

$f=(0, x)$

\mathcal{P}_{1} elements

Hilbert complexes and their discretization

Properties of closed Hilbert complexes

We view the exterior derivative d as a closed unbounded operator $L^{2} \Lambda^{k} \rightarrow L^{2} \Lambda^{k+1}$ with domain

$$
H \Lambda^{k}=\left\{u \in L^{2} \Lambda^{k} \mid d u \in L^{2} \Lambda^{k+1}\right\} .
$$

Resulting structure is a closed Hilbert complex, which abstracts the de Rham complex:

- Hilbert spaces $W^{0}, W^{1}, \ldots, W^{n}$;
- Densely defined closed operators $W^{k} \xrightarrow{d^{k}} W^{k+1}$ with domain $V^{k} \subset W^{k}$ and closed range \mathfrak{B}^{k+1}, satisfying:
- $d^{k-1} \circ d^{k}=0 \quad$ (i.e., $\mathfrak{B}^{k} \subset 3^{k}:=\operatorname{ker} d^{k} \subset V^{k}$)

Defining $\|v\|_{V^{k}}^{2}=\|v\|_{W^{k}}^{2}+\|d v\|_{W^{k+1}}^{2}$, we get a complex of Hilbert spaces

$$
0 \rightarrow V^{0} \xrightarrow{d} V^{1} \xrightarrow{d} \cdots \xrightarrow{d} V^{n} \rightarrow 0
$$

with associated cohomology spaces $\quad 3^{k} / \mathfrak{B}^{k}$

Adjoint complex: $\quad d_{k}^{*}$ is densely-defined, closed, w/ closed range

$$
0 \leftarrow V_{0}^{*} \stackrel{d^{*}}{\leftarrow} V_{1}^{*} \stackrel{d^{*}}{\leftarrow} \cdots \stackrel{d^{*}}{\leftarrow} V_{n}^{*} \leftarrow 0
$$

Abstract Hodge Laplacian: $\quad d d^{*}+d^{*} d: W^{k} \rightarrow W^{k}$

Harmonic forms: $\quad 3^{k} / \mathfrak{B}^{k} \equiv 3^{k} \cap \mathfrak{B}^{{ }^{\perp}}=\operatorname{ker}\left(d d^{*}+d^{*} d\right):=\mathfrak{F}^{k}$

Hodge decomposition: $W^{k}=\underbrace{\mathfrak{B}^{k} \oplus 5^{k}}_{3^{k}} \oplus \underbrace{\mathfrak{B}_{k}^{*}}_{3^{k \perp}}$

Poincaré inequality: $\exists c$ such that $\|u\| \leq c\|d u\| \quad \forall u \in 3^{k \perp} \cap V^{k}$

Mixed formulation of the (abstract) Hodge Laplacian

$$
\sigma=d^{*} u, \quad d \sigma+d^{*} d u=f(\bmod \mathfrak{5}), \quad u \perp \mathfrak{5}
$$

Weak formulation: Given $f \in W^{k}$, find $\sigma \in V^{k-1}, u \in V^{k}, p \in \mathcal{J}^{k}$:

$$
\begin{array}{ll}
\langle\sigma, \tau\rangle-\langle d \tau, u\rangle=0 & \forall \tau \in V^{k-1} \\
\langle d \sigma, v\rangle+\langle d u, d v\rangle+\langle p, v\rangle=\langle f, v\rangle & \forall v \in V^{k} \\
\langle u, q\rangle=0 & \forall q \in \xi^{k}
\end{array}
$$

Variational formulation:

$$
\frac{1}{2}\langle\sigma, \sigma\rangle-\frac{1}{2}\langle d u, d u\rangle-\langle d \sigma, u\rangle-\langle u, p\rangle+\langle f, u\rangle \rightarrow \text { saddle point }
$$

Well-posedness of the mixed formulation

Theorem: $\forall(\sigma, u, p) \in V^{k-1} \times V^{k} \times \mathfrak{H}^{k} \quad \exists(\tau, v, q) \in V^{k-1} \times V^{k} \times \mathfrak{H}^{k}$

1. Bounded: $\|\tau\|_{v}+\|v\|_{v}+\|q\| \leq C\left(\|\sigma\|_{v}+\|u\|_{v}+\|p\|\right)$
2. Coercing: $B \geq c\left(\|\sigma\|_{V}^{2}+\|u\|_{V}^{2}+\|p\|^{2}\right)$
where $B:=\langle\sigma, \tau\rangle-\langle d \tau, u\rangle+\langle d \sigma, v\rangle+\langle d u, d v\rangle+\langle p, v\rangle-\langle u, q\rangle$.
Hodge decompose $u=d \eta+s+z$ with $\eta \in\left(3^{k-1}\right)^{\perp}, s \in \mathfrak{S}^{k}, z \in\left(3^{k}\right)^{\perp}$ Choose $\tau=\sigma-\epsilon \eta, v=u+d \sigma+p, q=p-s$:

$$
B=\|\sigma\|^{2}+\|d \sigma\|^{2}+\epsilon\|d \eta\|^{2}+\|s\|^{2}+\|d u\|^{2}+\|p\|^{2}-\epsilon\langle\sigma, \eta\rangle .
$$

$\epsilon(\sigma, \eta\rangle \leq \frac{1}{2}\|\sigma\|^{2}+\frac{\epsilon^{2}}{2}\|\eta\|^{2}$; and, by Poincaré ineq, $\|\eta\| \leq c_{P}\|d \eta\|$, so $\epsilon=c_{p}^{-2} \Longrightarrow$
$B(\sigma, u, p ; \tau, v, q) \geq c\left(\|\sigma\|^{2}+\|d \sigma\|^{2}+\|d \eta\|^{2}+\|s\|^{2}+\|d u\|_{V}^{2}+\|p\|^{2}\right)$.
But, Poincaré ineq also gives $\|z\| \leq c_{P}\|d z\|=c_{P}\|d u\|$.

Stability theorem

Theorem

Let $\left(V^{k}, d^{k}\right)$ be a Hilbert complex and V_{h}^{k} finite dimensional subspaces satisfying $A, S C$, and BCP. Then

- π_{h} induces an isomorphism on cohomology for h small
- gap $\left(\mathfrak{H}^{k}, \mathfrak{H}_{h}^{K}\right) \rightarrow 0$
- The discrete Poincaré inequality $\|\omega\| \leq c\|d \omega\|, \quad \omega \in 3_{h}^{k \perp}$, holds with c independent of h
- Galerkin's method is stable

Proof of discrete Poincaré inequality: Given $\omega \in 3_{h}^{k \perp}$, define $\eta \in 3^{k \perp} \subset V^{k}$ by $d \eta=d \omega$. By the Poincaré inequality,
$\|\eta\| \leq c_{P}\|d \omega\|$, whence $\|\eta\| v \leq c^{\prime}\|d \omega\|$, so it is enough to show that $\|\omega\| \leq c^{\prime \prime}\|\eta\|_{\nu}$. Now, $\omega-\pi_{h} \eta \in V_{h}^{k}$ and, by SC and BCP, $d\left(\omega-\pi_{h} \eta\right)=d \omega-\pi_{h} d \omega=0$, so $\omega-\pi_{h} \eta \in 3_{h}^{k}$. Thus $\omega \perp\left(\omega-\pi_{h} \eta\right)$, so $\|\omega\| \leq\left\|\pi_{h} \eta\right\|$ by Pythagoras. Result follows since π_{h} is bounded. Note $C_{p} h^{+} \leq\left(c_{p}^{2}+1\right)^{1 / 2}\left\|\pi_{h}\right\|$.

Convergence of Galerkin's method

Since we have uniform control of the Poincaré constant $c_{P, h}$, the well-posedness argument applied on the discrete level gives stability. From stability we get the basic energy estimate, which is quasi-optimal plus a small consistency error term if there are harmonic forms.
Notation: for $w \in V^{k}, \quad E(w):=\inf _{w \in V_{n}^{k}}\|w-v\|_{V}$
Theorem
Assume SC and BCP. Then
$\left\|\sigma-\sigma_{h}\right\| v+\left\|u-u_{h}\right\| v+\left\|p-p_{h}\right\| v \leq c[E(\sigma)+E(u)+E(p)+\epsilon]$

Finite element differential forms

where

$$
\epsilon \leq \inf _{V \in V_{h}^{K}} E\left(P_{\mathrm{g}} u\right) \times \sup _{\substack{r \in \mathcal{J}^{K} \\\|r\|=1}} E(r)
$$

Improved estimates can then be derived using duality techniques.

FE differential forms, the concrete realization of FEEC

How to construct FE subspaces of $H \Lambda^{k}$ satisfying $S P$ and $B C P$?
FEEC reveals that there are precisely two natural families:

Like all finite element spaces they are constructed from shape functions and degrees of freedom on each simplex T.

Shape fns for $\mathcal{P}_{r} \Lambda^{k}: \quad$ polynomial k-forms of degree $\leq r$.
Shape fns for $\mathcal{P}_{r}^{-} \Lambda^{k}$ defined via Koszul differential $\kappa: \Lambda^{k+1} \rightarrow \Lambda^{k}$:

$$
\begin{gathered}
(\kappa \omega)_{x}\left(v_{1}, \ldots, v_{k}\right)=\omega_{x}\left(x, v_{1}, \cdots, v_{k}\right) \\
\mathcal{P}_{r}^{-} \Lambda^{k}(T)=\mathcal{P}_{r-1} \Lambda^{k}(T)+\kappa \mathcal{P}_{r-1} \Lambda^{k+1}(T)
\end{gathered}
$$

Degrees of freedom

DOF for $\mathcal{P}_{r} \Lambda^{k}(T)$: to a subsimplex f of dimension d we associate

$$
\omega \mapsto \int_{f} \operatorname{tr}_{f} \omega \wedge \eta, \quad \eta \in \mathcal{P}_{r+k-d}^{-} \wedge^{d-k}(f)
$$

Theorem. These DOFs are unisolvent and the resulting finite element space satisfies

$$
\mathcal{P}_{r} \Lambda^{k}(\mathcal{T})=\left\{\omega \in H \Lambda^{k}(\Omega):\left.\omega\right|_{T} \in \mathcal{P}_{r} \Lambda^{k}(T) \quad \forall T \in \mathcal{T}\right\}
$$

DOF for $\mathcal{P}_{r}^{-} \Lambda^{k}(T)$ (Hiptmair '99):

$$
\omega \mapsto \int_{f} \operatorname{tr}_{f} \omega \wedge \eta, \quad \eta \in \mathcal{P}_{r+k-d-1} \wedge^{d-k}(f)
$$

[^0]The $\mathcal{P}_{r}^{-} \Lambda^{\kappa}$ family in 2D

$\mathcal{P}_{r}^{-} \Lambda^{0}$	$\mathcal{P}_{r}^{-} \Lambda^{1}$	$\mathcal{P}_{r}^{-} \Lambda^{2}$
Lagrange	Raviart-Thomas	$D G$

$r=1$

$r=2$

$r=3$

The $\mathcal{P}_{r}^{-} \Lambda^{\kappa}$ family in 3D

$\mathcal{P}_{r}^{-} \Lambda^{0}$	$\mathcal{P}_{r}^{-} \Lambda^{1}$	$\mathcal{P}_{r}^{-} \Lambda^{2}$	$\mathcal{P}_{r}^{-} \Lambda^{3}$
Lagrange	Nédélec edge I	R-T-N face	DG

$r=1$

$r=2$

$r=3$

The $\mathcal{P}_{r} \Lambda^{k}$ family in 2D

Finite element de Rham subcomplexes

We don't only want spaces, we also want them to fit together into discrete de Rham complexes with BCP.

- One such FEdR subcomplex uses $\mathcal{P}_{r}^{-} \wedge^{k}$ spaces of constant degree r :
$0 \rightarrow \mathcal{P}_{r}^{-} \Lambda^{0}(\mathcal{T}) \xrightarrow{d} \mathcal{P}_{r}^{-} \Lambda^{1}(\mathcal{T}) \xrightarrow{d} \cdots \xrightarrow{d} \mathcal{P}_{r}^{-} \Lambda^{n}(\mathcal{T}) \rightarrow 0$

Whitney 57

$\xrightarrow{\text { grad }}$

$\xrightarrow{\text { curl }}$

$\xrightarrow{\text { di }}$

- Another uses $\mathcal{P}_{r} \wedge^{k}$ spaces with decreasing degree:

$$
0 \rightarrow \mathcal{P}_{r} \Lambda^{0}(\mathcal{T}) \xrightarrow{d} \mathcal{P}_{r-1} \Lambda^{\dagger}(\mathcal{T}) \xrightarrow{d} \cdots \xrightarrow{d} \mathcal{P}_{r-n} \wedge^{n}(\mathcal{T}) \rightarrow 0
$$

These are extreme cases. For every $r \quad \exists 2^{n-1}$ such FEdR subcomplexes.

Finite element de Rham subcomplexes on cubes

Tensor-product

"Serendipity"

 (DNA-Awanou 11)

The elasticity complex

Mixed finite elements for elasticity

Find stress $\sigma: \Omega \rightarrow \mathbb{S}=\mathbb{R}_{\text {sym }}^{n \times n}$, displacement $u: \Omega \rightarrow \mathbb{V}=\mathbb{R}^{n}$ such that

$$
A \sigma=\epsilon(u), \quad \operatorname{div} \sigma=f
$$

$$
\int_{\Omega}\left(\frac{1}{2} A \sigma: \sigma+\operatorname{div} \sigma \cdot u+f \cdot u\right) d x \xrightarrow[H(\operatorname{div} ; S) \times L^{2}(\mathrm{~V})]{\sigma, u} \text { saddle point }
$$

Search for stable finite elements dates back to the '60s, very limited success.
"[Mixed finite elements were] achieved by Raviart and Thomas in the case of the heat conduction problem discussed previously. Extension to the full stress problem is difficult and as yet such elements have not been successfully noted."

> - Zienkiewicz, Taylor, Zhu

The Finite Element Method: Its Basis \&f Fundamentals, 6th ed., 2005
With FEEC, this is no longer true. Now, lots of elements.

The elasticity complex in 2D

The elasticity system is the n-Hodge Laplacian associated to a complex:

$$
\begin{array}{ccc}
\text { Airy potential } & \text { stress } & \text { load } \\
\downarrow & \downarrow & \downarrow \\
0 \rightarrow H^{2}(\Omega) & \xrightarrow{\jmath} H(\operatorname{div}, \Omega ; S) \xrightarrow{\text { div }} & \downarrow \\
L^{2}\left(\Omega ; \mathbb{R}^{2}\right) \rightarrow 0
\end{array}
$$

$J \phi=\left(\begin{array}{cc}\partial_{y}^{2} \phi & -\partial_{x y} \phi \\ -\partial_{x y} \phi & \partial_{x}^{2} \phi\end{array}\right)$, the Airy stress function, is second order!
The question is: how to discretize this sequence? This simplest element (DNA-Winther '02) involves 21 stress degrees of freedom. It provides a Hilbert subcomplex with bounded cochain projections.

The elasticity complex in 3D

$$
\begin{array}{cccc}
\text { displacement } & \text { strain } & \text { stress } & \text { load } \\
\downarrow & \downarrow & \downarrow & \downarrow \\
0 \rightarrow H^{1}\left(\Omega ; \mathbb{R}^{3}\right) \xrightarrow{\epsilon} H(J, \Omega ; \mathbb{S}) & \xrightarrow{J} H(\text { div }, \Omega ; \mathbb{S}) & \xrightarrow{\text { div }} & L^{2}\left(\Omega ; \mathbb{R}^{3}\right) \rightarrow 0
\end{array}
$$

$J=\operatorname{curl} T$ curl
The simplest FE subcomplex involves 162 DOFs for stress (DNA-Awanou-Winther '08).

Much simpler nonconforming elements can be devised: 12 stress DOF in 2D (DNA-Winter '03), 36 in 3D (DNA-Awanou-Winther '11)

The elasticity complex with weak symmetry

To obtain simpler conforming elements we went back to an old idea, enforcing the symmetry of the stress tensor, skw $\sigma=0$, via a Lagrange multiplier (Fraeijs de Veubeke '65, Amara-Thomas '79, DNA-Brezzi-Douglas '84).

$$
\begin{gathered}
\int_{\Omega}\left(\frac{1}{2} A \sigma: \sigma+\operatorname{div} \sigma \cdot u+f \cdot u\right) d x \xrightarrow[H(\operatorname{div} ; \mathbb{S}) \times L^{2}(\mathrm{~V})]{\sigma, u} \text { S.P. } \\
\int_{\Omega}\left(\frac{1}{2} A \sigma: \sigma+\operatorname{div} \sigma \cdot u+\sigma: p+f \cdot u\right) d x \xrightarrow[H(\operatorname{div} ; \mathbb{M}) \times L^{2}(\mathrm{~V}) \times L^{2}(\mathbb{K})]{\sigma, u, p} \text { S.P. }
\end{gathered}
$$

The associated elasticity complex:

The simplest choice

$$
0 \longrightarrow V_{h}^{0} \xrightarrow{\text { grad }} V_{h}^{1} \xrightarrow{\text { curl }} V_{h}^{2} \xrightarrow{\text { div }} V_{h}^{3} \longrightarrow 0
$$

$$
0 \longrightarrow \widetilde{V}_{h}^{0} \xrightarrow{\text { grad }} \widetilde{V}_{h}^{1} \xrightarrow{\text { curl }} \widetilde{V}_{h}^{2} \xrightarrow{\text { div }} \widetilde{V}_{h}^{3} \longrightarrow 0
$$

Suppose that satisfy a surjectivity hypothesis. (Roughly, for each DOF of V_{h}^{2} there is a corresponding DOF of \tilde{V}_{h}^{1}.)
Then $\left\{\begin{array}{ll}\text { stress: } & \tilde{V}_{h}^{2}\left(\mathbb{R}^{3}\right) \\ \text { displacement: } & \widetilde{V}_{h}^{3}\left(\mathbb{R}^{3}\right) \\ \text { rotation: } & V_{h}^{3}(\mathbb{K})\end{array}\right\}$ is a stable element choice.

σ

u

p

$$
\begin{aligned}
& \text { displacement rotation strain }
\end{aligned}
$$

Features of the new mixed elements

- Based on HR formulation with weak symmetry; very natural
- Lowest degree element is very simple: full \mathcal{P}_{1} for stress, \mathcal{P}_{0} for displacement and rotation
- Works for every polynomial degree
- Works the same in 2 and 3 (or more) dimensions
- Robust to material constraints like incompressibility
- Provably stable and convergent
- Has been widely implemented. Elastostatics, elastodynamics, viscoelasticity, .
- Have opened the way for many other elements: Awanou, Boffi, Brezzi, Cockburn, Demkowicz, Fortin, Gopalakrishnan, Guzman, Qiu, ...

[^0]: + similar theorem...

