The decomposition of matrices

Ke Ye

August 8, 2013

joint work with: Lek-Heng Lim
thanks: L.E. Dickson fellowship, NSF

Overview

(1) Motivation and general problems

- Motivation
- General problems
(2) Method
- Gadgets
- Method
(3) Toeplitz decomposition and Hankel decomposition
- Toeplitz decomposition
- Hankel decomposition

4. Bidiagonal decomposition and Tridiagonal decomposition

- Bidiagonal decomposition
- Tridiagonal decomposition

Motivation

solving linear systems
(1) Gaussian elimination
(2) LU-decomposition
(3) QR-decomposition
goal: faster algorithm
(1) Toeplitz decomposition
(2) Tridiagonal decomposition

Set up

set up

- M_{n} : the space of all $n \times n$ matrices
- r : natural number
- V_{1}, \ldots, V_{r} : algebraic varieties in M_{n}
- morphism $\phi: V_{1} \times \cdots \times V_{r} \rightarrow M_{n}$

$$
\phi\left(A_{1}, \ldots, A_{r}\right)=A_{1} \cdots A_{r}
$$

Questions

questions

- What types of V_{j} 's can make ϕ surjective?
- For fixed types of V_{j} 's, what is the smallest r such that ϕ is surjective?
weaker version
- What types of V_{j} 's can make ϕ dominant?
- For fixed types of V_{j} 's, what is the smallest r such that ϕ is dominant?

Connection to matrix decomposition

Exact case

The morphism

$$
\phi: V_{1} \times \cdots \times V_{r} \rightarrow M_{n}
$$

is surjective if and only if for every matrix $X \in M_{n}$, we can decompose X into the product of elements in V_{j} 's.

Generic case

The morphism

$$
\phi: V_{1} \times \cdots \times V_{r} \rightarrow M_{n}
$$

is dominant if and only if for a generic (almost every) matrix $X \in M_{n}$, we can decompose X into the product of elements in V_{j} 's.

Examples

- LU-decomposition: $X=L U P$
- $Q R$-decomposition: $X=Q R$
- Gaussian elimination: $X=P D Q$

Non-examples

- the set of all upper triangular matrices
- subgroups of GL_{n}
- one dimensional linear subspaces of M_{n}
- subspaces of the space of matrices of the form

$$
\left[\begin{array}{cccc}
0 & * & \cdots & * \\
0 & * & \cdots & * \\
\vdots & \vdots & \ddots & \vdots \\
0 & * & \cdots & *
\end{array}\right]
$$

Gadgets

Theorem (open mapping theorem)

If $f: X \mapsto Y$ is a dominant morphism between algebraic varieties, there exists a subset V of $f(X)$ such that
(1) V is open and dense in Y and
(2) $\operatorname{dim} f^{-1}(y)=\operatorname{dim} X-\operatorname{dim} Y$ for any $y \in V$.

Gadgets

easy to verify whether a morphism is dominant

Lemma (dominant Lemma)

Let $f: X \mapsto Y$ be a morphism between algebraic varieties. Assume that exists a point $x \in X$ such that the differential $\left.d f\right|_{x}$ is surjective, then f is dominant.
passing from open sets to the whole group

Lemma (generating Lemma)

Let G be an algebraic group and let U, V be open dense subsets of G. Then $G=U V$.

Method

- $\phi_{0}: V_{1} \times \cdots \times V_{r_{0}} \rightarrow M_{n}$
- $\tilde{V}_{j}=V_{j} \cap G L_{n}, j=1,2, \ldots, r_{0}$
- $\tilde{\phi}_{0}:\left(\tilde{V}_{1} \times \cdots \times \tilde{V}_{r_{0}}\right) \times\left(\tilde{V}_{1} \times \cdots \times \tilde{V}_{r_{0}}\right) \rightarrow \mathrm{GL}_{n}$
- $\phi:\left(V_{1} \times \cdots \times V_{r_{0}}\right)^{\times d} \rightarrow M_{n}$
d : to be determined
step 1. find an r_{0} making ϕ_{0} dominant: dominant Lemma + open mapping theorem
step 2. $\tilde{\phi}_{0}$ is surjective: generating Lemma
step 3. ϕ is surjective: known decompositions

Definition

- Toep $_{n}$: space of Toeplitz matrices
- $r_{0}=\left\lfloor\frac{n}{2}\right\rfloor+1$
- Toep $_{n}^{\times r_{0}}=\underbrace{\operatorname{Toep}_{n} \times \cdots \times \text { Toep }_{n}}_{r_{0} \text { copies }}$
- $\phi_{0}:$ Toep $_{n}^{\times r_{0}} \rightarrow M_{n}$
- t_{j} : indeterminants $j=1,2, \ldots, r$
- $T_{0}, T_{1}, T_{-1}, \ldots, T_{n-1}, T_{-n+1}$: standard basis for Toep ${ }_{n}$
- $A_{j}=T_{0}+t_{j}\left(T_{n-j}-T_{-(n-j)}\right), j=1,2, \ldots, r$

Toeplitz decomposition

first express

$$
\left.d \phi_{0}\right|_{\left(A_{1}, \ldots, A_{r}\right)}
$$

as a $r_{0}(2 n-1) \times n^{2}$ matrix M, then find a nonzero $n^{2} \times n^{2}$ minor (in terms of t 's) of M, this proves

Theorem

ϕ_{0} is a dominant morphism.

Toeplitz decomposition

- $\tilde{\phi}_{0}:$ Toepp $_{n}{ }^{\times 2 r_{0}} \rightarrow \mathrm{GL}_{n}$
- $\phi:$ Toep $_{n}{ }^{\times\left(4 r_{0}+1\right)} \rightarrow M_{n}$
open mapping theorem + generating Lemma $\Longrightarrow \tilde{\phi}_{0}$ surjective

Gaussian elimination $\Longrightarrow X=P T Q$ for $P, Q \in \mathrm{GL}_{n}, T \in$ Toep $_{n}$
hence

Theorem

ϕ is a surjective morphism. Equivalently, every $n \times n$ matrix is a product of $2 n+5$ Toeplitz matrices.

Remarks

- the decomposition is not unique
- no explicit algorithm is known
- $2 n+5$ is not sharp: every 2×2 matrix can be decomposed as a product of two Toeplitz matrices

Important implication of the decomposition

solving linear systems

- Gaussian elimination: $n^{3} / 2+n^{2} / 2$ operations
- LU-decomposition: $n^{3} / 3+n^{2}-n / 3$ operations
- $Q R$-decomposition: $2 n^{3}+3 n^{2}$ operations
- Bitrnead \& Anderson, or Houssam, Bernard \& Michelle: $O\left(n \log ^{2} n\right)$ operations for Toeplitz linear systems
- K. Ye \& L.H Lim: $O\left(n^{2} \log ^{2} n\right)$ operations for general linear systems

Definition

$A=\left(a_{i, j}\right): n \times n$ matrix

- Rotation: $A^{R}=\left(a_{n+1-j, i}\right)$
- Right swap: $A^{S}=\left(a_{i, n+1-j}\right)$
- Left swap: ${ }^{\mathrm{S}} A=\left(a_{n+1-i, j}\right)$
three operations are all isomorphisms and
A Toeplitz $\Longleftrightarrow A^{\mathrm{R}}$ Hankel
A Toeplitz $\Longleftrightarrow A^{\mathrm{S}}$ Hankel
A Toeplitz $\Longleftrightarrow{ }^{\mathrm{S}} A$ Hankel

Hankel decomposition

- $A, B: n \times n$ matrices
(1) $(A B)^{\mathrm{R}}=B^{\mathrm{RS}} A^{\mathrm{R}}=B^{\mathrm{R}}\left({ }^{\mathrm{S}}\left(A^{\mathrm{R}}\right)\right)$
(2) $A^{\mathrm{SR}}=A^{\mathrm{T}}$
(3) $\left({ }^{\mathrm{S}} A\right)^{\mathrm{R}}=A^{\mathrm{T}}$
(4) $(A B)^{\mathrm{S}}=A B^{\mathrm{S}}$
(5) ${ }^{\mathrm{S}}(A B)={ }^{\mathrm{S}} A B$
- $A_{1}, \ldots, A_{m}: n \times n$ matrices
relations above $\Longrightarrow\left(A_{1}^{\mathrm{S}} \cdots A_{m}^{\mathrm{S}}\right)^{\mathrm{R}}=A_{m}^{\mathrm{SR}} \cdot{ }^{\mathrm{S}}\left(A_{m-1}^{\mathrm{SRS}}\right)\left(A_{1}^{\mathrm{S}} \cdots A_{m-2}^{\mathrm{S}}\right)^{\mathrm{R}}$

Hankel decomposition

first consider

$$
f: \operatorname{Hank}_{n}^{\times r} \xrightarrow{\mathrm{~S}} \mathrm{Toep}_{n}^{\times r} \xrightarrow{\phi_{0}} M_{n} \xrightarrow{\mathrm{R}} M_{n}
$$

S: right swap operator
R : rotation operator then

$$
\operatorname{im}(f) \simeq \phi_{0}\left(\operatorname{Toep}_{n}^{\times r}\right) \simeq \phi_{0}\left(\text { Hank }_{n}^{\times r}\right)
$$

this proves

Theorem

ϕ_{0} is dominant for $r=\lfloor n / 2\rfloor+1$.

Hankel decomposition

same argument \Longrightarrow exact version for Hankel decomposition

Theorem

$\phi: \operatorname{Hank}_{n}^{\times(2 n+5)} \rightarrow M_{n}$ is surjective.

Definition

- U: space of upper triangular matrices
- L: space of lower triangular matrices
- $D_{1, \geq 0}$: space of upper bidiagonal matrices
- $D_{1, \leq 0}$: space of lower bidiagonal matrices
- $\phi U: D_{\geq 0}^{\times n} \mapsto U$
- $\phi_{L}: D_{\leq 0}^{\times n} \mapsto L$

bidiagonal decomposition

- rank of the differential at a generic point
$\Longrightarrow \phi_{U}, \phi_{L}$ dominant
- open mapping theorem + generating Lemma
\Longrightarrow element in $U=$ product of $2 n$ elements in $D_{\geq 0}$
- open mapping theorem + generating Lemma \Longrightarrow element in $L=$ product of $2 n$ elements in $D_{\leq 0}$

bidiagonal decomposition

- P_{0} : all principal minors nonzero
$\Longrightarrow P_{0}=\mathcal{L U}, \mathcal{L} \in L, \mathcal{U} \in U$
- $P_{0}=$ product of $4 n$ bidiagonal matrices
\Longrightarrow generic matrix $=$ product of $4 n$ bidiagonal matrices
- open mapping theorem + generating Lemma
\Longrightarrow invertible matrix $=$ product of $8 n$ bidiagonal matrices
- Gaussian elimination
\Longrightarrow any matrix $=$ product of $16 n$ bidiagonal matrices
this proves

Theorem

Every $n \times n$ matrix is a product of 16 bidiagonal matrices.

Question

- know: a matrix $=$ product of $16 n$ tridiagonal matrices
- expected number of factors: $\left\lfloor\frac{n^{2}}{3 n-2}\right\rfloor+1 \approx\left\lfloor\frac{n}{3}\right\rfloor+1$
- questions:
(1) better decomposition?
(2) least number of factors needed $=$ expected number?
answers:
(1) yes
(2) no

definition

- D_{k} : space of $n \times n$ matrices with $a_{i j}=0$ if $|i-j|>k$, $k=1,2, \ldots, n-1$
- $D_{1}^{\times r}=\underbrace{D_{1} \times \cdots \times D_{1}}_{r \text { copies }}$
- $\phi: D_{1}^{\times r} \rightarrow M_{n}$ defined by matrix multiplication

bidiagonal decomposition

- $A \in D_{1}, B \in D_{k} \Longrightarrow A B \in D_{k+1} \Longrightarrow r \geq$ $n-1$ if ϕ dominant
- Gaussian elimination \Longrightarrow a matrix $=\angle D P U, L$ lower triangular, D diagonal, P permutation and U upper triangular
- element in $L=$ product of $2 n$ lower triangular \Longrightarrow element in $L=2 n$ triangular
- (M.D Samson and M. F Ezerman) permutation matrix = product of $2 n-1$ tridiagonal matrices
this proves

Theorem

If ϕ is surjective, then $n-1 \leq r \leq 6 n$.

Important Implication of tridiagonal decomposition

solving linear systems

- Thomas algorithm: $O(n)$ operations for tridiagonal linear systems
- K. Ye and L.H Lim: $O\left(n^{2}\right)$ operations for general linear systems

Open questions

- smallest number of factors needed to for Toeplitz decomposition? conjecture: $\left\lfloor\frac{n}{2}\right\rfloor+1$
- same questions for Hankel, tridiagonal, bidiagonal decompositions
- explicit algorithms for these decompositions?

References

\square Houssam, Bernard, Michelle , (2013)
Superfast solution of Toeplitz systems based on syzygy reduction.
Bitrnead, Anderson
Asymptotically fast solution of Toeplitz and related systems of linear equations
(Michael Daniel Samson and Martianus Frederic Ezerman (2010)
Factoring Permutation Matrices Into a Product of Tridiagonal Matrices
Joseph L. Taylor
Several Complex Variables With Connections to Algebraic Geometry and Lie Groups
\square Armand Borel
Linear algebraic groups
David Eisenbud
Commutative algebra: with a view toward algebraic geometry

Thank You!

