Motivation and general problems Method Toeplitz decomposition and Hankel decomposition Bidiagonal decomposition and Tridiagono October Control Control

The decomposition of matrices

Ke Ye

August 8, 2013

joint work with: Lek-Heng Lim thanks: L.E. Dickson fellowship, NSF

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Overview

1 Motivation and general problems

- Motivation
- General problems
- 2 Method
 - Gadgets
 - Method
- Toeplitz decomposition and Hankel decomposition
 - Toeplitz decomposition
 - Hankel decomposition
- 4 Bidiagonal decomposition and Tridiagonal decomposition

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- Bidiagonal decomposition
- Tridiagonal decomposition

Motivation and general problems	Method	Toeplitz decomposition and Hankel decomposition	Bidiagonal decomposition and Tridia
00000			

Motivation

solving linear systems

- Gaussian elimination
- 2 LU-decomposition
- QR-decomposition
- goal: faster algorithm
 - Toeplitz decomposition
 - 2 Tridiagonal decomposition

Motivation and general problems	Method	Toeplitz decomposition and Hankel decomposition	Bidiagonal decomposition and Tridia
00000			

Set up

set up

- M_n : the space of all $n \times n$ matrices
- r: natural number
- V_1, \ldots, V_r : algebraic varieties in M_n
- morphism $\phi: V_1 \times \cdots \times V_r \to M_n$

$$\phi(A_1,\ldots,A_r)=A_1\cdots A_r$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Motivation and general problems	Method	Toeplitz decomposition and Hankel decomposition	Bidiagonal decomposition and Tridia
00000			

Questions

questions

- What types of V_j 's can make ϕ surjective?
- For fixed types of V_j's, what is the smallest r such that φ is surjective?

weaker version

- What types of V_j 's can make ϕ dominant?
- For fixed types of V_j 's, what is the smallest r such that ϕ is dominant?

Connection to matrix decomposition

Exact case

The morphism

$$\phi: V_1 \times \cdots \times V_r \to M_n$$

is surjective if and only if for every matrix $X \in M_n$, we can decompose X into the product of elements in V_j 's.

Generic case

The morphism

$$\phi: V_1 \times \cdots \times V_r \to M_n$$

is dominant if and only if for a generic (almost every) matrix $X \in M_n$, we can decompose X into the product of elements in V_i 's.

Motivation and general problems	Method	Toeplitz decomposition and Hankel decomposition	Bidiagonal decomposition and Tridia
000000			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Examples

- *LU*-decomposition: X = LUP
- QR-decomposition: X = QR
- Gaussian elimination: X = PDQ

Motivation and general problems	Method	Toeplitz decomposition and Hankel decomposition	Bidiagonal decomposition and Tridia
00000			

Non-examples

- the set of all upper triangular matrices
- subgroups of GL_n
- one dimensional linear subspaces of M_n
- subspaces of the space of matrices of the form

Γ0	*	• • •	*
0	*	•••	*
0 0 : 0	÷	• • •	* * … *
0	*	• • •	*

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Gadgets

Theorem (open mapping theorem)

If $f : X \mapsto Y$ is a dominant morphism between algebraic varieties, there exists a subset V of f(X) such that

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

2 dim
$$f^{-1}(y) = \dim X - \dim Y$$
 for any $y \in V$.

Motivation and general problems	Method	Toeplitz decomposition and Hankel decomposition	Bidiagonal decomposition and Tridia
	000		

Gadgets

easy to verify whether a morphism is dominant

Lemma (dominant Lemma)

Let $f : X \mapsto Y$ be a morphism between algebraic varieties. Assume that exists a point $x \in X$ such that the differential $df|_x$ is surjective, then f is dominant.

passing from open sets to the whole group

Lemma (generating Lemma)

Let G be an algebraic group and let U, V be open dense subsets of G. Then G = UV.

Method

•
$$\phi_0 : V_1 \times \cdots \times V_{r_0} \to M_n$$

• $\tilde{V}_j = V_j \cap GL_n, \ j = 1, 2, \dots, r_0$
• $\tilde{\phi_0} : (\tilde{V}_1 \times \cdots \times \tilde{V}_{r_0}) \times (\tilde{V}_1 \times \cdots \times \tilde{V}_{r_0}) \to GL_n$
• $\phi : (V_1 \times \cdots \times V_{r_0})^{\times d} \to M_n$
d: to be determined

step 1. find an r_0 making ϕ_0 dominant: dominant Lemma + open mapping theorem

- step 2. $\tilde{\phi_0}$ is surjective: generating Lemma
- step 3. ϕ is surjective: known decompositions

Motivation and general problems	Method	Toeplitz decomposition and Hankel decomposition	Bidiagonal decomposition and Tridiag
		00000000	

Definition

- Toep_n: space of Toeplitz matrices
- $r_0 = \lfloor \frac{n}{2} \rfloor + 1$

• Toep<sup>×
$$r_0$$</sup> = Toep_n ×···× Toep_n
 r_0 copies

•
$$\phi_0$$
 : Toep $_n^{\times r_0} \to M_n$

- t_j : indeterminants $j = 1, 2, \ldots, r$
- $T_0, T_1, T_{-1}, \ldots, T_{n-1}, T_{-n+1}$: standard basis for Toep_n

• $A_j = T_0 + t_j (T_{n-j} - T_{-(n-j)}), j = 1, 2, ..., r$

Motivation and general problems Method Toeplitz decomposition and Hankel decomposition Bidiagonal decomposition and Tridiagonal decomposition and Tridiagona

Toeplitz decomposition

first express

$$d\phi_0|_{(A_1,\ldots,A_r)}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

as a
$$r_0(2n-1) imes n^2$$
 matrix M ,
then find a nonzero $n^2 imes n^2$ minor (in terms of t's) of M , this
proves

Theorem

 ϕ_0 is a dominant morphism.

Toeplitz decomposition

•
$$\tilde{\phi_0} : \tilde{\operatorname{Toep}}_n^{\times 2r_0} \to \operatorname{GL}_n$$

• $\phi : \operatorname{Toep}_n^{\times (4r_0+1)} \to M_n$

open mapping theorem + generating Lemma $\implies ilde{\phi_0}$ surjective

Gaussian elimination $\implies X = PTQ$ for $P, Q \in GL_n, T \in \text{Toep}_n$

hence

Theorem

 ϕ is a surjective morphism. Equivalently, every $n \times n$ matrix is a product of 2n + 5 Toeplitz matrices.

Motivation and general problems	Method	Toeplitz decomposition and Hankel decomposition	Bidiagonal decomposition and Tridia
		00000000	

Remarks

- the decomposition is not unique
- no explicit algorithm is known
- 2n + 5 is not sharp: every 2×2 matrix can be decomposed as a product of two Toeplitz matrices

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Important implication of the decomposition

solving linear systems

- Gaussian elimination: $n^3/2 + n^2/2$ operations
- LU-decomposition: $n^3/3 + n^2 n/3$ operations
- QR-decomposition: $2n^3 + 3n^2$ operations
- Bitrnead & Anderson, or Houssam, Bernard & Michelle:
 O(n log² n) operations for Toeplitz linear systems
- K. Ye & L.H Lim: $O(n^2 \log^2 n)$ operations for general linear systems

Motivation and general problems	Method	Toeplitz decomposition and Hankel decomposition	Bidiagonal decomposition and Tridiag
		000000000	

Definition

- $A = (a_{i,j}): n \times n$ matrix
 - Rotation: $A^{\mathsf{R}} = (a_{n+1-j,i})$
 - Right swap: $A^{S} = (a_{i,n+1-j})$

• Left swap:
$${}^{\mathsf{S}}A = (a_{n+1-i,j})$$

three operations are all isomorphisms and

A Toeplitz \iff A^{R} Hankel

- A Toeplitz \iff A^{S} Hankel
- A Toeplitz $\iff {}^{\mathsf{S}}A$ Hankel

Motivation and general problems Method Toeplitz decomposition and Hankel decomposition Bidiagonal decomposition and Tridiagonal decomposition and Tridiagona

Hankel decomposition

• A, B:
$$n \times n$$
 matrices
• $(AB)^{R} = B^{RS}A^{R} = B^{R}(^{S}(A^{R}))$
• $A^{SR} = A^{T}$
• $(^{S}A)^{R} = A^{T}$
• $(AB)^{S} = AB^{S}$
• $(^{S}(AB)) = ^{S}AB$

• A_1, \ldots, A_m : $n \times n$ matrices

relations above $\implies (A_1^{\mathsf{S}} \cdots A_m^{\mathsf{S}})^{\mathsf{R}} = A_m^{\mathsf{S}\mathsf{R}} \cdot {}^{\mathsf{S}} (A_{m-1}^{\mathsf{S}\mathsf{R}}) (A_1^{\mathsf{S}} \cdots A_{m-2}^{\mathsf{S}})^{\mathsf{R}}$

Motivation and general problems Method Toeplitz decomposition and Hankel decomposition Bidiagonal decomposition and Tridiagonal control of the second second

Hankel decomposition

first consider

$$f: \operatorname{Hank}_n^{\times r} \xrightarrow{\mathsf{S}} \operatorname{Toep}_n^{\times r} \xrightarrow{\phi_0} M_n \xrightarrow{\mathsf{R}} M_n$$

- S: right swap operator
- R: rotation operator

then

$$\operatorname{im}(f) \simeq \phi_0(\operatorname{Toep}_n^{\times r}) \simeq \phi_0(\operatorname{Hank}_n^{\times r})$$

this proves

Theorem

 ϕ_0 is dominant for $r = \lfloor n/2 \rfloor + 1$.

Hankel decomposition

same argument \implies exact version for Hankel decomposition

Theorem ϕ : Hank^{×(2n+5)} $\rightarrow M_n$ is surjective.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition

- U: space of upper triangular matrices
- L: space of lower triangular matrices
- D_{1,≥0}: space of upper bidiagonal matrices
- $D_{1,\leq 0}$: space of lower bidiagonal matrices

•
$$\phi_U: D_{\geq 0}^{\times n} \mapsto U$$

• $\phi_L : D_{\leq 0}^{\times n} \mapsto L$

bidiagonal decomposition

rank of the differential at a generic point

 $\implies \phi_U, \phi_L \text{ dominant}$

- open mapping theorem + generating Lemma
 - \implies element in U = product of 2n elements in $D_{\geq 0}$
- open mapping theorem + generating Lemma
 - \implies element in L = product of 2n elements in $D_{\leq 0}$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

bidiagonal decomposition

- P₀: all principal minors nonzero
 - \implies $P_0 = \mathcal{LU}$, $\mathcal{L} \in L$, $\mathcal{U} \in U$
- $P_0 =$ product of 4n bidiagonal matrices
 - \implies generic matrix = product of 4*n* bidiagonal matrices
- open mapping theorem + generating Lemma
 - \implies invertible matrix = product of 8*n* bidiagonal matrices
- Gaussian elimination
 - \implies any matrix = product of 16*n* bidiagonal matrices

this proves

Theorem

Every $n \times n$ matrix is a product of 16 bidiagonal matrices.

Motivation and general problems	Method	Toeplitz decomposition and Hankel decomposition	Bidiagonal decomposition and Tridia
			00000000

Question

- know: a matrix = product of 16*n* tridiagonal matrices
- expected number of factors: $\lfloor \frac{n^2}{3n-2} \rfloor + 1 \approx \lfloor \frac{n}{3} \rfloor + 1$
- questions:
 - Detter decomposition?
 - east number of factors needed = expected number? answers:

yes
 no

Motivation and general problems	Method	Toeplitz decomposition and Hankel decomposition	Bidiagonal decomposition and Tridia
			000000000

definition

• D_k : space of $n \times n$ matrices with $a_{ij} = 0$ if |i - j| > k, k = 1, 2, ..., n - 1• $D_1^{\times r} = \underbrace{D_1 \times \cdots \times D_1}_{r \text{ copies}}$

• $\phi: D_1^{ imes r} o M_n$ defined by matrix multiplication

 Motivation and general problems
 Method
 Toeplitz decomposition and Hankel decomposition
 Bidiagonal decomposition and Tridiagonal decomposition

 000000
 000
 00000000
 00000000
 00000000

bidiagonal decomposition

- $A \in D_1, B \in D_k \implies AB \in D_{k+1} \implies r \ge$
 - n-1 if ϕ dominant
- Gaussian elimination ⇒ a matrix = LDPU, L lower triangular, D diagonal, P permutation and U upper triangular
- element in L = product of 2n lower triangular \implies element in L = 2n triangular

• (M.D Samson and M. F Ezerman) permutation matrix = product of 2n - 1 tridiagonal matrices

this proves

Theorem

If ϕ is surjective, then $n-1 \leq r \leq 6n$.

Important Implication of tridiagonal decomposition

solving linear systems

- Thomas algorithm: O(n) operations for tridiagonal linear systems
- K. Ye and L.H Lim: $O(n^2)$ operations for general linear systems

Open questions

- smallest number of factors needed to for Toeplitz decomposition?
 conjecture: | ⁿ/₂ | + 1
- same questions for Hankel, tridiagonal, bidiagonal decompositions

• explicit algorithms for these decompositions?

References

Superfast solution of Toeplitz systems based on syzygy reduction.

Bitrnead, Anderson

Asymptotically fast solution of Toeplitz and related systems of linear equations

Michael Daniel Samson and Martianus Frederic Ezerman (2010)

Factoring Permutation Matrices Into a Product of Tridiagonal Matrices

Joseph L. Taylor

Several Complex Variables With Connections to Algebraic Geometry and Lie Groups

Armand Borel

Linear algebraic groups

David Eisenbud

Commutative algebra: with a view toward algebraic geometry

Motivation and general problems Method Toeplitz decomposition and Hankel decomposition Bidiagonal decomposition and Tridiagon October October

Thank You !