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Motivation

solving linear systems

1 Gaussian elimination

2 LU-decomposition

3 QR-decomposition

goal: faster algorithm

1 Toeplitz decomposition

2 Tridiagonal decomposition
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Set up

set up

Mn: the space of all n × n matrices

r : natural number

V1, . . . ,Vr : algebraic varieties in Mn

morphism φ : V1 × · · · × Vr → Mn

φ(A1, . . . ,Ar ) = A1 · · ·Ar
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Questions

questions

What types of Vj ’s can make φ surjective?

For fixed types of Vj ’s, what is the smallest r such that φ is
surjective?

weaker version

What types of Vj ’s can make φ dominant?

For fixed types of Vj ’s, what is the smallest r such that φ is
dominant?
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Connection to matrix decomposition

Exact case

The morphism
φ : V1 × · · · × Vr → Mn

is surjective if and only if for every matrix X ∈ Mn, we can
decompose X into the product of elements in Vj ’s.

Generic case

The morphism
φ : V1 × · · · × Vr → Mn

is dominant if and only if for a generic (almost every) matrix
X ∈ Mn, we can decompose X into the product of elements in Vj ’s.
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Examples

LU-decomposition: X = LUP

QR-decomposition: X = QR

Gaussian elimination: X = PDQ
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Non-examples

the set of all upper triangular matrices

subgroups of GLn

one dimensional linear subspaces of Mn

subspaces of the space of matrices of the form
0 ∗ · · · ∗
0 ∗ · · · ∗
...

...
. . .

...
0 ∗ · · · ∗


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Gadgets

Theorem (open mapping theorem)

If f : X 7→ Y is a dominant morphism between algebraic varieties,
there exists a subset V of f (X ) such that

1 V is open and dense in Y and

2 dim f −1(y) = dimX − dimY for any y ∈ V .
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Gadgets

easy to verify whether a morphism is dominant

Lemma (dominant Lemma)

Let f : X 7→ Y be a morphism between algebraic varieties. Assume
that exists a point x ∈ X such that the differential df |x is
surjective, then f is dominant.

passing from open sets to the whole group

Lemma (generating Lemma)

Let G be an algebraic group and let U,V be open dense subsets of
G. Then G = UV .
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Method

φ0 : V1 × · · · × Vr0 → Mn

Ṽj = Vj ∩ GLn, j = 1, 2, . . . , r0

φ̃0 : (Ṽ1 × · · · × Ṽr0)× (Ṽ1 × · · · × Ṽr0)→ GLn

φ : (V1 × · · · × Vr0)×d → Mn

d : to be determined

step 1. find an r0 making φ0 dominant: dominant Lemma + open
mapping theorem

step 2. φ̃0 is surjective: generating Lemma

step 3. φ is surjective: known decompositions
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Definition

Toepn: space of Toeplitz matrices

r0 = bn2c+ 1

Toep×r0
n = Toepn× · · · × Toepn︸ ︷︷ ︸

r0 copies

φ0 : Toep×r0
n → Mn

tj : indeterminants j = 1, 2, . . . , r

T0,T1,T−1, . . . ,Tn−1,T−n+1: standard basis for Toepn

Aj = T0 + tj(Tn−j − T−(n−j)), j = 1, 2, . . . , r
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Toeplitz decomposition

first express
dφ0|(A1,...,Ar )

as a r0(2n − 1)× n2 matrix M,
then find a nonzero n2 × n2 minor (in terms of t’s) of M, this
proves

Theorem

φ0 is a dominant morphism.
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Toeplitz decomposition

φ̃0 : ˜Toepn
×2r0 → GLn

φ : Toep
×(4r0+1)
n → Mn

open mapping theorem + generating Lemma =⇒ φ̃0 surjective

Gaussian elimination =⇒ X = PTQ for P,Q ∈ GLn, T ∈ Toepn

hence

Theorem

φ is a surjective morphism. Equivalently, every n × n matrix is a
product of 2n + 5 Toeplitz matrices.



Motivation and general problems Method Toeplitz decomposition and Hankel decomposition Bidiagonal decomposition and Tridiagonal decomposition

Remarks

the decomposition is not unique

no explicit algorithm is known

2n + 5 is not sharp: every 2× 2 matrix can be decomposed as
a product of two Toeplitz matrices
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Important implication of the decomposition

solving linear systems

Gaussian elimination: n3/2 + n2/2 operations

LU-decomposition: n3/3 + n2 − n/3 operations

QR-decomposition: 2n3 + 3n2 operations

Bitrnead & Anderson, or Houssam, Bernard & Michelle:
O(n log2 n) operations for Toeplitz linear systems

K. Ye & L.H Lim: O(n2 log2 n) operations for general linear
systems
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Definition

A = (ai ,j): n × n matrix

Rotation: AR = (an+1−j ,i )

Right swap: AS = (ai ,n+1−j)

Left swap: SA = (an+1−i ,j)

three operations are all isomorphisms and
A Toeplitz ⇐⇒ AR Hankel
A Toeplitz ⇐⇒ AS Hankel
A Toeplitz ⇐⇒ SA Hankel
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Hankel decomposition

A, B: n × n matrices
1 (AB)R = BRSAR = BR(S(AR))
2 ASR = AT

3 (SA)R = AT

4 (AB)S = ABS

5 S(AB) = SAB

A1, . . . ,Am: n × n matrices

relations above =⇒ (AS
1 · · ·AS

m)R = ASR
m · S(ASRS

m−1)(AS
1 · · ·AS

m−2)R
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Hankel decomposition

first consider

f : Hank×r
n

S−→ Toep×r
n

φ0−→ Mn
R−→ Mn

S: right swap operator
R: rotation operator
then

im(f ) ' φ0(Toep×r
n ) ' φ0(Hank×r

n )

this proves

Theorem

φ0 is dominant for r = bn/2c+ 1.
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Hankel decomposition

same argument =⇒ exact version for Hankel decomposition

Theorem

φ : Hank
×(2n+5)
n → Mn is surjective.
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Definition

U: space of upper triangular matrices

L: space of lower triangular matrices

D1,≥0: space of upper bidiagonal matrices

D1,≤0: space of lower bidiagonal matrices

φU : D×n
≥0 7→ U

φL : D×n
≤0 7→ L
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bidiagonal decomposition

rank of the differential at a generic point
=⇒ φU , φL dominant

open mapping theorem + generating Lemma
=⇒ element in U = product of 2n elements in D≥0

open mapping theorem + generating Lemma
=⇒ element in L = product of 2n elements in D≤0
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bidiagonal decomposition

P0: all principal minors nonzero
=⇒ P0 = LU , L ∈ L, U ∈ U

P0 = product of 4n bidiagonal matrices
=⇒ generic matrix = product of 4n bidiagonal matrices

open mapping theorem + generating Lemma
=⇒ invertible matrix = product of 8n bidiagonal matrices

Gaussian elimination
=⇒ any matrix = product of 16n bidiagonal matrices

this proves

Theorem

Every n × n matrix is a product of 16 bidiagonal matrices.
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Question

know: a matrix = product of 16n tridiagonal matrices

expected number of factors: b n2

3n−2c+ 1 ≈ bn3c+ 1

questions:
1 better decomposition?
2 least number of factors needed = expected number?

answers:
1 yes
2 no
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definition

Dk : space of n × n matrices with aij = 0 if |i − j | > k ,
k = 1, 2, . . . , n − 1

D×r
1 = D1 × · · · × D1︸ ︷︷ ︸

r copies

φ : D×r
1 → Mn defined by matrix multiplication
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bidiagonal decomposition

A ∈ D1,B ∈ Dk =⇒ AB ∈ Dk+1 =⇒ r ≥
n − 1 if φ dominant

Gaussian elimination =⇒ a matrix = LDPU, L lower
triangular, D diagonal, P permutation and U upper triangular

element in L = product of 2n lower triangular =⇒ element
in L = 2n triangular

(M.D Samson and M. F Ezerman) permutation matrix =
product of 2n − 1 tridiagonal matrices

this proves

Theorem

If φ is surjective, then n − 1 ≤ r ≤ 6n.
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Important Implication of tridiagonal decomposition

solving linear systems

Thomas algorithm: O(n) operations for tridiagonal linear
systems

K. Ye and L.H Lim: O(n2) operations for general linear
systems
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Open questions

smallest number of factors needed to for Toeplitz
decomposition?
conjecture: bn2c+ 1

same questions for Hankel, tridiagonal, bidiagonal
decompositions

explicit algorithms for these decompositions?
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Thank You !
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