Decomposing Tensor Networks

Jacob Turner

The Pennsylvania State University
August 3,2013
S.I.A.M. Conference on Applied Algebraic Geometry

What is a Tensor Network?

A closed tensor network can be described as combinatorial object, $\left(G,\left\{T_{j}\right\},\left\{W_{i}\right\}\right)$ where

- $G=(V, E)=\left(\left\{V_{j}\right\},\left\{E_{i}\right\}\right)$ is a graph.
- For each edge E_{i}, there is an associated vector space W_{i}.
- For each vertex V_{j}, there is an associated tensor

$$
T_{j} \in \bigotimes_{i \in \mathcal{N}\left(V_{j}\right)} W_{i}
$$

where $\mathcal{N}\left(V_{j}\right)=\left\{i: E_{i}\right.$ is incident to $\left.V_{j}\right\}$.

Tensor Contraction

We define a multilinear operation on the tensors of a tensor network called tensor contraction.

We define a multilinear operation on the tensors of a tensor network called tensor contraction.
Example

Let

$$
T_{1}=w_{1} \otimes w_{2} \otimes w_{3} \otimes w_{4} \in W_{1} \otimes W_{2} \otimes W_{3} \otimes W_{4}
$$

and

$$
T_{2}=u_{3} \otimes u_{4} \otimes u_{5} \otimes u_{6} \in W_{3} \otimes W_{4} \otimes W_{5} \otimes W_{6}
$$

Tensor Contraction

We define a bilinear operation on tensor networks called tensor contraction.
Example

$$
T_{1}^{\prime}=w_{3}^{*}\left(u_{3}\right) w_{4}^{*}\left(u_{4}\right) \cdot\left(w_{1} \otimes w_{2} \otimes u_{4} \otimes u_{5}\right)
$$

We define a bilinear operation on tensor networks called tensor contraction.
Example

$$
T_{1}^{\prime}=w_{3}^{*}\left(u_{3}\right) w_{4}^{*}\left(u_{4}\right) \cdot\left(w_{1} \otimes w_{2} \otimes u_{4} \otimes u_{5}\right)
$$

So this implies that every closed tensor network can be contracted to a scalar.

Why Study These Things?

Physics

- Tensor Networks show up in Physics as they can approximate the ground states of Hamiltonians.
- Studying the decomposition of certain kinds of tensor networks allows physicists to measure things like entanglement and entropy.

Why Study These Things?

Physics

- Tensor Networks show up in Physics as they can approximate the ground states of Hamiltonians.
- Studying the decomposition of certain kinds of tensor networks allows physicists to measure things like entanglement and entropy.

Complexity Theory

- Finding the scalar a closed tensor network represents is a \#P-hard problem.
- Certain families of tensor networks are efficiently computable. Decompositions give a way of deciding if certain tensor networks lie in these families.

Tensor Networks as Polynomials

From here on out, the vector space associated to all edges will be \mathbb{C}^{2}.

Tensor Networks as Polynomials

From here on out, the vector space associated to all edges will be \mathbb{C}^{2}.

$$
X, Y \in \operatorname{End}\left(\mathbb{C}^{2}\right)
$$

Tensor Networks as Polynomials

From here on out, the vector space associated to all edges will be \mathbb{C}^{2}.

$$
X, Y \in \operatorname{End}\left(\mathbb{C}^{2}\right)
$$

Tensor Networks as Polynomials

From here on out, the vector space associated to all edges will be \mathbb{C}^{2}.

$$
X, Y \in \operatorname{End}\left(\mathbb{C}^{2}\right)
$$

Tensor Networks as Polynomials

From here on out, the vector space associated to all edges will be \mathbb{C}^{2}.

$$
X, Y \in \operatorname{End}\left(\mathbb{C}^{2}\right)
$$

$$
\begin{aligned}
& =\operatorname{Tr}\left(\left(g^{-1} X g\right)\left(g^{-1} Y g\right)\left(g^{-1} X g\right)\right) \\
& =\operatorname{Tr}(X Y X) \in \mathbb{C}\left[\operatorname{End}\left(\mathbb{C}^{2}\right)^{\oplus 2}\right]^{G L_{2}}
\end{aligned}
$$

Generators of $\mathbb{C}\left[\operatorname{End}\left(\mathbb{C}^{2}\right)^{\oplus \oplus}\right]^{G L_{2}}$

Theorem (?,Classical)

$\mathbb{C}\left[\operatorname{End}\left(\mathbb{C}^{2}\right)^{\oplus 2}\right]^{G L_{2}}$ is minimally generated by the polynomials $\operatorname{Tr}(X), \operatorname{Tr}(Y), \operatorname{Tr}\left(X^{2}\right), \operatorname{Tr}\left(Y^{2}\right)$, and $\operatorname{Tr}(X Y)$.

Generators of $\mathbb{C}\left[\operatorname{End}\left(\mathbb{C}^{2}\right)^{\oplus 2}\right]^{G L_{2}}$

Theorem (?,Classical)

$\mathbb{C}\left[\operatorname{End}\left(\mathbb{C}^{2}\right)^{\oplus 2}\right]^{G L_{2}}$ is minimally generated by the polynomials $\operatorname{Tr}(X), \operatorname{Tr}(Y), \operatorname{Tr}\left(X^{2}\right), \operatorname{Tr}\left(Y^{2}\right)$, and $\operatorname{Tr}(X Y)$.

As Tensor Networks:

Lattice Tensor Networks

$$
\in \mathbb{C}\left[\operatorname{End}\left(\mathbb{C}^{2}\right)^{\oplus 4}\right]^{G L_{2} \times G L_{2}}
$$

Local Conjugation

Suppose that $V=\bigotimes_{i=1}^{n} V_{i}$. Let $\operatorname{End}(V) \cong \bigotimes_{i=1}^{n} \operatorname{End}\left(V_{i}\right)$ be acted on by $G=G L_{t_{1}} \times \cdots \times G L_{t_{n}}$ in the following way:

$$
\begin{aligned}
& \left(g_{1}, \ldots, g_{n}\right) \cdot\left(\sum_{i=1}^{n} A_{1 i} \otimes \cdots \otimes A_{n i}\right) \\
& =\sum_{i=1}^{n} g_{1} A_{1 i} g_{1}^{-1} \otimes \cdots \otimes g_{n} A_{n i} g_{n}^{-1}
\end{aligned}
$$

Local Conjugation

Suppose that $V=\bigotimes_{i=1}^{n} V_{i}$. Let $\operatorname{End}(V) \cong \bigotimes_{i=1}^{n} \operatorname{End}\left(V_{i}\right)$ be acted on by $G=G L_{t_{1}} \times \cdots \times G L_{t_{n}}$ in the following way:

$$
\begin{aligned}
& \left(g_{1}, \ldots, g_{n}\right) \cdot\left(\sum_{i=1}^{n} A_{1 i} \otimes \cdots \otimes A_{n i}\right) \\
& =\sum_{i=1}^{n} g_{1} A_{1 i} g_{1}^{-1} \otimes \cdots \otimes g_{n} A_{n i} g_{n}^{-1}
\end{aligned}
$$

What are the generators of $\mathbb{C}\left[\operatorname{End}(V)^{\oplus m}\right]^{G}$?

The Functions $\operatorname{Tr}_{\sigma}^{M}$

Let us consider an ordered multiset $M=\left\{m_{i}\right\}$ with elements from $[m]$.

The Functions $\operatorname{Tr}_{\sigma}^{M}$

Let us consider an ordered multiset $M=\left\{m_{i}\right\}$ with elements from $[m]$. Let \mathcal{S}_{M} be the group of permutations on M.

The Functions $\operatorname{Tr}_{\sigma}^{M}$

Let us consider an ordered multiset $M=\left\{m_{i}\right\}$ with elements from $[m]$. Let \mathcal{S}_{M} be the group of permutations on M. Let $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right) \in \mathcal{S}_{M}^{n}$. Let $\left(m_{r_{1}} \cdots m_{r_{k}}\right)\left(m_{s_{1}} \cdots m_{s_{l}}\right) \cdots$ be a disjoint cycle decomposition for σ_{i}.

The Functions $\operatorname{Tr}_{\sigma}^{M}$

Let us consider an ordered multiset $M=\left\{m_{i}\right\}$ with elements from $[m]$. Let \mathcal{S}_{M} be the group of permutations on M.
Let $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right) \in \mathcal{S}_{M}^{n}$. Let $\left(m_{r_{1}} \cdots m_{r_{k}}\right)\left(m_{s_{1}} \cdots m_{s_{l}}\right) \cdots$ be a disjoint cycle decomposition for σ_{i}.
We define the following functions on simple tensors of
$\operatorname{End}(V)^{\oplus m}$ and extend multilinearly:
$T_{\sigma_{i}}^{M}\left(\bigotimes A_{j 1}, \ldots, \bigotimes A_{j m}\right)=\operatorname{Tr}\left(A_{i m_{r_{1}}} \cdots A_{i m_{r_{k}}}\right) \operatorname{Tr}\left(A_{i m_{s_{1}}} \cdots A_{i m_{s_{l}}}\right) \cdots$

The Functions $\operatorname{Tr}_{\sigma}^{M}$

Let us consider an ordered multiset $M=\left\{m_{i}\right\}$ with elements from $[m]$. Let \mathcal{S}_{M} be the group of permutations on M.
Let $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right) \in \mathcal{S}_{M}^{n}$. Let $\left(m_{r_{1}} \cdots m_{r_{k}}\right)\left(m_{s_{1}} \cdots m_{s_{l}}\right) \cdots$ be a disjoint cycle decomposition for σ_{i}.
We define the following functions on simple tensors of
$\operatorname{End}(V)^{\oplus m}$ and extend multilinearly:
$T_{\sigma_{i}}^{M}\left(\bigotimes A_{j 1}, \ldots, \bigotimes A_{j m}\right)=\operatorname{Tr}\left(A_{i m_{r_{1}}} \cdots A_{i m_{r_{k}}}\right) \operatorname{Tr}\left(A_{i m_{s_{1}}} \cdots A_{i m_{s_{l}}}\right) \cdots$

Then define

$$
\operatorname{Tr}_{\sigma}^{M}=\prod_{i=1}^{d} T_{\sigma_{i}}^{M}
$$

Example

Let $V=V_{1} \otimes V_{2}$ and $M=\{1,2,1\}=\left\{m_{1}, m_{2}, m_{3}\right\}$ and $\sigma=\left(\left(m_{1} m_{2}\right)\left(m_{3}\right),\left(m_{1}\right)\left(m_{2} m_{3}\right)\right) \in \mathcal{S}_{M}^{2}$.

Example

Let $V=V_{1} \otimes V_{2}$ and $M=\{1,2,1\}=\left\{m_{1}, m_{2}, m_{3}\right\}$ and $\sigma=\left(\left(m_{1} m_{2}\right)\left(m_{3}\right),\left(m_{1}\right)\left(m_{2} m_{3}\right)\right) \in \mathcal{S}_{M}^{2}$.
Then $\operatorname{Tr}_{\sigma}^{M}=$

The Generators of $\mathbb{C}\left[\operatorname{End}(V)^{\oplus m}\right]^{G}$

Theorem (T.)

The ring of invariants of $\operatorname{End}(V)^{\oplus m}$ is generated by the $\operatorname{Tr}_{\sigma}^{M}$.

The Generators of $\mathbb{C}\left[\operatorname{End}(V)^{\oplus m}\right]^{G}$

Theorem (T.)

The ring of invariants of $\operatorname{End}(V)^{\oplus m}$ is generated by the $\operatorname{Tr}_{\sigma}^{M}$.
Unfortunately, this is not useful as it gives us an infinite number of generators.

Bounding the Number of Generators

Let $V=\left(\mathbb{C}^{2}\right)^{\otimes n}$

Bounding the Number of Generators

Let $V=\left(\mathbb{C}^{2}\right)^{\otimes n}$

- Define the degree of a function $\operatorname{Tr}_{\sigma}^{M}$ to be $|M|$.

Bounding the Number of Generators

Let $V=\left(\mathbb{C}^{2}\right)^{\otimes n}$

- Define the degree of a function $\operatorname{Tr}_{\sigma}^{M}$ to be $|M|$.
- Define $\mathcal{S}_{M}^{n, \leq 3}$ to be the subset of \mathcal{S}_{M}^{n} whose disjoint cycle decompositions do not contain a cycle of length more than 3.

Bounding the Number of Generators

Let $V=\left(\mathbb{C}^{2}\right)^{\otimes n}$

- Define the degree of a function $\operatorname{Tr}_{\sigma}^{M}$ to be $|M|$.
- Define $\mathcal{S}_{M}^{n, \leq 3}$ to be the subset of \mathcal{S}_{M}^{n} whose disjoint cycle decompositions do not contain a cycle of length more than 3.

Theorem (T.)

Let r be the generic rank of $\operatorname{End}(V)$ as a $4 \times \cdots \times 4=4^{n}$ tensor. Let \mathfrak{m} be the smallest number greater than or equal to $2\left\lfloor\frac{r m}{2}\right\rfloor+1$ that is divisible by 6. Then $K\left[\operatorname{End}(V)^{\oplus m}\right]^{G}$ is generated by $\operatorname{Tr}_{\sigma}^{M}$ of degree at most $\mathfrak{m}\left(\binom{r m}{3} / 3+r m\right)+2\left\lfloor\frac{r m}{2}\right\rfloor+1, \sigma \in \mathcal{S}_{M}^{n, \leq 3}$.

THAT'S ALL FOLKS!

