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Direct sum decompositions

Can F = F (x1, . . . , xn) be written as a sum of polynomials in separate
variables? We allow a linear change of coordinates:

F = G (t1, . . . , tk) + H(tk+1, . . . , tn) where the ti are linearly independent
linear forms.

Example

xy 6= G (x) + H(y), but xy = 1
4(x + y)2 − 1

4(x − y)2.

Let detn = det((xij)1≤i ,j≤n), the n × n generic determinant.

Problem

det2 = ad − bc is decomposable. Is detn decomposable for n > 2?
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Apolarity

S = C[x1, . . . , xn], T = C[α1, . . . , αn] dual ring: αi acts as ∂/∂xi .

For F ∈ S , F⊥ ⊂ T ideal.

Example

det⊥n is generated by:

α2
i ,j

αi ,j1αi ,j2 (two entries from same row)

αi1,jαi2,j (two entries from same column)

permanents of 2× 2 submatrices:

per

(
αi ,j αi ,l

αk,j αk,l

)
= αi ,jαk,l + αi ,lαk,j .

[Shafiei, 2012]
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Ranestad-Schreyer bound for Waring rank

Waring rank: r(F ) = least r such that F = `d1 + · · ·+ `dr .

Example

detn = sum of n! terms of the form x1 · · · xn. Each term has rank
r(x1 · · · xn) = 2n−1. So r(detn) ≤ 2n−1n!.

Lower bounds for rank:

Sylvester: r(F ) ≥ max{dim(T/F⊥)a}
Ranestad-Schreyer: r(F ) ≥ 1

δ

∑
a dim(T/F⊥)a, where δ = maximum

degree of a generator of F⊥.

Example

Sylvester’s bound gives r(detn) ≥
( n
bn/2c

)2
(r(det3) ≥ 9).

The Ranestad-Schreyer bound gives r(detn) ≥ 1
2

(2n
n

)
(r(det3) ≥ 10).
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Apolar generating degree

What is the generating degree of F⊥?

Say deg F = d . Then F⊥ contains all differential operators of degree > d ,
so no generators of degree d + 2 or higher (but maybe d + 1).

Problem

Give conditions for F⊥ to have high-degree or low-degree generators.

Theorem (Casnati–Notari)

F⊥ has a minimal generator of degree d + 1 if and only if r(F ) = 1,
F = xd .
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Theorem

If F is decomposable as a direct sum then F⊥ has a minimal generator of
degree d.

Corollary

For n > 2, detn is not decomposable.

Proof.

Say F = G (X )− H(Y ) is a direct sum decomposition.

For 0 ≤ a < d , F⊥a = G⊥a ∩ H⊥a : If DG = DH = 0 ∈ C[X ] ∩ C[Y ]
then degDG = degDH = 0 so degD = d .

Let ∆X (G ) = 1, ∆Y (H) = 1, ∆ = ∆X + ∆Y . Then
F⊥d = (G⊥ ∩ H⊥)d + 〈∆〉.

So F⊥ = (G⊥ ∩ H⊥) + ∆ and ∆ is a minimal generator.
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Converse

The converse fails.

Example

F = xyd−1 has F⊥ = 〈α2, βd〉.
But F is indecomposable because `d1 − `d2 has distinct factors.

However xyd−1 is a limit of direct sums:

xyd−1 = lim
t→0

1

dt

(
(y + tx)d − yd

)
.

Theorem

If F⊥ has a minimal generator of degree d then F is a limit of direct sums.
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Converse again

Theorem

If F⊥ has a minimal generator of degree d then F is a limit of direct sums.

Once again the converse fails!

Example

xd − tyd → xd , but (xd)⊥ = 〈αd+1, β〉.
xyz − tw3 → xyz , but (xyz)⊥ = 〈α2, β2, γ2, δ〉.

Theorem

Let n ≥ 2, d ≥ 3. If F is a limit of direct sums and F cannot be written
using fewer variables, then F⊥ has a minimal generator of degree d.
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Chart of inclusions

DirSum ( ApoMax ( DirSum
∪ ∪ ∪

DirSum∩Con ( ApoMax∩Con = DirSum ∩ Con

DirSum: decomposable as a direct sum
ApoMax: F⊥ has a minimal generator of degree d

Con: concise, i.e., cannot be written using fewer variables
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An idea that doesn’t work

Suppose Ft → F0 = F and the Ft are direct sums for t 6= 0.
Does semicontinuity of graded Betti numbers show that F⊥ has a
generator of degree d?

No, because F⊥ is not necessarily the flat limit of the F⊥t .

Example

(xd − tyd)⊥ = 〈αβ, tαd + βd〉
(xd)⊥ = 〈αd+1, β〉

So (xd − tyd)⊥ 6→ (xd)⊥.
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Well, it works sometimes

Theorem

For d = 3, if Ft → F and F is concise then F⊥t → F⊥ is always flat.

For n = 3, if F⊥ has a minimal generator of degree d then there exists
some family Ft → F , Ft direct sums, such that F⊥t → F⊥ is flat.

But

There exists F such that F⊥ has a minimal generator of degree d, so
F is a limit of direct sums; but for every family of direct sums
Ft → F , F⊥t → F⊥ is not flat.

The last item is a consequence of the existence of non-smoothable
Gorenstein schemes.

This forces trickier proofs for the previous theorems.
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An idea that does work

Theorem

If F⊥ has a minimal generator of degree d then F is a limit of direct sums.

Proof.

Suppose F⊥ has a minimal generator of degree d .

By Gorenstein duality, F⊥ has a high degree syzygy.

By Koszul homology, F⊥ contains quadratic generators:
the 2× 2 minors of a matrix L of linear forms.

Jordan normal form of L either gives

a direct sum decomposition of F ,
or (if L is nilpotent) a limit of direct sums.
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Theorem

Let n ≥ 2, d ≥ 3. If F is a limit of direct sums and F cannot be written
using fewer variables, then F⊥ has a minimal generator of degree d.

Proof.

Suppose F is a concise limit of direct sums, Ft → F .

Let J = limF⊥t . J ⊆ F⊥.

Each F⊥t has a minimal generator of degree d

By Gorenstein duality βn−1,n(F⊥t ) > 0

By semicontinuity of graded Betti numbers, βn−1,n(J) > 0

This syzygy lies in the minimal-degree strand by conciseness
(no linear generators).

So F⊥ has the same high degree syzygy

Hence F⊥ also has a minimal generator of degree d .
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Low-degree generators

Theorem

If F is a homogeneous form of degree d in n variables and δ is the
generating degree of F⊥ then d ≤ (δ − 1)n.

If F⊥ is generated by quadrics then d ≤ n.

Question

What are the forms F such that d = n and F⊥ is generated by quadrics?

F = x1 · · · xn has F⊥ = 〈α2
1, . . . , α

2
n〉.
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