Direct Sum Decomposability of Polynomials

Zach Teitler

SIAM Applied Algebraic Geometry August 1, 2013

Joint work with Weronika Buczyńska, Jarek Buczyński, Johannes Kleppe

Problem 1: Direct sum decomposability

Problem 2: Bounds for Waring rank

Direct sum decompositions

Can $F = F(x_1, ..., x_n)$ be written as a sum of polynomials in separate variables? We allow a linear change of coordinates:

 $F = G(t_1, \ldots, t_k) + H(t_{k+1}, \ldots, t_n)$ where the t_i are linearly independent linear forms.

Example

$$xy \neq G(x) + H(y)$$
, but $xy = \frac{1}{4}(x+y)^2 - \frac{1}{4}(x-y)^2$.

Let $det_n = det((x_{ij})_{1 \le i,j \le n})$, the $n \times n$ generic determinant.

Problem

 $det_2 = ad - bc$ is decomposable. Is det_n decomposable for n > 2?

Apolarity

Example

```
\det_n^{\perp} is generated by:
```

•
$$\alpha_{i,j}^2$$

•
$$\alpha_{i,j_1}\alpha_{i,j_2}$$
 (two entries from same row)

- $\alpha_{i_1,j}\alpha_{i_2,j}$ (two entries from same column)
- permanents of 2×2 submatrices:

$$\operatorname{per} \begin{pmatrix} \alpha_{i,j} & \alpha_{i,l} \\ \alpha_{k,j} & \alpha_{k,l} \end{pmatrix} = \alpha_{i,j} \alpha_{k,l} + \alpha_{i,l} \alpha_{k,j}.$$

[Shafiei, 2012]

5 / 15

Ranestad-Schreyer bound for Waring rank

Waring rank:
$$r(F) = \text{least } r \text{ such that } F = \ell_1^d + \cdots + \ell_r^d$$
.

Example

 $\det_n = \text{sum of } n! \text{ terms of the form } x_1 \cdots x_n$. Each term has rank $r(x_1 \cdots x_n) = 2^{n-1}$. So $r(\det_n) \le 2^{n-1} n!$.

Lower bounds for rank:

- Sylvester: $r(F) \ge \max\{\dim(T/F^{\perp})_a\}$
- Ranestad-Schreyer: $r(F) \ge \frac{1}{\delta} \sum_{a} \dim(T/F^{\perp})_{a}$, where $\delta = \max \operatorname{maximum} degree$ of a generator of F^{\perp} .

Example

Sylvester's bound gives $r(\det_n) \ge {\binom{n}{\lfloor n/2 \rfloor}}^2$ $(r(\det_3) \ge 9)$. The Ranestad-Schreyer bound gives $r(\det_n) \ge \frac{1}{2} {\binom{2n}{n}}$ $(r(\det_3) \ge 10)$.

Apolar generating degree

What is the generating degree of F^{\perp} ?

Say deg F = d. Then F^{\perp} contains all differential operators of degree > d, so no generators of degree d + 2 or higher (but maybe d + 1).

Problem

Give conditions for F^{\perp} to have high-degree or low-degree generators.

Theorem (Casnati–Notari)

 F^{\perp} has a minimal generator of degree d + 1 if and only if r(F) = 1, $F = x^d$.

Theorem

If F is decomposable as a direct sum then F^{\perp} has a minimal generator of degree d.

Corollary

For n > 2, det_n is not decomposable.

Proof.

Say F = G(X) - H(Y) is a direct sum decomposition.

• For $0 \le a < d$, $F_a^{\perp} = G_a^{\perp} \cap H_a^{\perp}$: If $DG = DH = 0 \in \mathbb{C}[X] \cap \mathbb{C}[Y]$ then deg $DG = \deg DH = 0$ so deg D = d.

• Let
$$\Delta^X(G) = 1$$
, $\Delta^Y(H) = 1$, $\Delta = \Delta^X + \Delta^Y$. Then $F_d^{\perp} = (G^{\perp} \cap H^{\perp})_d + \langle \Delta \rangle$.

So $F^{\perp} = (G^{\perp} \cap H^{\perp}) + \Delta$ and Δ is a minimal generator.

The converse fails.

Example

$$F = xy^{d-1}$$
 has $F^{\perp} = \langle \alpha^2, \beta^d \rangle$.
But F is indecomposable because $\ell_1^d - \ell_2^d$ has distinct factors.

However xy^{d-1} is a limit of direct sums:

$$xy^{d-1} = \lim_{t \to 0} \frac{1}{dt} \left((y+tx)^d - y^d \right).$$

Theorem

If F^{\perp} has a minimal generator of degree d then F is a limit of direct sums.

Converse again

Theorem

If F^{\perp} has a minimal generator of degree d then F is a limit of direct sums.

Once again the converse fails!

Example

•
$$x^d - ty^d \to x^d$$
, but $(x^d)^{\perp} = \langle \alpha^{d+1}, \beta \rangle$.
• $xyz - tw^3 \to xyz$, but $(xyz)^{\perp} = \langle \alpha^2, \beta^2, \gamma^2, \delta \rangle$.

Theorem

Let $n \ge 2$, $d \ge 3$. If F is a limit of direct sums and F cannot be written using fewer variables, then F^{\perp} has a minimal generator of degree d.

Chart of inclusions

DirSum: decomposable as a direct sum ApoMax: F^{\perp} has a minimal generator of degree dCon: concise, i.e., cannot be written using fewer variables

An idea that doesn't work

Suppose $F_t \to F_0 = F$ and the F_t are direct sums for $t \neq 0$. Does semicontinuity of graded Betti numbers show that F^{\perp} has a generator of degree d?

No, because F^{\perp} is not necessarily the flat limit of the F_t^{\perp} .

Example

•
$$(x^d - ty^d)^{\perp} = \langle \alpha \beta, t \alpha^d + \beta^d \rangle$$

•
$$(x^d)^{\perp} = \langle \alpha^{d+1}, \beta \rangle$$

So
$$(x^d - ty^d)^{\perp} \not\rightarrow (x^d)^{\perp}$$
.

Well, it works sometimes

Theorem 14 Contempt

- For d = 3, if $F_t \to F$ and F is concise then $F_t^{\perp} \to F^{\perp}$ is always flat.
- For n = 3, if F[⊥] has a minimal generator of degree d then there exists some family F_t → F, F_t direct sums, such that F_t[⊥] → F[⊥] is flat.

But

There exists F such that F[⊥] has a minimal generator of degree d, so F is a limit of direct sums; but for every family of direct sums F_t → F, F_t[⊥] → F[⊥] is not flat.

The last item is a consequence of the existence of non-smoothable Gorenstein schemes.

This forces trickier proofs for the previous theorems.

An idea that does work

Theorem

If F^{\perp} has a minimal generator of degree d then F is a limit of direct sums.

Proof.

Suppose F^{\perp} has a minimal generator of degree d.

- By Gorenstein duality, F^{\perp} has a high degree syzygy.
- By Koszul homology, F[⊥] contains quadratic generators: the 2 × 2 minors of a matrix L of linear forms.
- Jordan normal form of L either gives
 - a direct sum decomposition of F,
 - or (if *L* is nilpotent) a limit of direct sums.

Theorem

Let $n \ge 2$, $d \ge 3$. If F is a limit of direct sums and F cannot be written using fewer variables, then F^{\perp} has a minimal generator of degree d.

Proof.

Suppose F is a concise limit of direct sums, $F_t \rightarrow F$.

- Let $J = \lim F_t^{\perp}$. $J \subseteq F^{\perp}$.
- Each F_t^{\perp} has a minimal generator of degree d
- By Gorenstein duality $\beta_{n-1,n}(F_t^{\perp}) > 0$
- By semicontinuity of graded Betti numbers, $\beta_{n-1,n}(J) > 0$
- This syzygy lies in the minimal-degree strand by conciseness (no linear generators).
- So F^{\perp} has the same high degree syzygy
- Hence F^{\perp} also has a minimal generator of degree d.

Low-degree generators

Theorem

If F is a homogeneous form of degree d in n variables and δ is the generating degree of F^{\perp} then $d \leq (\delta - 1)n$.

If F^{\perp} is generated by quadrics then $d \leq n$.

Question

What are the forms F such that d = n and F^{\perp} is generated by quadrics?

$$F = x_1 \cdots x_n$$
 has $F^{\perp} = \langle \alpha_1^2, \ldots, \alpha_n^2 \rangle$.