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Let Hd(Cn) denote the vector space of complex forms in n
variables with degree d . How can a form of degree m = rt be
written as a sum of t-th powers of forms of degree r? More
specifically, given p ∈ Hm(Cn), what is the smallest number N so
that there exist forms fj ∈ Hr (Cn) satisfying

p =
N∑
j=1

f t
j ?

This is not a new question, but it is a hard one if t > 1.

When r = 1, ‘nuff said.

Any rt-th power of a linear form is the t-th power of a form of
degree r so the rank is an upper bound.

I haven’t found much literature on the subject. Please
enlighten me.
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It might be worth mentioning that if t = 2, the Gram matrix
method used in studying Hilbert’s 17th problem and sums of
squares still applies; the matrix still needs to lie in a certain
subspace based on the coefficients of p, but it no longer needs to
be semidefinite.

The Motzkin polynomial x6 + y4z2 + y2z4 − 3x2y2z2 is famously
not a sum of squares over R, but, as it stands, it a sum of 4
monomial squares over C, and it is a sum of no fewer if the only
allowable monomials are {x3, xyz , y2z , yz2}, as in the real case.
However, in the absence of “order” there is no reason to a priori
exclude, for example, “y3” from a summand.
We restrict our attention in this talk to binary forms, in part
because the rank case was completely settled there by Sylvester.
The detailed results for powers of linear forms are a goal for the
study of powers of higher degree forms. We begin with an
auto-plagiaristic look at Sylvester’s algorithm. Apologies to anyone
who has seen the next few pages before at previous talks.
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Theorem (Sylvester, 1851)

Suppose p(x , y) =
∑d

j=0

(d
j

)
ajx

d−jy j ∈ F [x , y ] ⊂ C[x , y ] and

h(x , y) =
∑r

t=0 ctx
r−ty t =

∏r
j=1(βjx − αjy) is a product of

pairwise distinct linear factors, αj , βj ∈ F . Then there exist λk ∈ F
so that

p(x , y) =
r∑

k=1

λk(αkx + βky)d

if and only if
a0 a1 · · · ar
a1 a2 · · · ar+1
...

...
. . .

...
ad−r ad−r+1 · · · ad

 ·


c0
c1
...

cr

 =


0
0
...
0

 .
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Some notes on the proof:

This is an algorithm! Given p, for increasing r , write the
coefficients of p in the Hankel matrix, and look for null vectors
c corresponding to polynomials with distinct roots in F .

Since (β ∂
∂x − αj

∂
∂y ) kills (αx + βy)d , if h(D) is defined to be∏r

j=1(βj
∂
∂x − αj

∂
∂y ), then

h(D)p =
d−r∑
m=0

d!

(d − r −m)!m!

(
d−r∑
i=0

ai+mci

)
xd−r−mym

The coefficients of h(D)p are, up to multiple, the rows in the
matrix product, so the matrix condition is h(D)p = 0. Each
linear factor in h(D) kills a different summand, and dimension
counting takes care of the rest.

If h has repeated factors, see Gundelfinger’s Theorem (1886).
A factor (βx − αy)` gives a summand (αx + βy)d+1−`q,
where q is an arbitrary form of degree `− 1.
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Here is an example of Sylvester’s Theorem in action. Let

p(x , y) = x3 + 12x2y − 6xy2 + 10y3 =(
3

0

)
· 1 x3 +

(
3

1

)
· 4 x2y +

(
3

2

)
· (−2)xy2 +

(
3

3

)
· 10 y3

We have (
1 4 −2
4 −2 10

)

·

 2
−1
−1

 =

(
0
0

)
and 2x2 − xy − y2 = (2x + y)(x − y), so that

p(x , y) = λ1(x − 2y)3 + λ2(x + y)3.

In fact, p(x , y) = −(x − 2y)3 + 2(x + y)3.
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The next simple example is p(x , y) = 3x2y . Note that

(
0 1 0
1 0 0

)
·

c0
c1
c2

 =

(
0
0

)
=⇒ c0 = c1 = 0

so that h would have to have repeated factors, and p is not a sum
of two cubes. Similarly, xd−1y requires d d-th powers.

It can be proved in a similar way that a cubic is a sum of two
cubes, unless it has a square factor and isn’t a cube. We’ll use this
later.
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For later reference, it is easy to check if p has rank two over C.

Corollary

Suppose p(x , y) =
∑d

j=0

(d
j

)
ajx

d−jy j . Then p is a sum of two
d-th powers of linear forms over C if and only if

a0 a1 a2
a1 a2 a3
...

...
...

ad−2 ad−1 ad

 ·
c0

c1
c2

 =


0
0
...
0

 .

and 4c0c2 6= c2
1 .

As a side-note, Sylvester’s Theorem allows one to compute the
rank of a form over different fields: for example, the quintic
3x5 − 20x3y2 + 10xy4 is a sum of three 5-th powers over Q[i ], four
5-th powers over Q[

√
−2] and five 5-th powers over any real field.
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If d = 2s − 1 and r = s, then the matrix in Sylvester’s Theorem is
s × (s + 1) and has a non-trivial null-vector. The corresponding h
has distinct factors unless its discriminant vanishes. If d = 2s and
r = s, then the matrix is square, and for fixed ` = α0x + β0y ,
there exists λ so that p(x , y)− λ`2s has a matrix with a non-trivial
null-vector, generally corresponding to h with distinct factors.

Theorem (Sylvester’s Theorem, canonical form version)

(i) A general binary form p of odd degree 2s − 1 can be written as

p(x , y) =
s∑

j=1

(αjx + βjy)2s−1.

(ii) A general binary form p of even degree 2s can be written as

p(x , y) = λ(α0x + β0y)2s +
s∑

j=1

(αjx + βjy)2s .
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There is a nice, and so far ungeneralized, parameterization of a
particular form of degree 2t as a sum of t + 1 2t-th powers.

Theorem

The representations of (x2 + y2)t as a sum of t + 1 2t-th powers
are given by (

2t

t

)
(x2 + y2)t

=
1

t + 1

t∑
j=0

(
cos( jπ

t+1 + θ)x + sin( jπ
t+1 + θ)y

)2t
,

θ ∈ C.

The only powers which never appear above are (x ± iy)2t . The
earliest version I have found of this identity is for real θ, by Avner
Friedman, from the 1950s.
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The following result is from a paper on classical canonical forms
which is on the arXiv, and will soon appear in Pac. J. Math. The
basis of the numerology below is simply constant-counting.

Theorem

A general binary form of degree rt can be written as a sum of
d rt+1
r+1 e t-th powers of binary forms of degree r . (That is, if its

degree is a multiple of t, a general binary form is a sum of at most
t t-th powers.)
In fact, if rt + 1 = N(r + 1) + k, 0 ≤ k ≤ r , then one can take N
ordinary binary forms of degree r and specify one’s favorite k
monomials in the N + 1-st.

On the next page, the various versions of this for binary forms of
even degree and powers of quadratics are worked out.
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Corollary

(i) A general binary form of degree d = 6s can be written as

(λx)6s +
2s∑
j=1

(αjx
2 + βjxy + γjy

2)3s

(ii) A general binary form of degree d = 6s + 2 can be written as

2s+1∑
j=1

(αjx
2 + βjxy + γjy

2)3s+1.

(iii) A general binary form of degree d = 6s + 4 can be written as

(λ1x2 + λ2y2)3s+2 +
2s+1∑
j=1

(αjx
2 + βjxy + γjy

2)3s+2
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The first surprising result is that a binary octic is a sum of three
4th powers of quadratic forms. We have no clue how to compute
them, or how many representations one can expect.

Roughly speaking, the appeal to constant-counting, when
combined with these theorems shows that “most” forms of degree
2d are a sum of roughly 2

3d d-th powers of quadratic forms.

The simplest examples are even forms and symmetric forms. But if
p is even, then p(x , y) = q(x2, y2), where deg q = d and one
expects q to be a sum of around 1

2d d-th powers of linear forms,
from which p inherits a representation as a sum of 1

2d d-th powers
of even quadratic forms, so that’s going to be smaller than
average. If p is symmetric, then p = q(xy , (x + y)2), and the same
argument applies. We do not yet have a good candidate to be the
poster child for forms which require a lot of d-th powers of
quadratic forms, let alone a nice parameterization of any set of
solutions.
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Here are a few special cases where we can say something.

It’s easy to write binary forms of degree 2d as a sum of two
squares of forms of degree d .

p2 + q2 = (p + iq)(p − iq)

fg =

(
f + g

2

)2

−
(

f − g

2

)2

=

(
f + g

2

)2

+

(
if − ig

2

)2

p2 + q2 = (cos θ · p + sin θ · q)2 + (− sin θ · p + cos θ · q)2.

A binary form of degree 2d has in general 2d distinct linear
factors, and these can be divided into a pair of forms of degree d
in
(2d−1
d−1

)
ways. Each of these leads to a sum of two squares.

(Repeated factors reduce this number and, unlike the real case,
conjugate factors do not have to be split up.) The action of the
orthogonal group on sums of two squares plays in too.

Bruce Reznick University of Illinois at Urbana-Champaign Forms as sums of powers of lower degree forms



Here are a few special cases where we can say something.
It’s easy to write binary forms of degree 2d as a sum of two
squares of forms of degree d .

p2 + q2 = (p + iq)(p − iq)

fg =

(
f + g

2

)2

−
(

f − g

2

)2

=

(
f + g

2

)2

+

(
if − ig

2

)2

p2 + q2 = (cos θ · p + sin θ · q)2 + (− sin θ · p + cos θ · q)2.

A binary form of degree 2d has in general 2d distinct linear
factors, and these can be divided into a pair of forms of degree d
in
(2d−1
d−1

)
ways. Each of these leads to a sum of two squares.

(Repeated factors reduce this number and, unlike the real case,
conjugate factors do not have to be split up.) The action of the
orthogonal group on sums of two squares plays in too.

Bruce Reznick University of Illinois at Urbana-Champaign Forms as sums of powers of lower degree forms



Here are a few special cases where we can say something.
It’s easy to write binary forms of degree 2d as a sum of two
squares of forms of degree d .

p2 + q2 = (p + iq)(p − iq)

fg =

(
f + g

2

)2

−
(

f − g

2

)2

=

(
f + g

2

)2

+

(
if − ig

2

)2

p2 + q2 = (cos θ · p + sin θ · q)2 + (− sin θ · p + cos θ · q)2.

A binary form of degree 2d has in general 2d distinct linear
factors, and these can be divided into a pair of forms of degree d
in
(2d−1
d−1

)
ways. Each of these leads to a sum of two squares.

(Repeated factors reduce this number and, unlike the real case,
conjugate factors do not have to be split up.) The action of the
orthogonal group on sums of two squares plays in too.

Bruce Reznick University of Illinois at Urbana-Champaign Forms as sums of powers of lower degree forms



Here are a few special cases where we can say something.
It’s easy to write binary forms of degree 2d as a sum of two
squares of forms of degree d .

p2 + q2 = (p + iq)(p − iq)

fg =

(
f + g

2

)2

−
(

f − g

2

)2

=

(
f + g

2

)2

+

(
if − ig

2

)2

p2 + q2 = (cos θ · p + sin θ · q)2 + (− sin θ · p + cos θ · q)2.

A binary form of degree 2d has in general 2d distinct linear
factors, and these can be divided into a pair of forms of degree d
in
(2d−1
d−1

)
ways. Each of these leads to a sum of two squares.

(Repeated factors reduce this number and, unlike the real case,
conjugate factors do not have to be split up.) The action of the
orthogonal group on sums of two squares plays in too.

Bruce Reznick University of Illinois at Urbana-Champaign Forms as sums of powers of lower degree forms



The coefficients of the sums of two cubes (αix
2 + βixy + γiy

2)3

give seven forms in the six variables, and so satisfy a non-trivial
polynomial, probably an invariant. Until a highbrow condition can
be given explicitly, we present two simple criteria.

Theorem

Suppose p ∈ H6(C2). Here are two necessary and sufficient
conditions for p to be sum of two cubes of quadratics:
(i) p = f1f2f3, where the fi ’s are linearly dependent but
non-proportional quadratic forms.
(ii) There either exists a linear change of variables so that
p(ax + by , cx + dy) = g(x2, y2), or p = `3g for some linear form
`. Here, g is a cubic which is a sum of two cubes (not `21`2.)

The proofs of each of these criteria give more general results.
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The first case is actually a theorem about sums of two cubes.

Theorem

Suppose F ∈ C[x1, . . . , xn]. Then F is a sum of two cubes in
C[x1, . . . , xn] if and only if it is itself a cube, or has a factorization
F = G1G2G3, into pairwise non-proportional factors.

Proof.

First observe that, with ω denoting a primitive cube root of unity,

F = G 3 + H3 = (G + H)(G + ωH)(G + ω2H),

(G + H) + ω(G + ωH) + ω2(g + ω2H) = 0.

If two of the factors G + ωjH are proportional, then so are G and
H, and hence F is a cube. Conversely, if F has such a factorization,
write F = G1G2(αG1 + βG2), where αβ 6= 0. An application of
Sylvester’s Theorem shows that xy(αx + βy) is always a sum of
two cubes of linear forms. Plug in G1 and G2 to get F .
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In any particular case, if deg F = 3r , there are only finitely many
ways to write F as a product of three factors of degree r , so
verifying this condition is algorithmic.

Applied algebraic geometry!
The second case uses a simple lemma whose proof is omitted.

Lemma

Two quadratic forms q1(x , y) and q2(x , y) either have a common
linear factor, or can be simultaneously diagonalized; that is,
qj(ax + by , cx + dy) = ρjx

2 + σjy
2.

Thus, if p = qt
1 + qt

2, where qj is quadratic, then either the qj ’s
have a common linear factor (and p = `tg , where g is a sum of
two linear t-th powers), or after a linear change of variables,

p(ax + by , cx + dy) =
2∑

j=1

(ρjx
2 + σjy

2)t ;

That is, p(ax + by , cx + dy) = g(x2, y2), where g again is a sum
of two linear t-th powers (typical for t = 3, not for t > 3.)
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Finding if p is even after a change of variables is also algorithmic.

p(x , y) =
2d−1∏
j=0

(x − λjy) =⇒

p(ax + by , cx + dy) = p(a,−c)
2d−1∏
j=0

(
x −

(
λjd − b

a− λjc

)
y

)

:= p(a,−c)
2d−1∏
j=0

(x − µj).

Thus, the roots of p (taking ∞ if y | p) are mapped by a Möbius
transformation. If p̃(x , y) = p(ax + by , cx + dy) is even, then
T (z) = −z is an involution on the roots, say T (µ2j) = µ2j+1. It
follows that there is a Möbius transformation U which is also an
involution permuting the d pairs of roots of p, to be specific:

λ2j+1 =
2ad − (ad + bc)λ2j
(ad + bc)− 2cdλ2j

.
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Given p, find the roots λj , and for each quadruple λi1 , λi2 , λi3 , λi4 ,
define the Möbius transformation U so that U(λi1) = λi2 ,
U(λi2) = λi1 and U(λi3) = λi4 and see if it permutes the others.
There are instances in which more than one U may work; for
example, if p is both even and symmetric.

Applied algebraic geometry.

Don’t get me wrong. Complications abound. Here’s a simple one.
Consider the even sextic

p(x , y) = 2x6 − 2x4y2 − 2x2y4 + 2y6 = 2(x2 − y2)2(x2 + y2).

Here, p(x , y) = g(x2, y2), where g(x , y) = 2(x − y)2(x + y) is
unfortunately not a sum of two cubes. On the other hand, if
γ = 2√

3
i , then

(x2 + γxy + y2)3 + (x2− γxy + y2)3 = 2x6− 2x4y2− 2x2y4 + 2y6.
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There can be multiple representations of p = qt
1 + qt

2 for
t ∈ {3, 4, 5}, but that’s really for another talk. I will note that
p(x , y) = x5y + xy5 is some kind of champion, having six different
representations as a sum of two cubes. (Twenty-fourth roots of
unity play a central role in this.)

Why is the quadratic case so much harder than the linear case?
Here’s one reason: in the linear case, (αx + βy)d is killed by
β ∂
∂x − α

∂
∂y , and two operators of this shape commute. Although

each (αx2 + βxy + γy2)d is killed by the non-constant-coefficient
(βx + 2γy) ∂

∂x − (2αx + βy) ∂
∂y , two operators of this kind do not

usually commute. The smallest constant-coefficient differential
operator which kills (αx2 + βxy + γy2)d has degree d + 1; the
product of any two of these would kill every form of degree 2d and
so provide no information. More work is needed!
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t ∈ {3, 4, 5}, but that’s really for another talk. I will note that
p(x , y) = x5y + xy5 is some kind of champion, having six different
representations as a sum of two cubes. (Twenty-fourth roots of
unity play a central role in this.)
Why is the quadratic case so much harder than the linear case?
Here’s one reason: in the linear case, (αx + βy)d is killed by
β ∂
∂x − α

∂
∂y , and two operators of this shape commute. Although

each (αx2 + βxy + γy2)d is killed by the non-constant-coefficient
(βx + 2γy) ∂

∂x − (2αx + βy) ∂
∂y , two operators of this kind do not

usually commute. The smallest constant-coefficient differential
operator which kills (αx2 + βxy + γy2)d has degree d + 1; the
product of any two of these would kill every form of degree 2d and
so provide no information. More work is needed!
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Thanks to the organizers for the
invitation and to the audience!
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