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0. Introduction and Acknowledgments

The webpage for the corrected version of this talk will be:

http://www.math.uiuc.edu/∼reznick/raleigh.html

A longer talk of much of the same material plus a discussion of
apolarity can be found at ∼reznick/iowa.html, and, soon, in the
preprint Steampunk canonical forms.

There is a strong connection between the approach to canonical
forms in this talk and a wonderful 1993 paper of Richard
Ehrenborg and Gian-Carlo Rota.

Alexander-Hirschowitz hovers over all modern work.

I want to thank Lek-Heng Lim for inviting me to speak at this
Minisymposium and I would like to thank you all for being in the
audience.
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1. Three representation theorems about cubic forms

Theorem (Reichstein)

A general cubic p(x1, . . . , xn) has a unique representation as

n∑
k=1

(αk1x1 + · · ·+ αknxn)3 + q(x3, . . . , xn).

This constructive ”completion of the cube” is a canonical form,
since

(n+2
3

)
= n2 +

(n
3

)
and it yields p as a sum of ≈ 1

4n2 cubes.
This is about 50% larger than the true minimum which is ≈ 1

6n2.
As we’ve seen, a general quinary cubic H3(C5) is not a sum of
1
5

(5+3−1
3

)
= 7 cubes: 35 6= 5 + 5 + 5 + 5 + 5 + 5 + 5.

But by this theorem, it is a sum of 9 cubes using 35 coefficients:

35 = 5 + 5 + 5 + 5 + 5 + 3 + 3 + 3 + 1

This is parsimonious, even if it doesn’t minimize the length.
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1. Three representation theorems about cubic forms

Theorem (Slinky)

A general cubic form p(x1, . . . , xn) has a unique representation as

p(x1, . . . , xn) =
∑

1≤i≤j≤n
(α{i ,j},ixi + · · ·+ α{i ,j},jxj)

3.

This simple-minded representation is also canonical, and it yields p
as a sum of ≈ 1

2n2 cubes, but it’s very easy to compute. I can’t
believe it’s not in the literature. If you’ve seen it, please save me
from professional embarrassment and provide a reference!

35 = 5 + 4 + 4 + 3 + 3 + 3 + 2 + 2 + 2 + 2 + 1 + 1 + 1 + 1 + 1
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1. Three representation theorems about cubic forms

Theorem (Slowpoke)

Every cubic p(x1, . . . , xn) has a representation as

n∑
k=1

(αk1x1 + · · ·+ αknxn)3 + q(x2, . . . , xn).

This representation is not canonical, but it’s universal, and shows
that even the most sarcastic cubic form has length at most

(n+1
2

)
.

The proof is elementary. If you’ve seen it, please save me from
professional embarrassment and provide a reference!
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2. Basic Definitions

Let Hd(Cn) denote the set of forms p(x1, . . . , xn) of degree d with
coefficients in C. The dimension of the vector space Hd(Cn) is
N(n, d) :=

(n+d−1
d

)
. Let I(n, d) be the index set of monomials:

I(n, d) =

{
(i1, . . . , in) : 0 ≤ ik ∈ Z,

∑
k

ik = d

}
.

Let x i = x i1
1 · · · x in

n and c(i) = d!∏
ik !

denote the multinomial

coefficient. If p ∈ Hd(Cn), then we can write

p(x1, . . . , xn) =
∑

i∈I(n,d)

c(i)a(p; i)x i .
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2. Basic Definitions

The following fundamental theorem sieves for algebraic geometers.
The only accessible proof I know is in Ehrenborg-Rota.

Theorem

Suppose F : CN → CN is a polynomial map; that is,

F (t1, . . . , tN) = (f1(t1, . . . , tN), . . . , fN(t1, . . . , tN))

where each fj ∈ C[t1, . . . , tN ]. Then either (i) or (ii) holds:
(i) The N polynomials {fj : 1 ≤ j ≤ N} are algebraically dependent
and F (CN) lies in some non-trivial {P = 0} in CN .
(ii) The N polynomials {fj : 1 ≤ j ≤ N} are algebraically
independent and F (CN) is (at least) dense in CN .
Furthermore, the second case occurs if and only there is a point

u ∈ CN at which the Jacobian matrix
[
∂fi
∂tj

(u)
]

has full rank.
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2. Basic Definitions

When N = N(n, d), we may interpret such an F as a map from
CN to Hd(Cn) by indexing I(n, d) as {ij : 1 ≤ j ≤ N} and making
the interpretation in an abuse of notation that

F (t1, . . . , tN) =
N∑
j=1

fj(t1 . . . , tN)x ij .

Definition

A canonical form for Hd(Cn) is any polynomial map F from CN

to Hd(Cn) so that almost every p ∈ Hd(Cn) is in the range of F .

Note that for any indexing of I(n, d),

F ({tj})(x) =

N(n,d)∑
j=1

c(ij)tjx
ij

is technically a canonical form.

Bruce Reznick University of Illinois at Urbana-Champaign Non-minimal canonical representations



2. Basic Definitions

When N = N(n, d), we may interpret such an F as a map from
CN to Hd(Cn) by indexing I(n, d) as {ij : 1 ≤ j ≤ N} and making
the interpretation in an abuse of notation that

F (t1, . . . , tN) =
N∑
j=1

fj(t1 . . . , tN)x ij .

Definition

A canonical form for Hd(Cn) is any polynomial map F from CN

to Hd(Cn) so that almost every p ∈ Hd(Cn) is in the range of F .

Note that for any indexing of I(n, d),

F ({tj})(x) =

N(n,d)∑
j=1

c(ij)tjx
ij

is technically a canonical form.
Bruce Reznick University of Illinois at Urbana-Champaign Non-minimal canonical representations



2. Basic Definitions

There are two ways to show that F is a canonical form. One way is
to use the Theorem and find a single point at which the Jacobian
has full rank, or, equivalently, look for a particular representation

F (u) at which
{
∂F
∂tj

(u)
}

spans Hd(Cn).

This can often be done via apolarity, which there’s no time for
today. (See e.g. the Iowa beamer slides.) With the apolarity
interpretation, this is known classically as the Lasker-Wakeford
Theorem. A beautiful modern version is given in Ehrenborg-Rota.
The second and better way is to give a constructive algorithm for
writing a general form in Hd(Cn) in the shape F (u).
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3. Quadratic forms

Every quadratic form p ∈ H2(Cn) is a sum of n squares, but since

the naive number of coefficients, n × n, is > N(n, 2) = n(n+1)
2 , a

sum of n squares is not, per se, a canonical form. However, the
standard “upper triangular” representation is a canonical form.

Let {αij : 1 ≤ i ≤ j ≤ n} be the N(n, 2) parameters, and let

F (αij)(x) :=
n∑

i=1

L2
i ; Li = αiixi + · · ·+ αinxn.

Then ∂F
∂αij

= 2Lixj , and if we specialize to Li = xi , then the set of

partials is literally {2xixj : 1 ≤ i ≤ j ≤ n}, which spans H2(Cn).
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3. Quadratic forms

A constructive proof is better, of course. Suppose p ∈ H2(Cn) and
p(x) =

∑
i aiix

2
i + 2

∑
i<j aijxixj . Then

∂p

∂x1
= 2

n∑
j=1

a1jxj .

If p(1, 0, . . . , 0) = a11 6= 0, which is generally true, define

q(x1, . . . , xn) = p(x1, . . . , xn)− 1

a11

( n∑
j=1

a1jxj

)2

.

Then

∂q

∂x1
=

∂p

∂x1
− ∂p

∂x1
= 0 =⇒ q = q(x2, . . . , xn).

Now just iterate this, losing one variable at a time, to get the
traditional upper triangular sum of squares.
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3. Quadratic forms

It’s worth noting that every quadratic form in H2(Cn) is a sum of n
squares, and this can also be made algorithmic. Begin with

Theorem (Biermann’s Theorem)

If p ∈ Hd(Cn) and p(i) = 0 for every i ∈ I(n, d), then p = 0.

This gives a finite set of N(n, 2) points to check for quadratic
forms. Here’s the algorithm. Given p ∈ H2(Cn), index I(n, 2) as
you wish and look at p(i). If this is always zero, then p = 0 and
there’s nothing to prove. Otherwise, take the first i at which
p(i) 6= 0, and make an invertible linear change of variables taking
i 7→ (1, 0, . . . , 0). Do the argument of the last slide, and get p as a
square plus a quadratic form in n − 1 variables. Iterate to get p as
a sum of n squares.
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4. Reichstein and canonically completing the cube

There is a wonderful non-trivial way to complete the cube, but
almost nobody knows it. It appears in a paper by Boris Reichstein
from 1987 which according to MathSciNet has had no citations. It
is a truly beautiful theorem, though it was not transparently
presented and was framed in the context of trilinear forms.

It can be proved abstractly as a canonical form, but there is also a
constructive proof, which I’ll give. Here is some numerology. By
Alexander-Hirschowitz, for n 6= 5, a general cubic form in n

variables can be written as a sum of
⌈
1
nN(n, 3)

⌉
=
⌈
1
n

(n+2
3

)⌉
=⌈

(n+1)(n+2)
6

⌉
cubes. (For n = 5, you need

⌈
6·7
6

⌉
+ 1 cubes.)
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4. Reichstein and canonically completing the cube

Reichstein’s Theorem writes a general cubic form as

n∑
k=1

(αk1x1 + · · ·+ αknxn)3 + q(x3, . . . , xn).

This is a sum of
∑

0≤k≤n/2(n − 2k) = (n+1)2

4 cubes, which is, on
average, about 50% larger than what is necessary.

But N(n, 3)− N(n − 2, 3) = n3+3n2+2n
6 − n3−3n2+2n

6 = n2, so that
the total number of coefficients is∑

0≤k≤n/2

(n − 2k)2 = N(n, 3),

showing that this is a potential canonical form.
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4. Reichstein and canonically completing the cube

The validity can be verified by Lasker-Wakeford, specializing at
x1, x2, x1 + kx2 + xk (for k ≥ 3) for linear forms in (x1, . . . , xn),
etc., but Reichstein’s constructive proof is better.

The proof requires a formerly well-known fact: A general pair of
quadratic forms can be simultaneously diagonalized. That is, if
general f , g ∈ H2(Cn) are given, then there exist n linearly
independent forms Li (x) =

∑n
j=1 αi ,jxk and ci ∈ C so that

f =
n∑

i=1

L2
i , g =

n∑
i=1

ciL
2
i .

This can be made constructive. If rank(f ) = n and the
determinant of the symmetric matrix associated with the pencil
f − λg has n distinct roots {ci}, then each f − cig is singular.
Routine methods can then be used to find the Li ’s.
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4. Reichstein and canonically completing the cube

We now prove Reichstein’s Theorem. Suppose p ∈ H3(Cn). We
can generally simultaneously diagonalize ∂p

∂x1
and ∂p

∂x2
: there exist

linearly independent Li (x) =
∑n

j=1 αijxj and ci ∈ C so that

∂p

∂x1
=

n∑
i=1

L2
i ,

∂p

∂x2
=

n∑
i=1

ciL
2
i .

Since mixed partials are equal, we obtain the equation

n∑
i=1

2αi2Li =
n∑

i=1

2ciαi1Li ,

and since the Li ’s are linearly independent, αi2 = ciαi1. (This is
important!)
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4. Reichstein and canonically completing the cube

As before, it is generally true that αi1 6= 0 and we can let

q(x1, . . . , xn) = p(x1, . . . , xn)−
n∑

i=1

1
3αi1

L3
i

=⇒ ∂q

∂x1
=

∂p

∂x1
−

n∑
i=1

3αi1

3αi1
L2
i = 0,

∂q

∂x2
=

∂p

∂x2
−

n∑
i=1

3αi2

3αi1
L2
i =

∂p

∂x2
−

n∑
i=1

ciL
2
i = 0

=⇒ q = q(x3, . . . , xn).

By iterating, we obtain Reichstein’s form for cubics:

p(x1, . . . , xn) =

b(n−1)/2c∑
i=0

n−2i∑
j=1

`3ij(x1+2i , . . . , xn).
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5. Slinky

Recall Slinky:

p(x1, . . . , xn) =
∑

1≤i≤j≤n
(α{i ,j},ixi + · · ·+ α{i ,j},jxj)

3.

This is canonical, because
∑n

k=1 k(n + 1− k) =
(n+2

3

)
. You can

probably guess by now how it’s going to be proved.
Given p ∈ H3(Cn), ∂p

∂xn
is a quadratic form, so we can generally

complete the square in the upper triangular way:

∂p

∂xn
=

n∑
j=1

(αjjxj + · · ·+ αjnxn)2.
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5. Slinky

Let

q(x1, . . . , xn) = p(x1, . . . , xn)−
n∑

j=1

1
3αjn

(αjjxj + · · ·+ αjnxn)3.

Then

∂q

∂xn
=

∂p

∂xn
− ∂p

∂xn
= 0 =⇒ q = q(x1, . . . , xn−1).

and repeat. We assume αjn 6= 0, etc., which is generally true. In
this way, for each pair (i , j) with 1 ≤ i ≤ j ≤ n, we get exactly one
summand using only the xk ’s with i ≤ k ≤ j .
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5. Slinky

This last construction worked because in the upper diagonal sum
of squares for quadratic forms, there is a variable, xn, which
appears in every summand. This is not the case for the cubic
version, so there is no obvious way to bump it up to quartics.

The Reichstein form, on the other hand, can be generalized to
quartics, in the same way, by integrating on the coefficient of xn.

One gets a general p ∈ H4(Cn) as a sum of
∑n

j=0
(n+1−j)2

4 ≈ 1
12n3

fourth powers, which is about twice the minimal number. But this
quartic version has no universally-used variable, so it can’t be
bumped up to the fifth power.
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6. Brief number theory interlude

There is another obstacle. Say that

p(x1, . . . , xn) =
r∑

k=1

(αk1x1 + · · ·+ αknxn)d + q(x1, . . . , xm).

is a “Reichstein-type” canonical form if N(n, d) = rn + N(m, d). It
turns out that if n = 12 and d = 4, there does not exist m < 12 so
that 12 divides

(15
4

)
−
(m+3

4

)
, so number theory rules out universal

Reichstein-type canonical forms for quartics in 12 variables.

Let Ad =
{

n : 0 ≤ m < n =⇒ n 6 |
(n+d−1

d

)
−
(m+d−1

d

)}
.

If 3 6 | k , then n = 22k · 3 ∈ A4; if p ≡ 1 (mod 144) is prime, then
12p ∈ A4. If p is prime, then p |

(n+p−1
p

)
−
(n
p

)
, hence Ap is empty

for prime p. The smallest elements of A6,A8,A10,A12,A14 and A15

are 10, 1792, 6, 242, 338 and 273 respectively. If A9 or A16 are
non-empty, then their smallest elements are at least 105.
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7. Slowpoke

The last expression for cubic forms is not canonical: for any
p ∈ H3(Cn), there exists an invertible linear change of variables
yj =

∑
λjkxk and n linear forms `j so that

p(x1, . . . , xn) =
n∑

j=1

`3j (x1, . . . , xn) + q(y2, . . . , yn).

The proof of this is constructive. Repeating the argument gives p
as a sum of n(n+1)

2 cubes, the same number as in Slinky.
We need a lemma: for any integer m, there exist m + 1 linear
forms `j ,m = `j ,m(y1, . . . , ym) so that

m+1∑
j=1

`j ,m = 0 and
m+1∑
j=1

`2j ,m =
m∑

k=1

y2
k .
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7. Slowpoke

The simplest proof is to set `m+1,m = −
∑m

j=1 `j ,m and then

observe that the quadratic form
∑m

j=1 t2j + (
∑m

j=1 tj)
2 has full

rank, and so can be written as a sum of m squares. Finally, invert
the system.

As an explicit solution, let α = −(m+1)+
√
m+1

m(m+1) and define

`j ,m(x1, . . . , xn) = xj + α

m∑
j=1

xj , 1 ≤ j ≤ m,

`m+1,m(x1, . . . , xn) = −(1 + mα)
m∑
j=1

xj .

Now suppose p ∈ H3(Cn). By Biermann’s Theorem, there is a
finite list to check to find a point u where p(u) 6= 0, and after an
invertible linear change of variables, taking {xj} 7→ {uj}, we may
assume that
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7. Slowpoke

p = u3
1 + 3h1(u2, . . . , un)u2

1 + 3h2(u2, . . . , un)u1 + h3(u2, . . . , un),

We then let u1 = y1 − h1(u2, . . . , un) to clear the quadratic term :

p = y3
1 + 3y1h̃2(u2, . . . , un) + h̃3(u2, . . . , un).

and do a standard diagonalization of h̃2 as a quadratic form, with
the accompanying change of variables, yielding:

p = y3
1 + 3y1(y2

2 + · · ·+ y2
r ) + k3(y2, . . . , yn); r ≤ n.

Finally, observe that if

q =
1

r

r∑
j=1

(
y1 +

√
r · `j ,r−1(y2, . . . , yr )

)3
,

then the lemma implies that p − q is a cubic form in (y2, . . . , yn),
which is what we wanted.
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8. Steampunk canonical forms

What is steampunk? It is a style based on combining 19th century
Victorian culture with bits of modern life, such as computers.

What are steampunk canonical forms? 19th century algebra plus
the concept of vector spaces plus Mathematica plus the hope that
there is juice left in the algebraic geometry of binary forms.

In 1869, J. J. Sylvester (1814-1897) reflected on the discovery of
some of his most famous research in 1851, done while he was
working as an actuary:
“I discovered and developed the whole theory of canonical binary
forms for odd degrees, and, as far as yet made out, for even
degrees too, at one evening sitting, with a decanter of port wine to
sustain nature’s flagging energies, in a back office in Lincoln’s Inn
Fields. The work was done, and well done, but at the usual cost of
racking thought — a brain on fire, and feet feeling, or feelingless,
as if plunged in an ice-pail. That night we slept no more”
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8. Steampunk canonical forms

Theorem (Sylvester)

Suppose p(x , y) =
∑d

j=0

(d
j

)
ajx

d−jy j and

h(x , y) =
∑r

t=0 ctx
r−ty t =

∏r
j=1(βjx − αjy) is a product of

pairwise distinct linear factors. Then there exist λk ∈ C so that

p(x , y) =
r∑

k=1

λk(αkx + βky)d

if and only if
a0 a1 · · · ar
a1 a2 · · · ar+1
...

...
. . .

...
ad−r ad−r+1 · · · ad

 ·


c0
c1
...

cr

 =


0
0
...
0

 .
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8. Steampunk canonical forms

Theorem (Sylvester)

(i) A general binary form of degree d = 2k − 1 can be written as

k∑
j=1

(αjx + βjy)2k−1.

(ii) For any non-zero linear form `(x , y) = αx + βy, a general
binary form of degree d = 2k can be written as

λ`2k(x , y) +
k∑

j=1

(αjx + βjy)2k .

for some λ ∈ C.

”λ`2k” must be what Sylvester meant by “as far as yet made out”.
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8. Steampunk canonical forms

Sylvester defined the catalecticant to be the invariant of a binary
form of even degree which vanishes when λ = 0. He apologized for
introducing this term: “Meicatalecticizant would more completely
express the meaning of that which, for the sake of brevity, I
denominate the catalecticant.” Sylvester was very interested in the
technical aspects of poetry and a “catalectic” verse is one in which
the last line is missing a foot.

Owing to the action of the orthogonal group on sums of squares,
another old canonical form for binary forms of even degree 2k is

p(x , y) = (α0xk +α1xk−1y +· · ·+αkyk)2+(β1xk−1y +· · ·+βkyk)2

Because a general form of degree 2k has 2k distinct linear factors,
this can be done in

(2k−1
k

)
different ways. If p is real and psd, then

there are 2k−1 real representations.
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9. New steampunk canonical forms

Constant-counting works for a wide range of binary forms:

Theorem

Suppose d ≥ 1, `j(x , y) = βjx + γjy, 1 ≤ j ≤ m, are fixed pairwise
non-proportional linear forms and suppose ek | d, 1 ≤ k ≤ r and
m +

∑r
k=1(ek + 1) = d + 1. Then a general binary form of degree

d can be written as

p(x , y) =
m∑
j=1

cj`
d
j (x , y) +

r∑
k=1

f
d/ek
k (x , y),

where cj ∈ C and fk is a form of degree ek .

This recovers Sylvester’s canonical form, upon taking r = bd/2c
and ek ≡ 1, so that m = 0 if d is odd and m = 1 if d is even.
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9. New steampunk canonical forms

If r = 0 and m = d + 1, this just gives a basis.
If ek ≡ 1, then Sylvester’s algorithm can be adapted to show
uniqueness. These results may well be new, as are some canonical
forms with mixed powers and some interesting enumerative
questions.

If ek ≡ 2, an analogue to Sylvester’s canonical forms occurs for
general forms of even degree d = 2k: they are the sum of the k-th
power of b(d + 1)/3c quadratics plus a linear combination of any
pre-specified d − 3b(d + 1)/3c 2k-th powers of linear forms. We
don’t have an algorithm for this. We want one. One problem is
that it’s easy to kill `d with a differential operator; qd/2, not so
much.
If d = 4, m = 0, e1 = 2 and e2 = 1, a general binary quartic can
be written as the sum of the square of a quadratic form and the
fourth power of a linear form. (We have an algorithm for this
which shows that it can be done in six different ways.)
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9. New steampunk canonical forms

If d = 6, m = 0, e1 = 3 and e2 = 2, then 4 + 3 = 7 implies that a
general binary sextic form can be written as the sum of the square
of a cubic form and the cube of a quadratic form. We don’t have
an algorithm for doing this and we (really)2 want one!

I’ll end with a proof that this is a canonical form. Suppose p is a
sextic form and F ({tj})(x , y) = f 2(x , y) + g3(x , y), where

f (x , y) = t1x3 + t2x2y + t3xy2 + t4y3,

g(x , y) = t5x2 + t6xy + t7y2.

Then the partials with respect to the tj ’s are:

2fx3, 2fx2y , 2fxy2, 2fy3; 3g2x2, 3g2xy , 3g2y2.

If we specialize at f = x3, g = y2, then these partials become:

2x6, 2x5y , 2x4y2, 2x3y3; 3x2y4, 3xy5 , 3y6.

These trivially span H6(C2).
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9. New steampunk canonical forms

Many numerical experiments suggest that for a general sextic p,
there are exactly 40 different {f 2, g3}.

If you think that ”40” is obvious, a general sextic can be written as
g3 + h6

1 + h6
2, where hj(x , y) = βj1x + βj2y . Numerical experiments

show that the number of different {g3, {h6
1, h

6
2}}’s is 22.

Numerical experiments on binary octics, written naively, crash the
kernel of Mathematica. A general binary octic is the sum of three
fourth powers of quadratics. I’d like to know a lot more about this
theorem than I do.

Thank you for your patience.
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9. New steampunk canonical forms

Many numerical experiments suggest that for a general sextic p,
there are exactly 40 different {f 2, g3}.
If you think that ”40” is obvious, a general sextic can be written as
g3 + h6

1 + h6
2, where hj(x , y) = βj1x + βj2y . Numerical experiments

show that the number of different {g3, {h6
1, h

6
2}}’s is 22.

Numerical experiments on binary octics, written naively, crash the
kernel of Mathematica. A general binary octic is the sum of three
fourth powers of quadratics. I’d like to know a lot more about this
theorem than I do.

Thank you for your patience.

Bruce Reznick University of Illinois at Urbana-Champaign Non-minimal canonical representations



10. Oh, I have some more time

Bruce Reznick University of Illinois at Urbana-Champaign Non-minimal canonical representations


