Algorithms for Tensor Decomposition via Numerical Homotopy

Chris Peterson

August 3, 2013

This talk involves joint work and discussions with: Hirotachi Abo
Dan Bates
Andrew Sommese

Overview

- Join Varieties
- Numerics and Homotopy Continuation
- Special Structure - Parameter Homotopies/Monodromy Closing remarks

Join Varieties

Given points $Q_{1}, \ldots, Q_{k} \in \mathbb{P}^{n}$, we let $<Q_{1}, \ldots, Q_{k}>$ denote their linear span.

Let $V_{1}, \ldots, V_{k} \subseteq \mathbb{P}^{n}$ be irreducible projective varieties of dimensions d_{1}, \ldots, d_{k}.

The open join of the varieties, $J^{O}\left(V_{1}, \ldots, V_{k}\right)$, is the union of the linear span of k-tuples of points $\left(Q_{1}, \ldots, Q_{k}\right)$ where $Q_{i} \in V_{i}$.

The join of the varieties is $J\left(V_{1}, \ldots, V_{k}\right)=\overline{J^{O}\left(V_{1}, \ldots, V_{k}\right)}$.

The expected dimension (and the maximum possible dimension) of $J\left(V_{1}, \ldots, V_{k}\right)$ is $\min \left\{m, k-1+\sum d_{i}\right\}$.

There can be repeated factors among the V_{i} (I.e. this formulation includes secant varieties).

Let $P \in J^{O}\left(V_{1}, \ldots, V_{k}\right)$.
A $\left(V_{1}, \ldots, V_{k}\right)$-decomposition of P is a k-tuple of points $\left(Q_{1}, \ldots, Q_{k}\right)$ with $Q_{i} \in V_{i}$ and $P \in\left\langle Q_{1}, \ldots, Q_{k}\right\rangle$.

Suppose $k-1+\sum d_{i}=n$ and that $J\left(V_{1}, \ldots, V_{k}\right)$ has the expected dimension.

If $P \in \mathbb{P}^{n}$ is general then $P \in J^{O}\left(V_{1}, \ldots, V_{k}\right)$ and P will have a finite number of $\left(V_{1}, \ldots, V_{k}\right)$-decompositions.

Problem Formulation:

The goal of this talk is to describe a couple of tools from numerical algebraic geometry and how they can be used to

1) Compute a single $\left(V_{1}, \ldots, V_{k}\right)$-decomposition of P.
2) Compute all of the $\left(V_{1}, \ldots, V_{k}\right)$-decompositions of P.

The tools that will be used are:
i) Parameter Homotopy
ii) Monodromy

Homotopy Continuation:

In homotopy continuation, a polynomial ideal, I, is cast as a member of a parameterized family of polynomial ideals one of which has known isolated solutions.

Each of the known isolated solutions is tracked, as the parameter is varied, through a predictor/corrector method.

Some of these paths lead to points which lie numerically close to the algebraic set $V(I)$ determined by I.

The points that are close to $V(I)$ can be refined to lie within any prescribed tolerance of $V(I)$.

Example:

$F(x, t)=\gamma t\left(x^{2}-1\right)+(1-t)\left(x^{2}+8 x+13\right)$.
When $t=1$, we have the equation $x^{2}-1$ which has roots $1,-1$.
When $t=0$, we have $x^{2}+8 x+13$ which has roots $-4 \pm 5.1235 /$.

As t varies from $t=1$ to $t=0$, we follow the two solutions $\{1,-1\}$ to the two solutions $\{-4+5.1235 /,-4-5.1235 /\}$.
γ is a random complex number of magnitude 1 . It ensures that the paths don't run into any problems along the way.

Example:

One can study the twisted cubic $I=\left(x^{2}-w y, y^{2}-x z, x y-w z\right)$
via the complete intersection $J=\left(x^{2}-w^{2}, y^{2}-w^{2}, z^{2}-w^{2}\right)$.
This is done through the parametrized family
$I_{t}:=(1-t)\left(x^{2}-w y, y^{2}-x z, x y-w z\right)+t \gamma\left(x^{2}-w^{2}, y^{2}-w^{2}, z^{2}-w^{2}\right)$

Where t is a real parameter and γ is a random complex number.

The ideal I_{1} is equal to J. It has 8 isolated solutions that are easy to write down.

For each value of t in $(0,1], I_{t}$ also has 8 isolated solutions.
Each of the known isolated solutions for I_{t} can be tracked through a predictor/corrector method as t varies from 1 to 0 .

This leads to points which lie close to the algebraic set $V(I)$ determined by I.

The parametrized family can be written

$$
(1-t)\left[\begin{array}{c}
x^{2}-w y \\
y^{2}-x z \\
x y-w z
\end{array}\right]+t \gamma\left[\begin{array}{c}
x^{2}-w^{2} \\
y^{2}-w^{2} \\
z^{2}-w^{2}
\end{array}\right] .
$$

In this form, the homotopy can be seen to be a deformation of a regular section of the sheaf

$$
\mathcal{E}=\mathcal{O}_{\mathbb{P}^{3}}(2) \oplus \mathcal{O}_{\mathbb{P}^{3}}(2) \oplus \mathcal{O}_{\mathbb{P}^{3}}(2)
$$

to a non-regular section of \mathcal{E}.

Side Comment:

One commonly used homotopy is to to deform from a regular section to a specific section in $H^{0}\left(\mathbb{P}^{r}, \oplus_{i=1}^{r} \mathcal{O}_{\mathbb{P}^{r}}\left(n_{i}\right)\right)$.

A general regular section vanishes on $\prod n_{i}$ isolated points.
If Z is a component of the zero locus of the special section then a certain number of these points lead to Z in the deformation.

The number of points leading to Z is the "equivalence of Z " in the complete intersection.

We can think of this as a function $F\left(n_{1}, \ldots, n_{r}, Z\right)$.

Let $\operatorname{dim}(Z)=n$, and let c_{0}, \ldots, c_{n} be the Chern classes of Z. The $k^{\text {th }}$ elementary symmetric function in n_{1}, \ldots, n_{r} will be denoted by σ_{k}. If we let

$$
a_{k}=\sum_{i=0}^{n-k}(-1)^{i}\binom{r+i}{i} \sigma_{n-k-i}
$$

then we get the following numerical formula:

Corollary

$F\left(n_{1}, \ldots, n_{r}, Z\right)=\sum_{i=0}^{n} a_{i} d e g c_{i}$.
Each choice of the n_{i} leads to a linear constraint on the Chern numbers. Thus a side benefit of homotopy continuation is a method for numerically computing the Chern numbers of a variety.

More generally:

Let \mathcal{E} be a locally free, globally generated, rank n sheaf on \mathbb{P}^{n}.
Let s_{1}, s_{0} be sections of \mathcal{E}.
If the zero locus of s_{1} is a set of distinct points then for $t \in(0,1]$, the zero locus of $t \gamma s_{1}+(1-t) s_{0}$ is also a set of distinct points.

Each of the points in the zero locus of s_{1} can be tracked as t varies.
One can derive formulas relating the Chern numbers of \mathcal{E} to the Chern numbers of the irreducible components of $\left(s_{0}\right)_{0}$ and the number of paths leading to the component.

Parameter Homotopy

Parameter homotopy is a closely related type of deformation.
You have a family of ideals such that the structure of an ideal in the family is constant on an open set.

You have a method of varying along a real path in the family such that for $t \in(0,1]$, you are on this open set.

Deformation through the space of sections of a sheaf is an example of parameter homotopy.

From a polynomial ideal / one can produce a collection of points such that:

- The points are in one to one correspondence with the irreducible components of the algebraic set $V(I)$.
- The points are numerical approximations for general points on the component.
- From an approximation to a general point on a component, approximations to other general points can be produced.
- The numerical approximations can be refined to arbitrary numerical accuracy.

Furthermore, it can be determined if two given points lie on the same irreducible component.

Overview of Approach:

Suppose $k-1+\sum d_{i}=n$ and that $J\left(V_{1}, \ldots, V_{k}\right)$ has the expected dimension.

Recall that if $P \in \mathbb{P}^{n}$ is general then $P \in J^{O}\left(V_{1}, \ldots, V_{k}\right)$ and P will have a finite number of $\left(V_{1}, \ldots, V_{k}\right)$-decompositions.

Approach for finding one decomposition:

- Find general points Q_{1}, \ldots, Q_{k} with $Q_{i} \in V_{i}$.
- Find a general point $Q \in<Q_{1}, \ldots, Q_{k}>$.
- Equations can be written down for the entry locus of Q.
- Given $P \in J^{O}\left(V_{1}, \ldots, V_{k}\right)$, homotopy the $\left(V_{1}, \ldots, V_{k}\right)$-decomposition for Q to a $\left(V_{1}, \ldots, V_{k}\right)$-decomposition for P.

Monodromy:

From one $\left(V_{1}, \ldots, V_{k}\right)$-decomposition for Q, use monodromy to find all of the other $\left(V_{1}, \ldots, V_{k}\right)$-decompositions for Q. I.e. find the entry locus of Q via monodromy.

Deform the entire collection of $\left(V_{1}, \ldots, V_{k}\right)$-decompositions for Q to the entire collection of $\left(V_{1}, \ldots, V_{k}\right)$-decompositions for P through a parameter homotopy.

Closing comments:

1) What about tensors not on $J^{O}\left(V_{1}, \ldots, V_{k}\right)$?
2) How big a problem can be solved?
3) What if $J\left(V_{1}, \ldots, V_{k}\right)$ does not have dimension n ?
4) What if $J\left(V_{1}, \ldots, V_{k}\right)$ is "defective"?

Thank you!

