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Overview

• Karcher mean / Normal mean - finding representatives for a set
of points on a Grassmann manifold

• A clustering example with images.

• Representing multi-scale clustering on the Grassmann manifold
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This talk includes joint work with Michael Kirby and Justin Marks

It has benefited from discussions with many friends including:

Ross Beveridge
Bruce Draper
Holger Kley
Jen-Mei Chang
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Normal Mean / Karcher Mean

The goal of this section is to describe a method for obtaining a
representative for a cluster of points on a Grassmann manifold.

The representative is obtained as the output of a particular
iterative algorithm applied to the cluster of points.

The algorithm is based on an explicit description of the tangent
spaces to the manifold arising from a standard realization as a
quotient space.
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The algorithm depends upon a pair of mutually inverse maps, one
for each point of the manifold.

From the cluster of points, the algorithm exploits these maps in a
predictor/corrector loop until converging, with prescribed
tolerance, to a fixed point.

The fixed point acts as a representative of the cluster.

Chris Peterson Numerical Analysis and Statistics on Tensor Parameter Spaces



Normal Mean / Karcher Mean
A clustering example

Experiments on CMU-PIE
Data Bundles

Principal angles
Metrics on the Gr(p,n)

One view of the Grassmannian

An n × p matrix Y , with Y TY = I , is a representative for the
p-dimensional subspace spanned by the columns of Y .

If Q is an orthonormal p × p matrix then Y and YQ represent the
same point on Gr(p, n) since they have the same column space.

Proceeding in this manner, we can obtain the identification
Gr(p, n) = O(n)/(O(n − p)× O(p))

Of course, there are many other ways to think of Gr(p, n).
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Principal Angles

Given two k-dimensional spaces A,B, the first principal angle, θ1,
between the two spaces is obtained by finding vectors u1 ∈ A and
v1 ∈ B that have the smallest possible angle between them.

The second principal angle, θ2, is obtained by finding vectors
u2 ∈ A and v2 ∈ B that have the smallest possible angle subject to
the constraint that u1 · u2 = 0 and v1 · v2 = 0.

Continuing in this way we obtain a vector of principal angles:
Θ(A,B) = (θ1, θ2, . . . , θk).
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It is an interesting and useful fact that the principal angles can be
determined from the Singular Value Decomposition of a certain
matrix built from x and y .

In particular, let A,B be orthonormal matrix representatives for Vx

and Vy .

In the singular value decomposition ATB = UΣV T , the diagonal
entries of Σ are the cosines of the principal angles.
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Any orthogonally invariant (resp. unitarily invariant) metric on
Gr(p, n) is an appropriate function of the principal angles.

For instance, the Fubini-Study metric (from the Plucker
embedding) is d(A,B) = cos−1(

∏k
i=1 cos θi )

The metric corresponding to Gr(p, n) = O(n)/(O(n − p)× O(p))
is d(A,B) = (

∑k
i=1 θ

2
i )1/2 = ||Θ(A,B)||2

There is also an embedding of Gr(k , n) into R(n2+n−2)/2

that leads to the metric || sin Θ(A,B)||2
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Set-up for description of algorithm

Let P ∈ Gr(p, n).

Let Np denote a neighborhood of P on Gr(p, n).

Let TP denote the tangent space to Gr(p,n) at P.

Suppose that for each point P ∈ Gr(p, n), you have maps
FP : NP → TP

GP : TP → Gr(p, n)
such that FP and GP are inverses (on suitably restricted sets).
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Consider a cluster of points C ⊂ Gr(p, n).
An outline of the iterative algorithm is:

1) Pick a point near C, call it P.
2) Determine the Tangent space, TP , to Gr(p, n) at P
3) Use FP to map each point in C to TP .
4) Use the points in this linear space to produce a representative Q
5) Compute GP(Q) to obtain a new point on Gr(p, n).
6) Update P to GP(Q) and go to step 2)
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There are multiple possibilities for FP ,GP and for step 4.

In particular, the principle angles can be used in many ways to
produce Q from FP(C).

This leads to algorithms that can be optimized for different
purposes such as suppressing the effect of outliers, etc.

The idea for the algorithm came from the Karcher mean algorithm
(which uses Exp and Log maps in the context of lie groups to
move back and forth between the lie algebra and the lie group)
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Set-up for an example with digital images

Black and white images as rectangular arrays

When a picture is captured by a digital camera as a gray scale
image, the pictured is stored as a rectangular array of numbers.

Each number in the array corresponds to a pixel in the image.

Frequently, the numbers in the array lie between 0 and 255.

The numbers record the energy arriving from the corresponding
portion of the image.
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http://micro.magnet.fsu.edu/primer/digitalimaging/digitalimagebasics.html
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Color images as rectangular hyper-arrays

When a picture is captured by a digital camera as a color image,
the picture is typically stored as a three sheeted rectangular array
of numbers.

Each sheet in the array corresponds to energy arriving in a
particular color band.

Some higher end cameras produce data with more sheets.

Black and white images are contractions of these sheets into a two
dimensional array.
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A pixel value (roughly) corresponds to an integral of a frequency
dependent energy function against a frequency response curve.

Below are some curves from a higher end multi-spectral camera.

http://www.fluxdata.com/products/high-resolution-3-ccd-multispectral-camera
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Most digital cameras have the ability to collect data from outside
the visible spectrum.

It can be surprising when you “shift” data outside the visible
spectrum to lie in the visible spectrum.

Below is a flower imaged in the visible spectrum and the same
flower imaged in the UV-spectrum.

http://www.naturfotograf.com
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Digital images as vectors

A gray scale digital picture is a point in Rr×c .

By flattening the matrix, we obtain a point in Rrc×1.

A color image is a point in Rr×c×s and this can be flattened into a
single point in Rrcs×1, or into s points in Rrc×1, etc.

Once flattened, a collection of images can then be stored as
columns of a data matrix.
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A specific example with digital images

Illumination space

We now consider the illumination space of an object.

More precisely, we will consider the special geometry of the span of
a collection of images of a fixed object under varying illumination
conditions.

As a specific example, we start with a collection of gray scale
images of a person under different lighting.
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Images of a person under different illumination conditions
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Illumination images form a convex set

If A,B are vectors representing two images of the same object
under two different illumination conditions, then any convex
combination of A and B represents the same object under a
convex combination of these lighting conditions.

As a consequence, the set of vectors representing images of a fixed
object collected under varying illumination conditions form a
convex set.

In concrete terms, any weighted “average” of two such images is a
valid image.
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An average illumination image.

The picture in the middle is artificial. It was created by adding the
matrices and dividing by 8.
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Singular values of an illumination data matrix

Basri and Jacobs (2000) showed that the set of all reflectance
functions produced by Lambertian objects under distant, isotropic
lighting lies close to a 9D linear subspace.

An implication of this result is that the set of images of a convex
Lambertian object obtained under a wide variety of lighting
conditions can be well approximated by a low-dimensional linear
subspace.

Thus, if the columns of a data matrix consist of images of a fixed
object taken under a wide variety of illumination conditions, then
the singular values of the matrix decay rapidly.
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Objects which do not reflect light very well are Lambertian, they
have the effect of smoothing (rugs and fur are Lambertian).

Objects which reflect light very well are not Lambertian (mirror
disco balls are not Lambertian).

Illumination data matrices of non-Lambertian objects have a slower
decay of singular values.
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Since the singular values of an illumination data matrix decay
rapidly, there is a low dimensional linear space that captures the
vast majority of the energy of an illumination data set.

For a given k, the singular value decomposition tells us which
k-linear space to pick. This linear space is the illumination space.
It is a subspace of a (much) larger space.

As a subspace, the illumination space can be identified with a
single point in an appropriate Grassmannian.
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Grassmann Manifold

Image Set 1

Image Set 2

p

q

*

*

Chris Peterson Numerical Analysis and Statistics on Tensor Parameter Spaces



Normal Mean / Karcher Mean
A clustering example

Experiments on CMU-PIE
Data Bundles

Experiment
Low resolution
Patch projections
Strip projection
Dust projection

The CMU-PIE data base is a database (developed at
Carnegie-Mellon University) containing images of people with
variations in Illumination, Pose and Expression.

For the following experiment, we restrict our attention to images
drawn from the CMU-PIE database with a variation only in
Illumination.
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Description of experiment

For each of the 67 subjects in the CMU-PIE data base, we
randomly selected two disjoint sets of 10 images to produce two
10-dimensional estimates of the illumination space for the subject.

The process of random selection was repeated 10 times to generate
a total of 670 matching subspaces and 44,220 non-matching
subspaces.
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Let D be a distance measure on a Grassmann variety. When the
largest distance between any two matching subspaces is less than
the smallest distance between any two non-matching subspaces,
the data is called D-Grassmann separable.

Using the first principal angle, we observed a significant gap
between matching and non-matching subspaces (approximately
16◦) when subspaces are realized as points in G (10, 22080).

I.e. the data is Grassmann separable w.r.t. the first principal angle.
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The difference between 10 and 22080 is huge.

This suggests that a generic projection may be close to an
isometry. In other words, a general mapping could be expected to
roughly preserve interrelationships between angles.

In the next experiment, we describe what happens if we consider a
rather special linear map derived from the 2-d Haar wavelet.

Essentially, all that is being done is to replace a region of an image
with its average pixel value.
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Application of the 2D Haar 
      wavelet transform.

The resulting LL image is 
      displayed at each level.

This transform mimics a 
      low resolution camera.

25 pixels
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Even under drastic resolution reduction, the CMU-PIE data base is
still Grassmann separable.

In other words, it is still possible to match the reduced resolution
illumination spaces.

However, the separation gap between matching and non-matching
subspaces drops from 16◦ to 14◦, 8◦, and 0.17◦ when subspaces
are realized as points in G (10, 22080), G (10, 360), G (10, 90), and
G (10, 25), respectively.
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Low resolution illumination spaces

Subject A Subject B
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Two other special types of projections are patch projections and
dust projections.

A patch projection will be taken to mean restriction of each image
to a collection of patches within the image.

A dust projection will be taken to mean restriction of each image
to a fixed collection of random pixels within the image.

Both patch projections and dust projections are Grassmann
separable provided enough pixels are used.
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Right eye patches Lip patches
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Sampling of a strip of pixels
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Sampling of a random set of pixels
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Data bundles

Imagine you have a data set involving two (or more) variations of
state.

In this setting there are natural maps obtained by fixing one or
more of the states.

These maps break up the data set into a fiber bundle (which we
call a data bundle).
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Consider pictures of an object as it is spinning on a turntable.

If the pictures are gray scale, then the collection of images in
Rrc×1 correspond to the image of a map of a circle S1.

If the pictures are color with each image stored as an Rr×c×3

matrix then we can map each image to three points in Rrc×1.

There is a natural 3 to 1 map of this data to a circle.

Alternatively, we can map each color image to the span of the
three points.

In this manner we obtain a map of S1 into G (3, rc).
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Now suppose an illumination condition is fixed but digital images
of an object are collected from all possible orientations of a camera
subject to the condition that the camera is 2 meters from the
object and is pointed towards the center of the object.

The illumination condition and the object give a map of SO(3)
into pixel space.

Roughly speaking, this map is a circle bundle over a sphere.
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Finally, suppose we allow all possible illumination conditions and
we allow all possible orientations of the camera.

Over each point of SO(3) we have an illumination space.

In other words, we have an illumination bundle over SO(3).

Fixing an illumination condition corresponds to taking a section of
this bundle.

We can also consider the map of SO(3) into a Grassmann variety
obtained by mapping a point of SO(3) to a corresponding
illumination space.
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Thank You!
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