
Eigenvectors of Tensors and Waring Decomposition

Luke Oeding, University of California, Berkeley −→ Auburn University
(Joint work with Giorgio Ottaviani, Università di Firenze)
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Tensors

Let V1, . . . ,Vn be vector spaces over C.
A tensor is an element of a tensor product V1 ⊗ · · · ⊗ Vn.
T tensor is a multidimensional array of numbers: For example:

T =

a000

a001

a100

a101

a200

a201

a010

a011

a110

a111

a210

a211

a020

a021

a120

a121

a220

a221

is a 3× 3× 2 tensor, where we can take aijk ∈ C.
We can think of T ∈ C3 ⊗ C3 ⊗ C2.
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Rank 1 Tensors

Let V1, . . . ,Vn be vector spaces over C.
A rank-one tensor is an element of a tensor product V1 ⊗ · · · ⊗ Vn of the form
v1 ⊗ · · · ⊗ vn, with vi ∈ Vi (a matrix T has rank one if T = (col)(row) ).
T rank-one tensor is a multidimensional array of numbers such that, after change
of coordinates in each tensor factor, it is of the form

T =

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

is a 3× 3× 2 tensor, where only a000 = 1 and the other aijk = 0.
We can think of T ∈ C3 ⊗ C3 ⊗ C2 as a sparse tensor.
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Tensor Decomposition
A matrix has rank ≤ r if and only if it is the sum of r rank-one matrices.

A tensor T ∈ V1 ⊗ · · · ⊗ Vn has rank ≤ r if it has a tensor decomposition:

T =
∑r

i=1 v1,i ⊗ · · · ⊗ vn,i , with vp,i ∈ Vp for 1 ≤ i ≤ r .

i.e. an expression of the tensor as a sum of r rank-one tensors.

The Zariski closure of rank r order n tensors is the r -th secant variety of the
Segre variety σr (Seg(PV1 × · · · × PVn)).

If r is small, tensor decomposition gives a sparse representation of T .

Main questions:
For a given tensor T ∈ V1 ⊗ · · · ⊗ Vn,

1 determine rank T - find polynomial equations to answer this.
2 find vectors {vp,i} in an minimal rank expression of T (algorithmically).
3 determine when minimal decomposition are unique.
4 further understand invariants of tensors.

Use and develop techniques from Linear and Multilinear Algebra,
Representation Theory, and Classical & Numerical Algebraic Geometry.
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Some applications of tensor decomposition

Classical Algebraic Geometry: When can a given projective variety X ⊂ Pn be

isomorphically projected into Pn−1?

Determined by the dimension of the secant variety σ2(X ) (points of rank 2).

Algebraic Statistics and Phylogenetics: Given contingency tables for DNA of
several species, determine the correct statistical model for their evolution.

Find invariants of algebraic statistical models (equations of secant varieties).

For star trees / bifurcating trees this is the salmon conjecture.

Signal Processing: Analogous to CDMA technology for cell phones.

A given signal is the sum of many signals, one for each user.

Decompose the signal uniquely to recover the component of each users signal.

Neuroscience, Quantum Information Theory, Computer Vision, Algebraic
Complexity Theory, Chemistry...
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Polynomial Waring decomposition

Let V ∼= Cn+1, f ∈ SdV – homogeneous polynomial / symmetric tensor.

Waring decomposition: f =
∑r

i=1 civ
d
i , with ci ∈ C, and vi ∈ V .

Goals:
Algorithms that quickly decompose low rank forms.

(naive algorithms always exist, but are infeasible)

Uniform treatment (Eigenvectors and vector bundles).

Non-Goal:
One algorithm to decompose them all (NP-hard! -[Lim-Hillar’12]).

Motivation:
CDMA-like communication scheme:

Send (the coefficients of) f =
∑r

i=1 civ
d
i .

Recover vi uniquely.
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New Algorithms for Waring decomposition.

With Ottaviani, we generalized a method of Sylvester, using exterior (Koszul)
flattenings and eigenvectors of tensors to develop new algorithms for Waring
decomposition.

Theorem (O.-Ottaviani ’13)

Let f ∈ SdCn+1, with d = 2m + 1, n + 1 ≥ 4, and general among forms of rank
≤ r . If r ≤

(
m+n
n

)
then the Koszul Flattening Algorithm produces the unique

Waring decomposition.

We implemented our algorithm in Macaulay2 and you can download it from the
ancillary files accompanying the arXiv version of our paper.
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Algebraic Geometry helps Engineering

Theorem ( Alexander-Hirschowitz (1995))

The general f ∈ SdCn+1, d ≥ 3 has the expected generic rank

⌈
(n+d

d )
n+1

⌉
,

with a small finite list of exceptions.

Theorem (Sylvester (1851), Chiantini-Ciliberto, Mella, Ballico (2002-2005))

The general f ∈ SdCn+1 among the forms of subgeneric rank has a unique
decomposition, with a small finite list of exceptions.

Expected: If
(n+d

d )
n+1 is an integer, then uniqueness fails for the general form of

generic rank. Some partial are results known.
The only known exceptions are (and we give a uniform proof):

S2m+1C2 rank m + 1 Sylvester 1851,

S5C3 rank 7 Hilbert-Palatini-Richmond 1902,

S3C4 rank 5 Sylvester Pentahedral Theorem.
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Koszul Flattenings: Examples / Overview

Equations of secant varieties from Koszul flattenings:

Strassen: σr (P2 × P2 × P2) ⊂ P
(
C3 ⊗ C3 ⊗ C3

)
Toeplitz: σr (P2 × ν2(P3)) ⊂ P

(
C3 ⊗ S2C4

)
Aronhold: σr (ν3(P2)) ⊂ P

(
S3C3

)
Cartwright-Erman-O.’11:

σr (P2 × ν2(Pn)) ⊂ P
(
C3 ⊗ S2Cn+1

)
, r ≤ 5.

Landsberg-Ottaviani 2012: Many more cases, much more general.

Our decomposition algorithms via Koszul Flattenings

Sylvester Pentahedral Thm.: S3C4, r ≤ 5,

HPR quintics: S5C3, r ≤ 7,

More generally: S2m+1Cn+1, r ≤
(
n+m
n

)
.
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From equations to decompositions

General approach:

Find nice (determinantal) equations for secant varieties
– (flattenings and exterior flattenings)

Get an algorithm for decomposition.

Our algorithms decompose forms in these cases:

Sylvester Pentahedral: S3C4 r ≤ 5
Hilbert quintics: S5C3 r ≤ 7
More generally: S2m+1Cn+1 r ≤

(
n+m
n

)
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The catalecticant algorithm via an example

Decompose f = 7x3 − 30x2y + 42xy2 − 19y3 ∈ S3(C2):
Compute the flattening:

S2(C2)∗
Cf−→ C2,

Cf =

(
7 −10 14
−10 14 −19

)
, with kernel:


6

7
2

.

The kernel K (in the space of polynomials on the dual) is spanned by

6∂2x + 7∂x∂y + 2∂2y = (2∂x + ∂y )(3∂x + 2∂y ).

Notice (2∂x + ∂y ) kills (−x + 2y) and (−x + 2y)d for all d .
Also, (3∂x + 2∂y ) kills (2x − 3y) and (2x − 3y)d for all d .
K annihilates precisely (up to scalar) {(−x + 2y), (2x − 3y)}.

Therefore f = c1(−x + 2y)3 + c2(2x − 3y)3.

Solve: c1 = c2 = 1.
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Catalecticant algorithm in general [Iarrobino-Kanev 1999]

Input: f ∈ Sd(V ) V = Cn+1.

1 Construct Cm
f = Cf , m = d d2 e

Cm
f : SmV ∗ −→ Sd−mV

xi1 · · · xim 7−→ ∂mf

∂xi1 · · · ∂xim

2 Compute ker Cf , note rank(f ) ≥ rank(Cf ).

3 Compute Z ′ = zeros(ker Cf )
– if #Z ′ =∞, fail
– else Z ′ = {[v1], . . . , [vs ]}

4 Solve the linear system (on the ci )

f =
s∑

i=1

civ
d
i , ci ∈ C.

Output: The unique Waring decomposition of f .

Oeding (UC Berkeley) Waring Decomposition August 1, 2013 10 / 25



Catalecticant algorithm in general [Iarrobino-Kanev 1999]

The catalecticant algorithm appears in work of Sylvester, Iarrobino-Kanev,
Brachat-Comon-Mourrain-Tsigaridas, Bernardi-Idá-Gimigliano.
Iarrobino and Kanev gave bounds for the success of the catalecticant algorithm.
Here is a slight improvement:

Theorem (O.-Ottaviani 2013)

Let
∑r

i=1 vd
i = f be general among forms of rank r in SdV . Set zi := [vi ],

Z := {z1, . . . , zr} and let m = d d2 e.
1 If d is even and r ≤

(
n+m
n

)
− n − 1,

or if d is odd and ≤
(
n+m−1

n

)
,

then ker Cf = IZ ,m (subspace of deg. m polys vanishing on Z ).
⇒ the catalecticant algorithm succeeds with Z = Z ′ = zeros(ker Cf ).

2 If d is even n ≥ 3 and r =
(
n+m
n

)
− n, Z ( Z ′ is possible.

⇒ the catalecticant algorithm succeeds after finitely many checks.
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Why the catalecticant algorithm works

Given f ∈ SdV , we have the catalecticant:
Cm
f : SmV ∗−→Sd−mV

xi1 · · · xim 7−→ ∂mf
∂xi1
···∂xim

Rank conditions:
f has rank 1 ⇒ rank Cf = 1.

subadditivity of matrix rank implies that
(f has rank r ⇒ rank Cf ≤ r).

The zero set of the kernel is polar to the linear forms in the decomposition:

Notice that ∂
∂(αx+βy) · (βx − αy)d = 0 (α ∂

∂x + β ∂
∂y is apolar to βx − αy).

In the case of binary forms, a general elt. F of the kernel factors (FTA).
i.e. F = l⊥1 · · · l⊥r kills all linear forms in decomposition.

There exist ci ∈ C such that f =
∑r

i=1 ci l
d
i if and only if l⊥1 · · · l⊥r f = 0.

One inclusion is obvious, the other is by dimension count.
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Eigenvectors of tensors

An essential ingredient is the notion of an eigenvector of a tensor.

The eigenvector equation for matrices: M ∈ Cn×n, v ∈ Cn,

Mv = λv , λ ∈ C ⇐⇒ M(v) ∧ v = 0

Definition

Let M ∈ Hom(SmV ,
∧aV ). v ∈ V is an eigenvector of the tensor M if

M(vm) ∧ v = 0.

When a = m = 1 this is the classical definition.
When a = 1, [Lim’05] and [Qi’05] independently introduced this notion.
Further generalizations: Ottaviani-Sturmfels, Sam (Kalman varieties), and Qi
et.al. (Spectral theory of tensors).
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The number of eigenvectors of different types of tensors

Theorem (O.-Ottaviani ’13)

For a general M ∈ Hom(SmCn+1,
∧aCn+1) the number e(M) of eigenvectors is

e(M) = m, when n = 1 and a ∈ {0, 2},
e(M) =∞, when n > 1 and a ∈ {0, n + 1},

(classical)

e(M) = mn+1−1
m−1 , when a = 1 [CS’10],

e(M) = 0, for 2 ≤ a ≤ n − 2,

e(M) = (m+1)n+1+(−1)n
m+2 , for a = n − 1.

Our result includes a result of Cartwright-Sturmfels. Our proofs rely on the simple
observation that the a Chern class computation for the appropriate vector bundle
gives the number of eigenvectors.

Oeding (UC Berkeley) Waring Decomposition August 1, 2013 14 / 25



The Koszul complex and Koszul matrices

The Koszul complex arises via the minimal free resolution of the maximal ideal
〈x0, . . . , xn〉. Let V be the span of the xi .

0−→
∧n+1V

kn+1−→
∧nV−→· · · k3−→

∧2V
k2−→
∧1V

k1−→C−→0

Some examples:

for n = 2, k1 =
(
w x y

)
, k2 =

−x −y 0
w 0 −y
0 w x

 k3 =

 y
−x
w

,

for n = 3, k1 =
(
w x y z

)
, k2 =


−x −y 0 −z 0 0
w 0 −y 0 −z 0
0 w x 0 0 −z
0 0 0 w x y

, ...
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Sections of vector bundles to eigenvectors of tensors

Construct a map (tensor a Koszul map with a catalecticant map)

Af : Hom(SmV ,
∧aV ) 7−→ Hom(

∧n−aV ,Sd−m−1V )

M ∈ Hom(SmV ,
∧aV ), v is an eigenvector of M iff M(vm) ∧ v = 0.

Lemma

M ∈ Hom(SmV ,
∧aV ),

1 v is an eigenvector of M iff M ∈ ker Af .

2 Let f =
∑r

i=1 vd
i . If each vi is an eigenvector of M, then M ∈ ker Af .

Lemma
Let Q be the quotient bundle on Pn.

1 The fiber of
∧aQ at x = [v ] is isomorphic to Hom([vm],

∧aV /〈v ∧
∧a−1V 〉.

2 the section sM vanishes if and only if v is an eigenvector of M.
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Koszul Algorithm examples: HPR Quinitics

Let V = C3 – a general form f ∈ S5C3 has rank 7.
Catalecticants:

Cf : S3V ∗−→S2V

is a 6× 10 matrix - with max rank 6, so too small to detect rank 7.
Koszul Flattening:
S5V ⊂ S2V ⊗ V ⊗ S2V ← S2V ⊗

∧2V ⊗ V ∗ ⊗ S2V .
Get a map:

Af : S2V ∗ ⊗
∧2V ∗ −→ V ∗ ⊗ S2V

Hom(S2V ,V ) −→ Hom(V ,S2V )

Af =

−x −y 0
w 0 −y
0 w x

⊗ Cf =

−Cfx −Cfy 0
Cfw 0 −Cfy

0 Cfw Cfx

 ,

where Cfz is the 6× 6 catalecticant of ∂f
∂z .
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Koszul Algorithm examples: HPR Quinitics

Koszul Flattening:
S5V ⊂ S2V ⊗ V ⊗ S2V ← S2V ⊗

∧2V ⊗ V ∗ ⊗ S2V .
Get a map:

Af : S2V ∗ ⊗
∧2V ∗ −→ V ∗ ⊗ S2V

Hom(S2V ,V ) −→ Hom(V ,S2V )

Af =

−x −y 0
w 0 −y
0 w x

⊗ Cf =

−Cfx −Cfy 0
Cfw 0 −Cfy

0 Cfw Cfx

 ,

Af is skew-symmetrizable, so even has rank.

If f has rank 7, Af has rank ≤ 14.

The 16× 16 Pfaffians vanish on the locus of border rank 7 forms.

The general M in Hom(S2V ,V ) has 7 eigenvectors, [Cartwright-Sturmfels].

By our theorem, the 7 eigenvector of a general M ∈ ker Af are the linear
forms in the decomposition of f (up to scalars).
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Computing eigenvectors of tensors

In the HPR example, had

Af : S2V ∗ ⊗ V





−Cfx −Cfy 0
Cfw 0 −Cfy

0 Cfw Cfx





// V ∗ ⊗ S2V ,

with Af , an 18× 18 matrix composed of 6× 6 blocks. An element of the kernel
can be blocked as (h1, h2, h3), where hi are quadrics in S2V ∗ by viewing
S2V ∗ ⊗ V as

(
S2V ∗ ⊗ 〈x〉

)⊕(
S2V ∗ ⊗ 〈y〉

)⊕(
S2V ∗ ⊗ 〈z〉

)
.

The 2-minors of

(
h1 h2 h3

x y z

)
define the locus of eigenvectors.

In the general case the construction is similar: concatenate the (blocked) elements
of the kernel with a Koszul matrix and compute the zero set of the minors.
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Koszul Algorithm examples: Sylvester Pentahedral

Let V = C4. The general f ∈ S3V has rank 5. The most-square catalecticant is
10× 4, so not big enough to detect rank 5.

Koszul flattening: f ∈ S3V ⊂ V ⊗ V ⊗ V ← V ⊗
∧2V ⊗ V ∗ ⊗ V

Af : V ∗ ⊗
∧2V ∗ −→ V ∗ ⊗ V

Hom(C4,
∧2C4) −→ Hom(C4,C4),

Af = k2 ⊗ Cf , where k2 =


−x −y 0 −z 0 0
w 0 −y 0 −z 0
0 w x 0 0 −z
0 0 0 w x y

 .

General element of Hom(C4,
∧2C4) has 5 eigenvectors!

The eigenvectors of a general element of the kernel provide the linear forms in the
Waring decomposition.
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Koszul Flattening Algorithm

Algorithm

Input f ∈ SdV ,V = Cn+1.

1 Construct Af : Hom(SmV ,V )−→Hom(
∧n−1V ,Sd−m−1V ).

2 Compute ker Af . Note rank(f ) ≥ rank(Af )/n.
3 Set Z ′ = common eigenvectors of a basis of ker Af .

a) if #Z ′ =∞, fail.
b) else Z ′ = {[v1], . . . , [vs ]}.

4 Solve f =
∑s

i=1 civ
d
i .

Output: unique Waring decomposition of f .
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Success of the Koszul Flattening Algorithm

Here are some effective bounds for the success of our algorithm.

Theorem (O.-Ottaviani’13)

Let n = 2, d = 2m + 1, f =
∑r

i=1 vd
i , and set zi = [vi ], Z = {z1, . . . , zr}. The

Koszul Flattening algorithm succeeds when

1 2r ≤ m2 + 3m + 4,

2 2r ≤ m2 + 4m + 2 (after finitely many tries).

and if n ≥ 3, The Koszul Flattening algorithm succeeds when

1 n-even, r ≤
(
n+m
n

)
(eigenvectors of ker Af = Z ′ = Z ),

2 n-odd, r ≤
(
n+m
n

)
(e.-vects of ker Af ∩ e.vects of (Im(Af ))⊥ = Z ),

3 n = 3, r ≤ 1
3 ( 1

2 (m + 4)(m + 3)(m + 1)−m2/2−m − 8)
... set a = 2 in the algorithm.
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General Vector Bundle Method

Consider a line bundle L giving the embedding X
|L|−→P

(
H0(X , L)

)
= PW .

Let E−→X be a vector bundle on X . We get natural maps:

H0(E )⊗ H0(E∗ ⊗ L) −→ H0(L),

H0(E )⊗ H0(L)∗ −→ H0(E∗ ⊗ L)∗,

H0(E )
Af−→ H0(E∗ ⊗ L)∗,

where Af depends linearly on H0(L)∗.

Get the matrix presentation via Koszul matrices when E =
∧aQ, where Q is (at

twist of) the quotient bundle on Pn.

Proposition (Landsberg-Ottaviani ’12)

Let f =
∑r

i=1 vi , and set zi = [vi ] ∈ X ⊂ PW , Z = {z1, . . . , zr}.
Then H0(IZ ⊗ E ) ⊂ ker Af , with equality if H0(E∗ ⊗ L)→→ H0(E ⊗ L|Z ),

and H0(IZ ⊗ E∗ ⊗ L) ⊂ (ImAf )⊥, with equality if H0(E )→→ H0(E|Z ).

Oeding (UC Berkeley) Waring Decomposition August 1, 2013 23 / 25



General Vector Bundle Method

Consider a line bundle L giving the embedding X
|L|−→P

(
H0(X , L)

)
= PW .

Let E−→X be a vector bundle on X .

Theorem (O.-Ottaviani’13)

Let f =
∑r

i=1 vi , and set zi = [vi ] ∈ X ⊂ PW , Z = {z1, . . . , zr}. Assume
rank(Af ) = k · rank(E ) and

H0(IZ ⊗ E )⊗ H0(IZ ⊗ E∗ ⊗ L)−→H0(I 2Z ⊗ L)

is surjective.
If X is not weakly k-defective, then the common base locus of ker(Af ) and
Im(Af )⊥ is given by Z (so one can reconstruct Z from f ).

We use this general result to prove the specific results for each of our algorithms.
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Thanks!
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Algebraic Geometry helps Engineering: generic rank (/C)

Theorem (Campbell 1891, Terracini 1916, Alexander-Hirschowitz
1995)

The general f ∈ SdCn+1, d ≥ 3 has rank⌈(
n+d
d

)
n + 1

⌉
, the generic rank, except

2 ≤ n ≤ 4, d = 4 – generic rank is
(
n+2
2

)
,

(n, d) = (4, 3) – generic rank is 8.
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Algebraic Geometry helps Engineering: Uniqueness (/C)

Theorem (... A-H, ’95 )

The general f ∈ SdCn+1, d ≥ 3 has the generic rank

⌈
(n+d

d )
n+1

⌉
, except

2 ≤ n ≤ 4, d = 4 – generic rank is
(
n+2
2

)
,

(n, d) = (4, 3) – generic rank is 8.

Theorem (Sylvester 1851, Chiantini-Ciliberto, Mella, Ballico
2002-2005)

The general f ∈ SdCn+1 among the forms of subgeneric rank has a unique
decomposition, except

2 ≤ n ≤ 4, d = 4, r =
(
n+2
2

)
− 1, ∞-ly many decomps. defective

(n, d) = (4, 3), r = 7, ∞-ly many decomps. defective

rank 9 in S6C3, 2 decomps. weakly defective

rank 8 in S4C4, 2 decomps. weakly defective
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Algebraic Geometry helps Engineering: Non-Uniqueness
(/C)

Expected: If
(n+d

d )
n+1 is an integer, then uniqueness fails for the general form.

Mella showed in 2006 that when d > n this is true.

The only known failures are (and we give a uniform proof):

S2m+1C2 rank m + 1 Sylvester 1851,

S5C3 rank 7 Hilbert-Palatini-Richmond 1902,

S3C4 rank 5 Sylvester Pentahedral Theorem.
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