Eigenvectors of Tensors and Waring Decomposition

Luke Oeding,
University of California, Berkeley \longrightarrow Auburn University
(Joint work with Giorgio Ottaviani, Università di Firenze)

Tensors

Let V_{1}, \ldots, V_{n} be vector spaces over \mathbb{C}.
A tensor is an element of a tensor product $V_{1} \otimes \cdots \otimes V_{n}$. T tensor is a multidimensional array of numbers: For example:

is a $3 \times 3 \times 2$ tensor, where we can take $a_{i j k} \in \mathbb{C}$. We can think of $T \in \mathbb{C}^{3} \otimes \mathbb{C}^{3} \otimes \mathbb{C}^{2}$.

Rank 1 Tensors

Let V_{1}, \ldots, V_{n} be vector spaces over \mathbb{C}.
A rank-one tensor is an element of a tensor product $V_{1} \otimes \cdots \otimes V_{n}$ of the form $v_{1} \otimes \cdots \otimes v_{n}$, with $v_{i} \in V_{i}$ (a matrix T has rank one if $T=($ col $)($ row $)$).
T rank-one tensor is a multidimensional array of numbers such that, after change of coordinates in each tensor factor, it is of the form

$$
T=
$$

is a $3 \times 3 \times 2$ tensor, where only $a_{000}=1$ and the other $a_{i j k}=0$.
We can think of $T \in \mathbb{C}^{3} \otimes \mathbb{C}^{3} \otimes \mathbb{C}^{2}$ as a sparse tensor.

Tensor Decomposition

- A matrix has rank $\leq r$ if and only if it is the sum of r rank-one matrices.
- A tensor $T \in V_{1} \otimes \cdots \otimes V_{n}$ has rank $\leq r$ if it has a tensor decomposition:

$$
T=\sum_{i=1}^{r} v_{1, i} \otimes \cdots \otimes v_{n, i}, \quad \text { with } v_{p, i} \in V_{p} \text { for } 1 \leq i \leq r .
$$

i.e. an expression of the tensor as a sum of r rank-one tensors.

- The Zariski closure of rank r order n tensors is the r-th secant variety of the Segre variety $\sigma_{r}\left(\operatorname{Seg}\left(\mathbb{P} V_{1} \times \cdots \times \mathbb{P} V_{n}\right)\right)$.
- If r is small, tensor decomposition gives a sparse representation of T.

Main questions:

For a given tensor $T \in V_{1} \otimes \cdots \otimes V_{n}$,
(1) determine rank T - find polynomial equations to answer this.
(2) find vectors $\left\{v_{p, i}\right\}$ in an minimal rank expression of T (algorithmically).

- determine when minimal decomposition are unique.
(1) further understand invariants of tensors.

Use and develop techniques from Linear and Multilinear Algebra, Representation Theory, and Classical \& Numerical Algebraic Geometry.

Some applications of tensor decomposition

- Classical Algebraic Geometry: When can a given projective variety $X \subset \mathbb{P}^{n}$ be isomorphically projected into \mathbb{P}^{n-1} ?
Determined by the dimension of the secant variety $\sigma_{2}(X)$ (points of rank 2).
- Algebraic Statistics and Phylogenetics: Given contingency tables for DNA of several species, determine the correct statistical model for their evolution.
Find invariants of algebraic statistical models (equations of secant varieties).
For star trees / bifurcating trees this is the salmon conjecture.
- Signal Processing: Analogous to CDMA technology for cell phones.

A given signal is the sum of many signals, one for each user.
Decompose the signal uniquely to recover the component of each users signal.

- Neuroscience, Quantum Information Theory, Computer Vision, Algebraic Complexity Theory, Chemistry...

Polynomial Waring decomposition

Let $V \cong \mathbb{C}^{n+1}, f \in S^{d} V$ - homogeneous polynomial / symmetric tensor.
Waring decomposition: $f=\sum_{i=1}^{r} c_{i} v_{i}^{d}$, with $c_{i} \in \mathbb{C}$, and $v_{i} \in V$.

Goals:

- Algorithms that quickly decompose low rank forms. (naive algorithms always exist, but are infeasible)
- Uniform treatment (Eigenvectors and vector bundles).

Polynomial Waring decomposition

Let $V \cong \mathbb{C}^{n+1}, f \in S^{d} V$ - homogeneous polynomial / symmetric tensor.
Waring decomposition: $f=\sum_{i=1}^{r} c_{i} v_{i}^{d}$, with $c_{i} \in \mathbb{C}$, and $v_{i} \in V$.

Goals:

- Algorithms that quickly decompose low rank forms.
(naive algorithms always exist, but are infeasible)
- Uniform treatment (Eigenvectors and vector bundles).

Non-Goal:

- One algorithm to decompose them all (NP-hard! -[Lim-Hillar'12]).

Polynomial Waring decomposition

Let $V \cong \mathbb{C}^{n+1}, f \in S^{d} V$ - homogeneous polynomial / symmetric tensor.
Waring decomposition: $f=\sum_{i=1}^{r} c_{i} v_{i}^{d}$, with $c_{i} \in \mathbb{C}$, and $v_{i} \in V$.

Goals:

- Algorithms that quickly decompose low rank forms.
(naive algorithms always exist, but are infeasible)
- Uniform treatment (Eigenvectors and vector bundles).

Non-Goal:

- One algorithm to decompose them all (NP-hard! -[Lim-Hillar'12]).

Motivation:

- CDMA-like communication scheme:

Send (the coefficients of) $f=\sum_{i=1}^{r} c_{i} v_{i}^{d}$. Recover v_{i} uniquely.

New Algorithms for Waring decomposition.

With Ottaviani, we generalized a method of Sylvester, using exterior (Koszul) flattenings and eigenvectors of tensors to develop new algorithms for Waring decomposition.

Theorem (O.-Ottaviani '13)

Let $f \in S^{d} \mathbb{C}^{n+1}$, with $d=2 m+1, n+1 \geq 4$, and general among forms of rank $\leq r$. If $r \leq\binom{ m+n}{n}$ then the Koszul Flattening Algorithm produces the unique Waring decomposition.

We implemented our algorithm in Macaulay2 and you can download it from the ancillary files accompanying the arXiv version of our paper.

Algebraic Geometry helps Engineering

Theorem (Alexander-Hirschowitz (1995))

The general $f \in S^{d} \mathbb{C}^{n+1}, d \geq 3$ has the expected generic rank $\left\lceil\frac{\binom{n+d}{d}}{n+1}\right\rceil$, with a small finite list of exceptions.

Theorem (Sylvester (1851), Chiantini-Ciliberto, Mella, Ballico (2002-2005))
The general $f \in S^{d} \mathbb{C}^{n+1}$ among the forms of subgeneric rank has a unique decomposition, with a small finite list of exceptions.
Expected: If $\frac{\binom{n+d}{n+1}}{n+1}$ is an integer, then uniqueness fails for the general form of generic rank. Some partial are results known.
The only known exceptions are (and we give a uniform proof):

- $S^{2 m+1} \mathbb{C}^{2} \quad$ rank $m+1$
- $S^{5} \mathbb{C}^{3} \quad$ rank 7
- $S^{3} \mathbb{C}^{4}$ rank 5

Koszul Flattenings: Examples / Overview

Equations of secant varieties from Koszul flattenings:

- Strassen:
- Toeplitz:
- Aronhold:

$$
\begin{array}{rrr}
\sigma_{r}\left(\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}\right) \subset \mathbb{P}\left(\mathbb{C}^{3} \otimes \mathbb{C}^{3} \otimes \mathbb{C}^{3}\right) \\
\sigma_{r}\left(\mathbb{P}^{2} \times \nu_{2}\left(\mathbb{P}^{3}\right)\right) & \subset & \mathbb{P}\left(\mathbb{C}^{3} \otimes S^{2} \mathbb{C}^{4}\right) \\
\sigma_{r}\left(\nu_{3}\left(\mathbb{P}^{2}\right)\right) & \subset & \mathbb{P}\left(S^{3} \mathbb{C}^{3}\right)
\end{array}
$$

- Cartwright-Erman-O.'11:

$$
\sigma_{r}\left(\mathbb{P}^{2} \times \nu_{2}\left(\mathbb{P}^{n}\right)\right) \subset \mathbb{P}\left(\mathbb{C}^{3} \otimes S^{2} \mathbb{C}^{n+1}\right), r \leq 5
$$

- Landsberg-Ottaviani 2012: Many more cases, much more general.

Our decomposition algorithms via Koszul Flattenings

- Sylvester Pentahedral Thm.:

$$
\begin{array}{cl}
S^{3} \mathbb{C}^{4}, & r \leq 5, \\
S^{5} \mathbb{C}^{3}, & r \leq 7, \\
S^{2 m+1} \mathbb{C}^{n+1}, & r \leq\binom{ n+m}{n}
\end{array}
$$

From equations to decompositions

General approach:

- Find nice (determinantal) equations for secant varieties
- (flattenings and exterior flattenings)
- Get an algorithm for decomposition.

Our algorithms decompose forms in these cases:

Sylvester Pentahedral: $\quad S^{3} \mathbb{C}^{4} \quad r \leq 5$
Hilbert quintics:
More generally:

$$
\begin{array}{cc}
S^{5} \mathbb{C}^{3} & r \leq 7 \\
S^{2 m+1} \mathbb{C}^{n+1} & r \leq\binom{ n+m}{n}
\end{array}
$$

The catalecticant algorithm via an example

Decompose $f=7 x^{3}-30 x^{2} y+42 x y^{2}-19 y^{3} \in S^{3}\left(\mathbb{C}^{2}\right)$:
Compute the flattening:

$$
S^{2}\left(\mathbb{C}^{2}\right)^{*} \xrightarrow{C_{f}} \mathbb{C}^{2},
$$

$C_{f}=\left(\begin{array}{ccc}7 & -10 & 14 \\ -10 & 14 & -19\end{array}\right)$, with kernel: $\left\{\left(\begin{array}{l}6 \\ 7 \\ 2\end{array}\right)\right\}$.
The kernel K (in the space of polynomials on the dual) is spanned by

$$
6 \partial_{x}^{2}+7 \partial_{x} \partial_{y}+2 \partial_{y}^{2}=\left(2 \partial_{x}+\partial_{y}\right)\left(3 \partial_{x}+2 \partial_{y}\right) .
$$

Notice $\left(2 \partial_{x}+\partial_{y}\right)$ kills $(-x+2 y)$ and $(-x+2 y)^{d}$ for all d. Also, $\left(3 \partial_{x}+2 \partial_{y}\right)$ kills $(2 x-3 y)$ and $(2 x-3 y)^{d}$ for all d. K annihilates precisely (up to scalar) $\{(-x+2 y),(2 x-3 y)\}$.

Therefore $f=c_{1}(-x+2 y)^{3}+c_{2}(2 x-3 y)^{3}$.
Solve: $c_{1}=c_{2}=1$.

Catalecticant algorithm in general [larrobino-Kanev 1999]

Input: $f \in S^{d}(V) \quad V=\mathbb{C}^{n+1}$.
(1) Construct $C_{f}^{m}=C_{f}, \quad m=\left\lceil\frac{d}{2}\right\rceil$

$$
\begin{aligned}
C_{f}^{m}: S^{m} V^{*} & \longrightarrow S^{d-m} V \\
x_{i_{1}} \cdots x_{i_{m}} & \longmapsto \frac{\partial^{m} f}{\partial_{x_{i_{1}}} \cdots \partial_{x_{i_{m}}}}
\end{aligned}
$$

(2) Compute ker C_{f}, note $\operatorname{rank}(f) \geq \operatorname{rank}\left(C_{f}\right)$.
(3) Compute $Z^{\prime}=z e r o s\left(\operatorname{ker} C_{f}\right)$

$$
\begin{aligned}
& \text { - if } \# Z^{\prime}=\infty, \text { fail } \\
& \text { - else } Z^{\prime}=\left\{\left[v_{1}\right], \ldots,\left[v_{s}\right]\right\}
\end{aligned}
$$

(1) Solve the linear system (on the c_{i})

$$
f=\sum_{i=1}^{s} c_{i} v_{i}^{d}, \quad c_{i} \in \mathbb{C} .
$$

Output: The unique Waring decomposition of f.

Catalecticant algorithm in general [larrobino-Kanev 1999]

The catalecticant algorithm appears in work of Sylvester, larrobino-Kanev, Brachat-Comon-Mourrain-Tsigaridas, Bernardi-Idá-Gimigliano. larrobino and Kanev gave bounds for the success of the catalecticant algorithm. Here is a slight improvement:

Theorem (O.-Ottaviani 2013)

Let $\sum_{i=1}^{r} v_{i}^{d}=f$ be general among forms of rank r in $S^{d} V$. Set $z_{i}:=\left[v_{i}\right]$, $Z:=\left\{z_{1}, \ldots, z_{r}\right\}$ and let $m=\left\lceil\frac{d}{2}\right\rceil$.
(1) If d is even and $r \leq\binom{ n+m}{n}-n-1$,
or if d is odd and $\leq\binom{ n+m-1}{n}$,
then $\operatorname{ker} C_{f}=I_{Z, m} \quad$ (subspace of deg. m polys vanishing on Z).
\Rightarrow the catalecticant algorithm succeeds with $Z=Z^{\prime}=\operatorname{zeros}\left(\operatorname{ker} C_{f}\right)$.
(2) If d is even $n \geq 3$ and $r=\binom{n+m}{n}-n, Z \subsetneq Z^{\prime}$ is possible.
\Rightarrow the catalecticant algorithm succeeds after finitely many checks.

Why the catalecticant algorithm works

Given $f \in S^{d} V$, we have the catalecticant:

$$
\begin{aligned}
& C_{f}^{m}: S^{m} V^{*} \longrightarrow S^{d-m} V \\
& x_{i_{1}} \cdots x_{i_{m}} \longmapsto \frac{\partial^{m} f}{\partial_{x_{1}} \cdots \partial_{x_{i_{m}}}}
\end{aligned}
$$

$$
f \text { has rank } 1 \Rightarrow \text { rank } C_{f}=1 .
$$

Rank conditions: subadditivity of matrix rank implies that (f has rank $r \Rightarrow$ rank $C_{f} \leq r$).

The zero set of the kernel is polar to the linear forms in the decomposition:
Notice that $\frac{\partial}{\partial(\alpha x+\beta y)} \cdot(\beta x-\alpha y)^{d}=0\left(\alpha \frac{\partial}{\partial x}+\beta \frac{\partial}{\partial y}\right.$ is apolar to $\left.\beta x-\alpha y\right)$.
In the case of binary forms, a general elt. F of the kernel factors (FTA). i.e. $F=I_{1}^{\perp} \cdots I_{r}^{\perp}$ kills all linear forms in decomposition.

There exist $c_{i} \in \mathbb{C}$ such that $f=\sum_{i=1}^{r} c_{i} l_{i}^{d}$ if and only if $I_{1}^{\perp} \cdots I_{r}^{\perp} f=0$. One inclusion is obvious, the other is by dimension count.

Eigenvectors of tensors

An essential ingredient is the notion of an eigenvector of a tensor.
The eigenvector equation for matrices: $M \in \mathbb{C}^{n \times n}, v \in \mathbb{C}^{n}$,

$$
M v=\lambda v, \quad \lambda \in \mathbb{C} \quad \Longleftrightarrow \quad M(v) \wedge v=0
$$

Definition

Let $M \in \operatorname{Hom}\left(S^{m} V, \Lambda^{a} V\right) . v \in V$ is an eigenvector of the tensor M if

$$
M\left(v^{m}\right) \wedge v=0
$$

When $a=m=1$ this is the classical definition.
When $a=1$, [Lim'05] and [Qi'05] independently introduced this notion. Further generalizations: Ottaviani-Sturmfels, Sam (Kalman varieties), and Qi et.al. (Spectral theory of tensors).

The number of eigenvectors of different types of tensors

Theorem (O.-Ottaviani '13)

For a general $M \in \operatorname{Hom}\left(S^{m} \mathbb{C}^{n+1}, \bigwedge^{a} \mathbb{C}^{n+1}\right)$ the number $e(M)$ of eigenvectors is

$$
\begin{aligned}
& \hline e(M)=m, \text { when } n=1 \text { and } a \in\{0,2\}, \\
& e(M)=\infty, \text { when } n>1 \text { and } a \in\{0, n+1\}, \\
& \quad(\text { classical) }
\end{aligned}
$$

$$
\begin{array}{lr}
\hline e(M)=\frac{m^{n+1}-1}{m-1}, & \text { when } a=1\left[C S^{\prime} 10\right], \\
e(M)=0, & \text { for } 2 \leq a \leq n-2, \\
e(M)=\frac{(m+1)^{n+1}+(-1)^{n}}{m+2}, & \text { for } a=n-1 . \\
\hline
\end{array}
$$

Our result includes a result of Cartwright-Sturmfels. Our proofs rely on the simple observation that the a Chern class computation for the appropriate vector bundle gives the number of eigenvectors.

The Koszul complex and Koszul matrices

The Koszul complex arises via the minimal free resolution of the maximal ideal $\left\langle x_{0}, \ldots, x_{n}\right\rangle$. Let V be the span of the x_{i}.

$$
0 \longrightarrow \Lambda^{n+1} V \xrightarrow{k_{n+1}} \Lambda^{n} V \longrightarrow \cdots \xrightarrow{k_{3}} \Lambda^{2} V \xrightarrow{k_{2}} \Lambda^{1} V \xrightarrow{k_{1}} \mathbb{C} \longrightarrow 0
$$

Some examples:
for $n=2, k_{1}=\left(\begin{array}{lll}w & x & y\end{array}\right), k_{2}=\left(\begin{array}{ccc}-x & -y & 0 \\ w & 0 & -y \\ 0 & w & x\end{array}\right) \quad k_{3}=\left(\begin{array}{c}y \\ -x \\ w\end{array}\right)$,
for $n=3, k_{1}=\left(\begin{array}{llll}w & x & y & z\end{array}\right), k_{2}=\left(\begin{array}{cccccc}-x & -y & 0 & -z & 0 & 0 \\ w & 0 & -y & 0 & -z & 0 \\ 0 & w & x & 0 & 0 & -z \\ 0 & 0 & 0 & w & x & y\end{array}\right), \ldots$

Sections of vector bundles to eigenvectors of tensors

Construct a map (tensor a Koszul map with a catalecticant map)

$$
A_{f}: \operatorname{Hom}\left(S^{m} V, \Lambda^{a} V\right) \longmapsto \operatorname{Hom}\left(\bigwedge^{n-a} V, S^{d-m-1} V\right)
$$

$M \in \operatorname{Hom}\left(S^{m} V, \wedge^{a} V\right), v$ is an eigenvector of M iff $M\left(v^{m}\right) \wedge v=0$.

Lemma

$M \in \operatorname{Hom}\left(S^{m} V, \Lambda^{a} V\right)$,
(1) v is an eigenvector of M iff $M \in \operatorname{ker} A_{f}$.
(2) Let $f=\sum_{i=1}^{r} v_{i}^{d}$. If each v_{i} is an eigenvector of M, then $M \in \operatorname{ker} A_{f}$.

Lemma

Let Q be the quotient bundle on \mathbb{P}^{n}.
(1) The fiber of $\Lambda^{a} Q$ at $x=[v]$ is isomorphic to $\operatorname{Hom}\left(\left[v^{m}\right], \Lambda^{a} V /\left\langle v \wedge \Lambda^{a-1} V\right\rangle\right.$.
(2) the section s_{M} vanishes if and only if v is an eigenvector of M.

Koszul Algorithm examples: HPR Quinitics

Let $V=\mathbb{C}^{3}$ - a general form $f \in S^{5} \mathbb{C}^{3}$ has rank 7 .
Catalecticants:

$$
C_{f}: S^{3} V^{*} \longrightarrow S^{2} V
$$

is a 6×10 matrix - with max rank 6 , so too small to detect rank 7 .
Koszul Flattening:
$S^{5} V \subset S^{2} V \otimes V \otimes S^{2} V \leftarrow S^{2} V \otimes \Lambda^{2} V \otimes V^{*} \otimes S^{2} V$.
Get a map:

$$
\begin{aligned}
A_{f}: S^{2} V^{*} \otimes \Lambda^{2} V^{*} & \longrightarrow V^{*} \otimes S^{2} V \\
& \operatorname{Hom}\left(S^{2} V, V\right)
\end{aligned} \longrightarrow \quad \operatorname{Hom}\left(V, S^{2} V\right), ~\left(\begin{array}{ccc}
-x & -y & 0 \\
w & 0 & -y \\
0 & w & x
\end{array}\right) \otimes C_{f}=\left(\begin{array}{ccc}
-C_{f_{x}} & -C_{f_{y}} & 0 \\
C_{f_{w}} & 0 & -C_{f_{y}} \\
0 & C_{f_{w}} & C_{f_{x}}
\end{array}\right),
$$

Koszul Algorithm examples: HPR Quinitics

Koszul Flattening:
$S^{5} V \subset S^{2} V \otimes V \otimes S^{2} V \leftarrow S^{2} V \otimes \Lambda^{2} V \otimes V^{*} \otimes S^{2} V$.
Get a map:

$$
\begin{aligned}
& A_{f}: S^{2} V^{*} \otimes \Lambda^{2} V^{*} \longrightarrow V^{*} \otimes S^{2} V \\
& \operatorname{Hom}\left(S^{2} V, V\right) \quad \longrightarrow \operatorname{Hom}\left(V, S^{2} V\right) \\
& A_{f}=\left(\begin{array}{ccc}
-x & -y & 0 \\
w & 0 & -y \\
0 & w & x
\end{array}\right) \otimes C_{f}=\left(\begin{array}{ccc}
-C_{f_{x}} & -C_{f_{y}} & 0 \\
C_{f_{w}} & 0 & -C_{f_{y}} \\
0 & C_{f_{w}} & C_{f_{x}}
\end{array}\right) \text {, }
\end{aligned}
$$

- A_{f} is skew-symmetrizable, so even has rank.
- If f has rank $7, A_{f}$ has rank ≤ 14.
- The 16×16 Pfaffians vanish on the locus of border rank 7 forms.
- The general M in $\operatorname{Hom}\left(S^{2} V, V\right)$ has 7 eigenvectors, [Cartwright-Sturmfels].
- By our theorem, the 7 eigenvector of a general $M \in \operatorname{ker} A_{f}$ are the linear forms in the decomposition of f (up to scalars).

Computing eigenvectors of tensors

In the HPR example, had

$$
A_{f}: S^{2} V^{*} \otimes V \xrightarrow{\left(\begin{array}{ccc}
-C_{f_{x}} & -C_{f_{y}} & 0 \\
C_{f_{w}} & 0 & -C_{f} \\
0 & C_{f_{w}} & C_{f_{x}}
\end{array}\right)} V^{*} \otimes S^{2} V,
$$

with A_{f}, an 18×18 matrix composed of 6×6 blocks. An element of the kernel can be blocked as (h_{1}, h_{2}, h_{3}), where h_{i} are quadrics in $S^{2} V^{*}$ by viewing $S^{2} V^{*} \otimes V$ as $\left(S^{2} V^{*} \otimes\langle x\rangle\right) \oplus\left(S^{2} V^{*} \otimes\langle y\rangle\right) \oplus\left(S^{2} V^{*} \otimes\langle z\rangle\right)$.

The 2-minors of $\left(\begin{array}{ccc}h_{1} & h_{2} & h_{3} \\ x & y & z\end{array}\right)$ define the locus of eigenvectors.
In the general case the construction is similar: concatenate the (blocked) elements of the kernel with a Koszul matrix and compute the zero set of the minors.

Koszul Algorithm examples: Sylvester Pentahedral

Let $V=\mathbb{C}^{4}$. The general $f \in S^{3} V$ has rank 5. The most-square catalecticant is 10×4, so not big enough to detect rank 5 .

Koszul flattening: $f \in S^{3} V \subset V \otimes V \otimes V \leftarrow V \otimes \Lambda^{2} V \otimes V^{*} \otimes V$

$$
\begin{aligned}
& A_{f}: V^{*} \otimes \Lambda^{2} V^{*} \longrightarrow V^{*} \otimes V \\
& \operatorname{Hom}\left(\mathbb{C}^{4}, \Lambda^{2} \mathbb{C}^{4}\right) \longrightarrow \operatorname{Hom}\left(\mathbb{C}^{4}, \mathbb{C}^{4}\right), \\
& A_{f}=k_{2} \otimes C_{f} \text {, where } k_{2}=\left(\begin{array}{cccccc}
-x & -y & 0 & -z & 0 & 0 \\
w & 0 & -y & 0 & -z & 0 \\
0 & w & x & 0 & 0 & -z \\
0 & 0 & 0 & w & x & y
\end{array}\right) .
\end{aligned}
$$

General element of $\operatorname{Hom}\left(\mathbb{C}^{4}, \Lambda^{2} \mathbb{C}^{4}\right)$ has 5 eigenvectors!
The eigenvectors of a general element of the kernel provide the linear forms in the Waring decomposition.

Koszul Flattening Algorithm

Algorithm

Input $f \in S^{d} V, V=\mathbb{C}^{n+1}$.
(1) Construct $A_{f}: \operatorname{Hom}\left(S^{m} V, V\right) \longrightarrow \operatorname{Hom}\left(\bigwedge^{n-1} V, S^{d-m-1} V\right)$.
(2) Compute ker A_{f}. Note rank $(f) \geq \operatorname{rank}\left(A_{f}\right) / n$.
(Set $Z^{\prime}=$ common eigenvectors of a basis of $\operatorname{ker} A_{f}$.
a) if $\# Z^{\prime}=\infty$, fail.
b) else $Z^{\prime}=\left\{\left[v_{1}\right], \ldots,\left[v_{s}\right]\right\}$.
(1) Solve $f=\sum_{i=1}^{s} c_{i} v_{i}^{d}$.

Output: unique Waring decomposition of f.

Success of the Koszul Flattening Algorithm

Here are some effective bounds for the success of our algorithm.
Theorem (O.-Ottaviani'13)
Let $n=2, d=2 m+1, f=\sum_{i=1}^{r} v_{i}^{d}$, and set $z_{i}=\left[v_{i}\right], Z=\left\{z_{1}, \ldots, z_{r}\right\}$. The Koszul Flattening algorithm succeeds when
(1) $2 r \leq m^{2}+3 m+4$,
(2) $2 r \leq m^{2}+4 m+2$ (after finitely many tries).
and if $n \geq 3$, The Koszul Flattening algorithm succeeds when
(1) n-even, $r \leq\binom{ n+m}{n}$ (eigenvectors of $\operatorname{ker} A_{f}=Z^{\prime}=Z$),
(2) n-odd, $r \leq\binom{ n+m}{n}$ (e.-vects of $\operatorname{ker} A_{f} \cap$ e.vects of $\left.\left(\operatorname{lm}\left(A_{f}\right)\right)^{\perp}=Z\right)$,
(0) $n=3, r \leq \frac{1}{3}\left(\frac{1}{2}(m+4)(m+3)(m+1)-m^{2} / 2-m-8\right)$
... set $a=2$ in the algorithm.

General Vector Bundle Method

Consider a line bundle L giving the embedding $X \xrightarrow{|L|} \mathbb{P}\left(H^{0}(X, L)\right)=\mathbb{P} W$. Let $E \longrightarrow X$ be a vector bundle on X. We get natural maps:

$$
\begin{aligned}
& H^{0}(E) \otimes H^{0}\left(E^{*} \otimes L\right) \longrightarrow H^{0}(L), \\
& H^{0}(E) \otimes H^{0}(L)^{*} \longrightarrow \\
& H^{0}\left(E^{*} \otimes L\right)^{*}, \\
& H^{0}(E) \longrightarrow H^{0}\left(E^{*} \otimes L\right)^{*},
\end{aligned}
$$

where A_{f} depends linearly on $H^{0}(L)^{*}$.
Get the matrix presentation via Koszul matrices when $E=\Lambda^{a} Q$, where Q is (at twist of) the quotient bundle on \mathbb{P}^{n}.

Proposition (Landsberg-Ottaviani '12)

Let $f=\sum_{i=1}^{r} v_{i}$, and set $z_{i}=\left[v_{i}\right] \in X \subset \mathbb{P} W, Z=\left\{z_{1}, \ldots, z_{r}\right\}$. Then $H^{0}\left(I_{Z} \otimes E\right) \subset \operatorname{ker} A_{f}$, with equality if $H^{0}\left(E^{*} \otimes L\right) \rightarrow H^{0}\left(E \otimes L_{\mid Z}\right)$, and $H^{0}\left(I_{Z} \otimes E^{*} \otimes L\right) \subset\left(I m A_{f}\right)^{\perp}$, with equality if $H^{0}(E) \rightarrow H^{0}\left(E_{\mid Z}\right)$.

General Vector Bundle Method

Consider a line bundle L giving the embedding $X \xrightarrow{|L|} \mathbb{P}\left(H^{0}(X, L)\right)=\mathbb{P} W$. Let $E \longrightarrow X$ be a vector bundle on X.

Theorem (O.-Ottaviani'13)
Let $f=\sum_{i=1}^{r} v_{i}$, and set $z_{i}=\left[v_{i}\right] \in X \subset \mathbb{P} W, Z=\left\{z_{1}, \ldots, z_{r}\right\}$. Assume $\operatorname{rank}\left(A_{f}\right)=k \cdot \operatorname{rank}(E)$ and

$$
H^{0}\left(I_{Z} \otimes E\right) \otimes H^{0}\left(I_{Z} \otimes E^{*} \otimes L\right) \longrightarrow H^{0}\left(I_{Z}^{2} \otimes L\right)
$$

is surjective.
If X is not weakly k-defective, then the common base locus of $\operatorname{ker}\left(A_{f}\right)$ and $\operatorname{Im}\left(A_{f}\right)^{\perp}$ is given by Z (so one can reconstruct Z from f).

We use this general result to prove the specific results for each of our algorithms.

Thanks!

Algebraic Geometry helps Engineering: generic rank (/C)

Theorem (Campbell 1891, Terracini 1916, Alexander-Hirschowitz 1995)

The general $f \in S^{d} \mathbb{C}^{n+1}, d \geq 3$ has rank

$$
\left\lceil\frac{\binom{n+d}{d}}{n+1}\right\rceil, \quad \text { the generic rank, except }
$$

- $2 \leq n \leq 4, d=4$ - generic rank is $\binom{n+2}{2}$,
- $(n, d)=(4,3)-$ generic rank is 8 .

Algebraic Geometry helps Engineering: Uniqueness (/C)

Theorem (... A-H, '95)
The general $f \in S^{d} \mathbb{C}^{n+1}, d \geq 3$ has the generic rank $\left\lceil\frac{\binom{n+d}{d}}{n+1}\right\rceil$, except

- $2 \leq n \leq 4, d=4$ - generic rank is $\binom{n+2}{2}$,
- $(n, d)=(4,3)-$ generic rank is 8 .

Theorem (Sylvester 1851, Chiantini-Ciliberto, Mella, Ballico 2002-2005)
The general $f \in S^{d} \mathbb{C}^{n+1}$ among the forms of subgeneric rank has a unique decomposition, except

- $2 \leq n \leq 4, d=4, r=\binom{n+2}{2}-1, \quad \infty$-ly many decomps.
- $(n, d)=(4,3), r=7, \quad \infty$-ly many decomps.
- rank 9 in $S^{6} \mathbb{C}^{3}, \quad 2$ decomps.
- rank 8 in $S^{4} \mathbb{C}^{4}$, 2 decomps. weakly defective

Algebraic Geometry helps Engineering: Non-Uniqueness

 $(/ \mathbb{C})$Expected: If $\frac{\binom{n+d}{n+1}}{n+1}$ is an integer, then uniqueness fails for the general form.
Mella showed in 2006 that when $d>n$ this is true.
The only known failures are (and we give a uniform proof):

- $S^{2 m+1} \mathbb{C}^{2} \quad$ rank $m+1$

Sylvester 1851,

- $S^{5} \mathbb{C}^{3} \quad$ rank 7
- $S^{3} \mathbb{C}^{4} \quad$ rank 5

Hilbert-Palatini-Richmond 1902, Sylvester Pentahedral Theorem.

