Tensor Decomposition, Low Rank Structured Matrix Approximation and Applications

B. Mourrain
GALAAD, INRIA Méditerranée, Sophia Antipolis
Bernard.Mourrain@inria.fr

16h-16h25, Thursday, August 1

Generalized Waring problem (1770)

Given a homogeneous polynomial T of degree d in the variables $\mathbf{x}=\left(x_{0}, x_{1}, \ldots, x_{n}\right)$:

$$
T(\mathbf{x})=\sum_{|\alpha|=d} T_{\alpha} \mathbf{x}^{\alpha}
$$

find a minimal decomposition of T of the form

$$
T(\mathbf{x})=\sum_{i=1}^{r} \gamma_{i}\left(\zeta_{i, 0} x_{0}+\zeta_{i, 1} x_{1}+\cdots+\zeta_{i, n} x_{n}\right)^{d}
$$

for $\zeta_{i}=\left(\zeta_{i, 0}, \zeta_{i, 1}, \ldots, \zeta_{i, n}\right) \in \mathbb{C}^{n+1}, \gamma_{i} \in \mathbb{C}$.
The minimal r in such a decomposition is called the rank of T.

Geometric point of view

Definition (Veronese variety)

$$
\begin{aligned}
\nu_{d}: \mathbb{P}(E) & \rightarrow \mathbb{P}\left(S^{d}(E)\right) \\
{[\mathbf{v}] } & \mapsto\left[\mathbf{v}(\mathbf{x})^{d}\right]
\end{aligned}
$$

Its image is the Veronese variety, denoted $\chi_{1}\left(S^{d}(E)\right)$.

Definition (Secant of the Veronese variety)

$$
\begin{aligned}
& \chi_{r}^{0, d}=\left\{[T] \in \mathbb{P}\left(S^{d}\right) \mid \exists \mathbf{w}_{1}, \ldots, \mathbf{w}_{r} \in \chi_{1}\left(S_{d}(E)\right) \text { s.t. } T=\sum_{i=1}^{r} \mathbf{w}_{i}\right\} \\
& \chi_{r}^{d}=\overline{\chi_{r}^{0, d}}
\end{aligned}
$$

$r(T)=$ smallest r s.t. $T \in \chi_{r}^{0, d}$, called the rank of T. $r_{\sigma}(T)=$ smallest r s.t. $T \in \chi_{r}^{d}$, called the border rank of T.

Example: $T_{\epsilon}:=\frac{1}{d \varepsilon}\left(\left(x_{0}+\varepsilon x_{1}\right)^{d}-x_{0}^{d}\right), T_{0}:=x_{0}^{d-1} x_{1}$.

$$
r\left(T_{\epsilon}\right)=r_{\sigma}\left(T_{0}\right)=2 \text { but } r\left(T_{0}\right)=d
$$

Algebraic point of view

Apolar product: For $f=\sum_{|\alpha|=d} f_{\alpha}\binom{d}{\alpha} \mathbf{x}^{\alpha}, g=\sum_{|\alpha|=d} g_{\alpha}\binom{d}{\alpha} \mathbf{x}^{\alpha} \in S^{d}$,

$$
\langle f, g\rangle=\sum_{|\alpha|=d} f_{\alpha} g_{\alpha}\binom{d}{\alpha} .
$$

For homogeneous polynomials $g\left(x_{0}, \ldots, x_{n}\right)$ of degree d and $\mathbf{k}(\mathbf{x})=\mathbf{k}_{0} x_{0}+\cdots+\mathbf{k}_{n} x_{n}$,

$$
\left\langle g(\mathbf{x}), \mathbf{k}(\mathbf{x})^{d}\right\rangle=g\left(\mathbf{k}_{0}, \ldots, \mathbf{k}_{n}\right)=g(\mathbf{k})
$$

If $T=\mathbf{k}_{1}(\mathbf{x})^{d}+\cdots+\mathbf{k}_{r}(\mathbf{x})^{d}$ and $g\left(\mathbf{k}_{i}\right)=0$ for $i=1, \ldots, r$, then
$\forall h$ with $\operatorname{deg}(h)=d-\operatorname{deg}(g)$

$$
\langle g h, T\rangle=0 .
$$

Find the polynomials apolar to T and compute their roots.

Algebraic point of view

$S:=\mathbb{K}\left[x_{0}, \ldots, x_{n}\right] ; S^{d}:=\{f \in S ; \operatorname{deg}(f)=d\} ;$

Definition (Apolar ideal)

$\left(T^{\perp}\right)=\left\{g \in S \mid \forall h \in S^{d-\operatorname{deg}(g)},\langle g h, T\rangle=0\right\} \supset S^{d+1}$.

Problem: find an ideal $I \subset S$ such that

- $I \subset\left(T^{\perp}\right)$;
- \mid is saturated zero dimensional;
- I defines a minimal number r of simple points.
necessary and sufficient conditions that T is of rank r.

Sylvester approach (1886)

Theorem

The binary form $T\left(x_{0}, x_{1}\right)=\sum_{i=0}^{d} t_{i}\binom{d}{i} x_{0}^{d-i} x_{1}^{i}$ can be decomposed as a sum of r distinct powers of linear forms

$$
T=\sum_{k=1}^{r} \lambda_{k}\left(\alpha_{k} x_{0}+\beta_{k} x_{1}\right)^{d}
$$

iff there exists a polynomial q such that

$$
\left[\begin{array}{cccc}
t_{0} & t_{1} & \cdots & t_{r} \\
t_{1} & & & t_{r+1} \\
\vdots & & & \vdots \\
t_{d-r} & \cdots & t_{d-1} & t_{d}
\end{array}\right]\left[\begin{array}{c}
q_{0} \\
q_{1} \\
\vdots \\
q_{r}
\end{array}\right]=0
$$

and of the form

$$
q\left(x_{0}, x_{1}\right):=\mu \prod_{k=1}^{r}\left(\beta_{k} x_{0}-\alpha_{k} x_{1}\right) .
$$

Interpolation point of view

$$
\begin{aligned}
& \text { For } T=T(\underline{\mathbf{x}})=\sum_{\substack{\alpha \in \mathbb{N n}^{n},|\alpha| \leq \delta}} T_{\alpha} \underline{\mathbf{x}}^{\alpha} \in \mathcal{T} \text {, let }
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle T \mid T^{\prime}\right\rangle=T^{*}\left(T^{\prime}\right) .
\end{aligned}
$$

Property: Given $T \in R_{\delta}$, find $\gamma_{i} \neq 0, \zeta_{i} \in \mathbb{K}^{n}, i=1, \ldots, r$, such that

$$
T=\sum_{i=1}^{r} \gamma_{i}\left\langle\zeta_{i}, \mathbf{x}\right\rangle^{d}
$$

iff

$$
T^{*} \equiv \sum_{i=1}^{r} \gamma_{i} \mathbf{1}_{\zeta_{i}} .
$$

on R_{δ}.

Flat extension point of view

Flattening map ϕ : For $\mathrm{x}^{A} \subset R, B, B^{\prime} \subset A$ with $B \cdot B^{\prime} \subset A$, and $\Lambda:=T^{*} \in\left\langle\mathbf{x}^{A}\right\rangle^{*}: p=\sum_{\alpha \in A} p_{\alpha} \mathbf{x}^{\alpha} \mapsto \sum_{\alpha \in A} p_{\alpha} T_{\alpha}$, we define

$$
\begin{aligned}
& H_{T^{*}}^{B^{\prime}, B}:\left\langle\mathbf{x}^{B^{\prime}}\right\rangle \rightarrow\left\langle\mathbf{x}^{B}\right\rangle^{*} \\
& p=\sum_{\beta \in B^{\prime}} p_{\beta} \mathbf{x}^{\beta} \mapsto p \cdot T^{*}
\end{aligned}
$$

with $p \cdot \Lambda: q \in\langle B\rangle \mapsto T^{*}(p q)=\langle T, p q\rangle \in \mathbb{K}$.
Its matrix is $H_{T}^{B^{\prime}, B}:=\left[T_{\beta^{\prime}+\beta}\right]_{\beta^{\prime} \in B^{\prime}, \beta \in B}$.
Problem: Given $T^{*} \in R_{\delta}^{*}$, find $\Lambda \in R^{*}$ such that

$$
\begin{aligned}
H_{\tilde{\Lambda}}: R & \rightarrow R^{*} \\
p & \mapsto p \cdot \tilde{\Lambda}
\end{aligned}
$$

- extends $H_{T *}^{B, B^{\prime}}$
- has minimal rank and
- $I_{\tilde{\Lambda}}=\operatorname{ker} H_{\tilde{\Lambda}}$ is a radical ideal.

Flat extension

$B^{+}=B \cap x_{1} B \cap \cdots \cap x_{n} B . \quad B$ connected to 1 if $b \in B$ is either 1 or $x_{i_{0}} b^{\prime}, b^{\prime} \in B$.

Theorem (LM'09, BCMT'10, BBCM'11)

Let B, B^{\prime} be connected to 1 of size r, E, E^{\prime} connected to 1 with $B^{+} \subset E$, $B^{\prime+} \subset E^{\prime}$ and $\Lambda \in\left\langle E \cdot E^{\prime}\right\rangle^{*}$. The following conditions are equivalent:
(1) there exists a unique element $\tilde{\Lambda} \in R^{*}$ which extends Λ and such that B and B^{\prime} are basis of $\mathcal{A}_{\Lambda}=R / I_{\Lambda}$.
(2) $\operatorname{rank} H_{\Lambda}^{E, E^{\prime}}=\operatorname{rank} H_{\Lambda}^{B, B^{\prime}}=r$.
(3) $H_{\Lambda}^{B, B^{\prime}}$ is invertible and the matrices $M_{i}:=H_{\Lambda}^{B, x_{i} B^{\prime}}\left(H_{\Lambda}^{B, B^{\prime}}\right)^{-1}$ satisfy

$$
M_{i} \circ M_{j}=M_{j} \circ M_{i} \quad(1 \leq i, j \leq n)
$$

In this case,

- $I_{\Lambda}=\left(\operatorname{ker} H_{\Lambda}^{E, E^{\prime}}\right)$,
- $\tilde{\Lambda}$ is supported on the points $\mathcal{V}_{\Lambda}^{\mathbb{C}}=\mathcal{V}^{\mathbb{C}}\left(I_{\Lambda}\right)=\left\{\zeta_{1}, \ldots, \zeta_{r^{\prime}}\right\}$ with $r^{\prime}<r$.

Recovering the decomposition

If the flat extension problem has a solution $\tilde{\Lambda}$, then:

- $r=\operatorname{rank} H_{\tilde{\Lambda}}=\operatorname{dim} R /\left(\operatorname{ker} H_{\tilde{\Lambda}}\right)$ where $r=|B|=\left|B^{\prime}\right| ;$
- Let B, B^{\prime} be maximal sets of monomials $\subset R$ s.t. $H_{\tilde{\Lambda}}^{B^{\prime}, B}$ invertible, then

$$
M_{i}^{B^{\prime}, B}:=H_{\tilde{\Lambda}}^{B^{\prime}, x_{i} B}\left(H_{\tilde{\Lambda}}^{B^{\prime}, B}\right)^{-1}
$$

is the matrix of multiplication by x_{i} in $\mathcal{A}_{\tilde{\Lambda}}=R /\left(\operatorname{ker} H_{\tilde{\Lambda}}\right)$.

- If the decomposition is of size r, the eigenvectors of the operators $\left(M_{i}^{t}\right)_{i}$ are simple and equal (up to scalar) to $\left\{\mathbf{1}_{\zeta_{1}}, \ldots, \mathbf{1}_{\zeta_{r}}\right\}$.
- $\operatorname{ker} H_{\tilde{\Lambda}}=\left(\operatorname{ker} H_{\tilde{\Lambda}}^{B^{\prime+}, B^{+}}\right)$where $B^{+}=B \cup x_{1} B \cup \cdots x_{n} B$;
- For each $x^{\alpha} \in \partial B=B^{+} \backslash B$, there exists a unique

$$
f_{\alpha}=x^{\alpha}-\Sigma_{\beta} z_{\alpha, \beta} x^{\beta} \in \operatorname{ker} H_{\Lambda}^{B^{\prime+}, B^{+}}
$$

The $\left(f_{\alpha}\right)_{\alpha \in \partial B}$ form a border basis of $\boldsymbol{I}_{\tilde{\Lambda}}=\operatorname{ker} H_{\tilde{\Lambda}}$ with respect to B.

Example in $\chi_{6}\left(S^{4}\left(\mathbb{K}^{3}\right)\right)$

The tensor:

$$
T=79 x_{0} x_{1}^{3}+56 x_{0}^{2} x_{2}^{2}+49 x_{1}^{2} x_{2}^{2}+4 x_{0} x_{1} x_{2}^{2}+57 x_{0}^{3} x_{1}
$$

The 15×15 Hankel matrix:
$\left[\begin{array}{c|cccccccccccccc} & 1 & x_{1} & x_{2} & x_{1}^{2} & x_{1} x_{2} & x_{2}^{2} & x_{1}^{3} & x_{1}^{2} x_{2} & x_{1} x_{2}^{2} & x_{2}^{3} & x_{1}^{4} & x_{1}^{3} x_{2} & x_{1}^{2} x_{2}^{2} & x_{1} x_{2}^{3} \\ \hline 1 & 0 & \frac{57}{4} & 0 & 0 & 0 & \frac{28}{3} & \frac{79}{4} & 0 & \frac{1}{3} & 0 & 0 & 0 & \frac{x_{2}^{4}}{6} & 0 \\ x_{1} & \frac{57}{4} & 0 & 0 & \frac{79}{4} & 0 & \frac{1}{3} & 0 & 0 & \frac{49}{6} & 0 & h_{500} & h_{410} & h_{320} & h_{230} \\ x_{2} & 0 & 0 & \frac{28}{3} & 0 & \frac{1}{3} & 0 & 0 & \frac{49}{6} & 0 & 0 & h_{140} \\ x_{1}^{2} & 0 & \frac{79}{4} & 0 & 0 & 0 & \frac{49}{6} & h_{500} & h_{410} & h_{320} & h_{230} & h_{600} & h_{510} & h_{420} & h_{330} \\ x_{1} x_{2} & 0 & 0 & \frac{1}{3} & 0 & \frac{49}{6} & 0 & h_{410} & h_{320} & h_{230} & h_{140} & h_{510} & h_{420} & h_{330} & h_{240} \\ h_{2} & \frac{28}{3} & \frac{1}{3} & 0 & \frac{49}{6} & 0 & 0 & h_{320} & h_{230} & h_{140} & h_{050} & h_{420} & h_{330} & h_{240} & h_{150} \\ x_{2}^{2} & h_{060} \\ x_{1}^{3} & \frac{79}{4} & 0 & 0 & h_{500} & h_{410} & h_{320} & h_{600} & h_{510} & h_{420} & h_{330} & h_{700} & h_{610} & h_{520} & h_{430} \\ h_{340} \\ x_{1}^{2} x_{2} & 0 & 0 & \frac{49}{6} & h_{410} & h_{320} & h_{230} & h_{510} & h_{420} & h_{330} & h_{240} & h_{610} & h_{520} & h_{430} & h_{340} \\ x_{1} x_{2}^{2} & \frac{1}{3} & \frac{49}{6} & 0 & h_{320} & h_{230} & h_{140} & h_{420} & h_{330} & h_{240} & h_{150} & h_{520} & h_{430} & h_{340} & h_{250} \\ h_{2} & 0 & 0 & 0 & h_{230} & h_{140} & h_{050} & h_{330} & h_{240} & h_{150} & h_{060} & h_{430} & h_{340} & h_{250} & h_{160} \\ x_{2}^{3} & h_{070} \\ x_{1}^{4} & 0 & h_{500} & h_{410} & h_{600} & h_{510} & h_{420} & h_{700} & h_{610} & h_{520} & h_{430} & h_{800} & h_{710} & h_{620} & h_{530} \\ h_{440} \\ x_{1}^{3} x_{2} & 0 & h_{410} & h_{320} & h_{510} & h_{420} & h_{330} & h_{610} & h_{520} & h_{430} & h_{340} & h_{710} & h_{620} & h_{530} & h_{440} \\ x_{1}^{2} x_{2}^{2} & \frac{49}{6} & h_{320} & h_{230} & h_{420} & h_{330} & h_{240} & h_{520} & h_{430} & h_{340} & h_{250} & h_{620} & h_{530} & h_{440} & h_{350} \\ h_{260} & h_{260} \\ x_{1} x_{2}^{3} & 0 & h_{230} & h_{140} & h_{330} & h_{240} & h_{150} & h_{430} & h_{340} & h_{250} & h_{160} & h_{530} & h_{440} & h_{350} & h_{260} \\ x_{2}^{4} & 0 & h_{140} & h_{050} & h_{240} & h_{150} & h_{060} & h_{340} & h_{250} & h_{160} & h_{070} & h_{440} & h_{350} & h_{260} & h_{170} \\ h_{080}\end{array}\right]$

Extract a (6×6) principal minor of full rank:

$$
H_{\Lambda}^{B}=\left[\begin{array}{cccccc}
0 & \frac{57}{4} & 0 & 0 & 0 & \frac{28}{3} \\
\frac{57}{4} & 0 & 0 & \frac{79}{4} & 0 & \frac{1}{3} \\
0 & 0 & \frac{28}{3} & 0 & \frac{1}{3} & 0 \\
0 & \frac{79}{4} & 0 & 0 & 0 & \frac{49}{6} \\
0 & 0 & \frac{1}{3} & 0 & \frac{49}{6} & 0 \\
\frac{28}{3} & \frac{1}{3} & 0 & \frac{49}{6} & 0 & 0
\end{array}\right]
$$

The columns (and the rows) of the matrix correspond to the monomials $\left\{1, x_{1}, x_{2}, x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}\right\}$.

The shifted matrix $H_{x_{1} \cdot \Lambda}^{B, B}$ is

$$
H_{x_{1} \cdot \Lambda}^{B, B}=H_{\Lambda}^{B, x_{1} B}=\left[\begin{array}{cccccc}
\frac{57}{4} & 0 & 0 & \frac{79}{4} & 0 & \frac{1}{3} \\
0 & \frac{79}{4} & 0 & 0 & 0 & \frac{49}{6} \\
0 & 0 & \frac{1}{3} & 0 & \frac{49}{6} & 0 \\
\frac{79}{4} & 0 & 0 & h_{500} & h_{410} & h_{320} \\
0 & 0 & \frac{49}{6} & h_{410} & h_{320} & h_{230} \\
\frac{1}{3} & \frac{49}{6} & 0 & h_{320} & h_{230} & h_{140}
\end{array}\right]
$$

The columns of the matrix correspond to the monomials $\left\{x_{1}, x_{1}^{2}, x_{1} x_{2}, x_{1}^{3}, x_{1}^{2} x_{2}, x_{1} x_{2}^{2}\right\}=\left\{1, x_{1}, x_{2}, x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}\right\} \times x_{1}$. Similarly,

$$
H_{x_{2} \cdot \Lambda}^{B, B}=H_{\Lambda}^{B, x_{2} B}=\left[\begin{array}{cccccc}
0 & 0 & \frac{28}{3} & 0 & \frac{1}{3} & 0 \\
0 & 0 & \frac{1}{3} & 0 & \frac{49}{6} & 0 \\
\frac{28}{3} & \frac{1}{3} & 0 & \frac{49}{6} & 0 & 0 \\
0 & 0 & \frac{49}{6} & h_{410} & h_{320} & h_{230} \\
\frac{1}{3} & \frac{49}{6} & 0 & h_{320} & h_{230} & h_{140} \\
0 & 0 & 0 & h_{230} & h_{140} & h_{050}
\end{array}\right]
$$

We form (all) the possible matrix equations:

$$
M_{x_{i}} M_{x_{j}}-M_{x_{j}} M_{x_{i}}=H_{x_{1} \cdot \Lambda} H_{\Lambda}^{-1} H_{x_{2} \cdot \Lambda} H_{\Lambda}^{-1}-H_{x_{2} \cdot \Lambda} H_{\Lambda}^{-1} H_{x_{1} \cdot \Lambda} H_{\Lambda}^{-1}=0 .
$$

Many of the resulting equations are trivial. We have 6 unknonws: $h_{500}, h_{410}, h_{320}, h_{230}, h_{140}, h_{050}$ and 15 non-trivial equations.

A solution of the system is:

$$
h_{500}=1, h_{410}=2, h_{320}=3, h_{230}=1.5060, h_{140}=4.960, h_{050}=0.056
$$

We subsitute these values to $H_{X_{1}} \cdot \wedge$ and solve the generalized eigenvalue problem $\left(\mathrm{H}_{\mathrm{X}_{1}} \cdot \Lambda-\zeta \mathrm{H}_{\Lambda}\right) \mathbf{v}=0$. The normalized eigenvectors are

$$
\begin{aligned}
& {\left[\begin{array}{c}
1 \\
-0.830+1.593 i \\
-0.326-0.0501 i \\
-1.849-2.645 i \\
0.350-0.478 i \\
0.103+0.0327 i
\end{array}\right],\left[\begin{array}{c}
1 \\
-0.830-1.593 i \\
-0.326+0.050 i \\
-1.849+2.645 i \\
0.350+0.478 i \\
0.103-0.032 i
\end{array}\right],\left[\begin{array}{c}
1 \\
1.142 \\
0.836 \\
1.305 \\
0.955 \\
0.699
\end{array}\right],} \\
& {\left[\begin{array}{c}
1 \\
0.956 \\
-0.713 \\
0.914 \\
-0.682 \\
0.509
\end{array}\right],\left[\begin{array}{c}
-0.838+0.130 i \\
0.060+0.736 i \\
0.686-0.219 i \\
-0.147-0.610 i \\
-0.539+0.089 i
\end{array}\right],\left[\begin{array}{c}
1 \\
-0.838-0.130 i \\
0.060-0.736 i \\
0.686+0.219 i \\
-0.147+0.610 i \\
-0.539-0.089 i
\end{array}\right] .}
\end{aligned}
$$

As the coordinates of the eigenvectors correspond to the evaluations of $\left\{1, x_{1}, x_{2}, x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}\right\}$, we can recover the values of $\left(x_{1}, x_{2}\right)$.

After solving the over-constrained linear system obtained by expansion and looking coefficient-wise, we deduce the decomposition:

$$
\begin{array}{r}
(0.517+0.044 i)\left(x_{0}-(0.830-1.593 i) x_{1}-(0.326+0.050 i) x_{2}\right)^{4} \\
+(0.517-0.044 i)\left(x_{0}-(0.830+1.593 i) x_{1}-(0.326-0.050 i) x_{2}\right)^{4} \\
+2.958\left(x_{0}+(1.142) x_{1}+0.836 x_{2}\right)^{4} \\
+4.583\left(x_{0}+(0.956) x_{1}-0.713 x_{2}\right)^{4} \\
-(4.288+1.119 i)\left(x_{0}-(0.838-0.130 i) x_{1}+(0.060+0.736 i) x_{2}\right)^{4} \\
-(4.288-1.119 i)\left(x_{0}-(0.838+0.130 i) x_{1}+(0.060-0.736 i) x_{2}\right)^{4}
\end{array}
$$

Recovering branching structures

- At points, perform directional measurements (of water diffusion):

- Approximate the set of measurements on the sphere by a (symmetric) tensor $T=\left(T_{i, j, k, l}\right)$.
- Decompose/approximate it as a minimal sum of tensors of rank 1:

$$
T=\sum_{i=1}^{r} \lambda_{i} v_{i}^{4} .
$$

to identify the main directions of diffusion.

- From the decomposition of tensors, deduce the geometric structure:

Concluding remarks/questions

- What about nearest r-decomposition(s) and SVD-like properties ?
- Applies to multi-symmetric tensors. Can we extend it to anti-symmetric tensors ?
- Can we extend it to minimal decomposition over the real ? to minimal positive decomposition ?

Collaborators: A. Bernardi, J. Brachat, P. Comon, M. Dien, E. Tsigaridas.

References:

J. Brachat, P. Comon, B. Mourrain, and E. Tsigaridas. Symmetric tensor decomposition. Linear Algebra and Applications, 433:1851-1872, 2010.
A. Bernardi, J. Brachat, P. Comon, and B. Mourrain.

General tensor decomposition, moment matrices and applications. Journal of Symbolic Computation, (52):51-71, 2013.
A. Bernardi, J. Brachat, and B. Mourrain.

A comparison of different notions of ranks of symmetric tensors.
Preprint, 2012.

Thanks for your attention

