Computational Complexity of Tensor Problems

Chris Hillar

Redwood Center for Theoretical Neuroscience (UC Berkeley)

Joint work with Lek-Heng Lim
(with L-H Lim) Most tensor problems are NP-hard, Journal of the ACM, 20 I3, to appear.

Outline

Motivational examples / definitions
Computational complexity
Tensor Problems

- Deciding eigenvalue
- Approximating eigenvalue
- Computing rank

Open Problems

- Hyperdeterminant

Conclusions

Applications of "tensor methods"

Approximation algorithms [De La Vega et al. 2005; Brubaker and Vempala 2009]
Computational biology [Cartwright et al. 2009]
Computer graphics [Vasilescu and Terzopoulos 2004]
Computer vision [Shashua and Hazan 2005;Vasilescu and Terzopoulos 2002]
Data analysis [Coppi and Bolasco 1989]
Graph theory [Friedman I99I; Friedman and Wigderson 1995]
Neuroimaging [Schultz and Seidel 2008]
Pattern recognition [Vasilescu 2002]
Phylogenetics [Allman and Rhodes 2008]
Quantum computing [Miyake and Wadati 2002]
Scientific computing [Beylkin and Mohlenkamp 1997]
Signal processing [Comon I994; 2004; Kofidis and Regalia 200I/02]
Spectroscopy [Smilde et al. 2004]

Wireless communication [Sidiropoulos et al. 2000]

Generalize: $\quad A \mathbf{x}=\mathbf{b}$

Computational complexity

I. Model of computation

- What are inputs / outputs?
-What is a computation?
II. Model of complexity
- Cost of computation?

Dick Karp
III. Model of reducibility
-What are equivalent problems?

Alan Turing

Stephen Cook

Leonid Levin
I. Model of computation:

Turing Machine [Turing 1936]
Inputs: rational tensors
Outputs:YES/NO or rational vectors
II. Model of complexity:

Time complexity
Number of Tape-Level moves
III. Model of reducibility:

P, NP, NP-complete, NP-hard, ...

Turing Machine (Mike Davey)

Complexity of tensor problems

Problem	Complexity
Bivariate Matrix Flunctions over \mathbb{R}, \mathbb{C}	Undecidable (Proposition 12.2)
Bilinear System over \mathbb{R}, \mathbb{C}	NP-hard (Theorems 2.6, 3.7, 3.8)
Eigenvalue over \mathbb{R}	NP-hard (Theorem 1.3)
Approximating Eigenvector over \mathbb{R}	NP-hard (Theorem 1.5)
Symmetric Eigenvalue over \mathbb{R}	NP-hard (Theorem 9.3)
Approximating Symmetric Eigenvalue over \mathbb{R}	NP-hard (Theorem 9.6)
Singular Value over \mathbb{R}, \mathbb{C}	NP-hard (Theorem 1.7)
Symmetric Singular Value over \mathbb{R}	NP-hard (Theorem 10.2)
Approximating Singular Vector over \mathbb{R}, \mathbb{C}	NP-hard (Theorem 6.3)
Spectral Norm over \mathbb{R}	NP-hard (Theorem 1.10)
Symmetric Spectral Norm over \mathbb{R}	NP-hard (Theorem 10.2)
Approximating Spectral Norm over \mathbb{R}	NP-hard (Theorem 1.11)
Nonnegative Definiteness	NP-hard (Theorem 11.2)
Best Rank-1 Approximation	NP-hard (Theorem 1.13)
Best Symmetric Rank-1 Approximation	NP-hard (Theorem 10.2)
Rank over \mathbb{R} or \mathbb{C}	NP-hard (Theorem 8.2)
Enumerating Eigenvectors over \mathbb{R}	\#P-hard (Corollary 1.16)
Combinatorial Hyperdeterminant	NP-, \#P-, VNP-hard (Theorems 4.1, 4.2, Corollary 4.3)
Geometric Hyperdeterminant	Conjectures 1.9, 13.1

Eigenvalues

Problem: Given $A=\left[a_{i j}\right] \in \mathbb{Q}^{n \times n}$
find (\mathbf{x}, λ) with $\mathbf{x} \neq 0$ s.t. :

$$
A \mathbf{x}=\lambda \mathbf{x}
$$

- Image Segmentation [Shi-Malik, 2000]

top eigenvector

Tensor eigenvalues

Problem: Given $\mathcal{A}=\left[\left[a_{i j k}\right]\right] \in \mathbb{Q}^{n \times n \times n}$
find (\mathbf{x}, λ) with $\mathbf{x} \neq 0$ s.t. :

$$
\sum_{i, j=1}^{n} a_{i j k} x_{i} x_{j}=\lambda x_{k}, \quad k=1, \ldots, n
$$

[Lim 2005], [Qi 2005], [Ni, et al 2007], [Qi 2007], [Cartwright and Sturmfels 2012]

Facts: Generic or random tensors over complex numbers have a finite number of eigenvalues and eigenvectors (up to scaling equivalence), although their count is exponential.

Still, it is possible for a tensor to have an infinite number of non-equivalent eigenvalues, but in that case they comprise a cofinite set of complex numbers

Another important fact is that over the reals, every 3-tensor has a real eigenpair.

Decision problem

Problem: Given $\mathcal{A}=\left[\left[a_{i j k}\right]\right] \in \mathbb{Q}^{n \times n \times n}$ and $\lambda \in \mathbb{Q}$, does there exist $\mathbf{0} \neq \mathbf{x} \in \mathbf{C}^{n}$:

$$
\sum_{i, j=1}^{n} a_{i j k} x_{i} x_{j}=\lambda x_{k}, \quad k=1, \ldots, n
$$

Decidable (Computable on a Turing machine):

- Quantifier elimination
- Buchberger's algorithm and Groebner bases
- Multivariate resultants

All quickly become inefficient Is there an efficient algorithm?

NP-complete / NP-hard problems

[Cook-Karp-Levin 197 I/2]

Graph coloring: Given a graph G, is there a 3-coloring?
NP-complete problem

Million $\$ \$ \$$ prize (Clay Math)

Graph coloring: Given a graph G, is there a 3-coloring?

Theorem [Bayer 1982]: Whether or not a graph is 3colorable can be encoded as whether a system of quadratic equations over \mathbf{C} has a nonzero solution

$$
\begin{aligned}
& a_{1} c_{1}-b_{1} d_{1}-u^{2}, b_{1} c_{1}+a_{1} d_{1}, c_{1} u-a_{1}^{2}+b_{1}^{2}, d_{1} u-2 a_{1} b_{1}, a_{1} u-c_{1}^{2}+d_{1}^{2}, b_{1} u-2 d_{1} c_{1}, \\
& a_{2} c_{2}-b_{2} d_{2}-u^{2}, b_{2} c_{2}+a_{2} d_{2}, c_{2} u-a_{2}^{2}+b_{2}^{2}, d_{2} u-2 a_{2} b_{2}, a_{2} u-c_{2}^{2}+d_{2}^{2}, b_{2} u-2 d_{2} c_{2}, \\
& a_{3} c_{3}-b_{3} d_{3}-u^{2}, b_{3} c_{3}+a_{3} d_{3}, c_{3} u-a_{3}^{2}+b_{3}^{2}, d_{3} u-2 a_{3} b_{3}, a_{3} u-c_{3}^{2}+d_{3}^{2}, b_{3} u-2 d_{3} c_{3}, \\
& a_{4} c_{4}-b_{4} d_{4}-u^{2}, b_{4} c_{4}+a_{4} d_{4}, c_{4} u-a_{4}^{2}+b_{4}^{2}, d_{4} u-2 a_{4} b_{4}, a_{4} u-c_{4}^{2}+d_{4}^{2}, b_{4} u-2 d_{4} c_{4}, \\
& a_{1}^{2}-b_{1}^{2}+a_{1} a_{3}-b_{1} b_{3}+a_{3}^{2}-b_{3}^{2}, a_{1}^{2}-b_{1}^{2}+a_{1} a_{4}-b_{1} b_{4}+a_{4}^{2}-b_{4}^{2}, a_{1}^{2}-b_{1}^{2}+a_{1} a_{2}-b_{1} b_{2}+a_{2}^{2}-b_{2}^{2}, \\
& a_{2}^{2}-b_{2}^{2}+a_{2} a_{3}-b_{2} b_{3}+a_{3}^{2}-b_{3}^{2}, a_{3}^{2}-b_{3}^{2}+a_{3} a_{4}-b_{3} b_{4}+a_{4}^{2}-b_{4}^{2}, 2 a_{1} b_{1}+a_{1} b_{2}+a_{2} b_{1}+2 a_{2} b_{2}, \\
& 2 a_{2} b_{2}+a_{2} b_{3}+a_{3} b_{2}+2 a_{3} b_{3}, 2 a_{1} b_{1}+a_{1} b_{3}+a_{2} b_{1}+2 a_{3} b_{3}, 2 a_{1} b_{1}+a_{1} b_{4}+a_{4} b_{1}+2 a_{4} b_{4}, \\
& 2 a_{3} b_{3}+a_{3} b_{4}+a_{4} b_{3}+2 a_{4} b_{4}, w_{1}^{2}+w_{2}^{2}+\cdots+w_{17}^{2}+w_{18}^{2} .
\end{aligned}
$$

Using symbolic algebra or numerical algebraic geometry software ${ }^{7}$ (see the Appendix for a list), one can solve these equations to find six real solutions (without loss of generality, we may take $u=1$ and all $w_{j}=0$), which correspond to the proper 3-colorings of the graph G as follows. Fix one such solution and define $x_{k}:=a_{k}+\mathrm{i} b_{k} \in \mathbb{C}$ for $k=1, \ldots, 4$ (we set i $:=\sqrt{-1}$). By construction, these x_{k} are one of the three cube roots of unity $\left\{1, \alpha, \alpha^{2}\right\}$ where $\alpha=\exp (2 \pi \mathrm{i} / 3)=-\frac{1}{2}+\mathrm{i} \frac{\sqrt{3}}{2}$ (see also Fig. 2).

To determine a 3 -coloring from this solution, one "colors" each vertex i by the root of unity that equals x_{i}. It can be checked that no two adjacent vertices share the same color in a coloring; thus, they are proper 3-colorings. For example, one solution is:

$$
x_{1}=-\frac{1}{2}-\mathrm{i} \frac{\sqrt{3}}{2}, \quad x_{2}=1, \quad x_{3}=-\frac{1}{2}+\mathrm{i} \frac{\sqrt{3}}{2}, \quad x_{4}=1 .
$$

Polynomials for the right-hand side graph in Fig. 1 are the same as (4) except for two additional ones encoding a new restriction for colorings, the extra edge $\{2,4\}$:

$$
a_{2}^{2}-b_{2}^{2}+a_{2} a_{4}-b_{2} b_{4}+a_{4}^{2}-b_{4}^{2}, \quad 2 a_{2} b_{2}+a_{2} b_{4}+a_{4} b_{2}+2 a_{4} b_{4} .
$$

Quadratic equations are hard to solve

[Bayer I982], [Lovasz I994],
[Grenet et al 2010], ...

Corollary: Deciding tensor eigenvalue is NP-hard

Quadratic equations undecidable over the integers! (there is no Turing machine that can solve them)
[Davis-Putnam-Robinson, Matijasevic]

Approximating tensor eigenvector is NP-hard

Corollary: Unless P = NP, there is no polynomial time approximation scheme for finding tensor eigenvectors

Rank

rank-I tensors: $\mathcal{A}=\left[\left[x_{i} y_{j} z_{k}\right]\right]=x \otimes y \otimes z$

- Segre variety

Definition: Tensor rank over F is

$$
\operatorname{rank}_{\mathbb{F}}(\mathcal{A})=\min _{r}\left\{\mathcal{A}=\sum_{i=1}^{r} x_{i} \otimes y_{i} \otimes z_{i}\right\}
$$

Theorem [Hastad]: Tensor rank is NP-hard over Q
Note: rank can change over changing fields (not true linear algebra)

Theorem: There are rational tensors with different rank over rationals versus the reals

$\operatorname{rank}_{\mathbb{R}}(\mathcal{A})<\operatorname{rank}_{\mathbb{Q}}(\mathcal{A})$

Proof of Theorem 1.14. We explicitly construct a rational tensor \mathcal{A} with $\operatorname{rank}_{\mathbb{R}}(\mathcal{A})<\operatorname{rank}_{\mathbb{Q}}(\mathcal{A})$. Let $\mathrm{x}=[1,0]^{\top}$ and $\mathrm{y}=[0,1]^{\top}$. First observe that
$\overline{\mathbf{z}} \otimes \mathbf{z} \otimes \overline{\mathbf{z}}+\mathbf{z} \otimes \overline{\mathbf{z}} \otimes \mathbf{z}=2 \mathbf{x} \otimes \mathbf{x} \otimes \mathbf{x}-4 \mathbf{y} \otimes \mathbf{y} \otimes \mathbf{x}+4 \mathbf{y} \otimes \mathbf{x} \otimes \mathbf{y}-4 \mathbf{x} \otimes \mathbf{y} \otimes \mathbf{y} \in \mathbb{Q}^{2 \times 2 \times 2}$, where $\mathrm{z}=\mathrm{x}+\sqrt{2} \mathbf{y}$ and $\overline{\mathrm{z}}=\mathrm{x}-\sqrt{2} \mathbf{y}$. Let \mathcal{A} be this tensor; thus, $\operatorname{rank}_{\mathbb{R}}(\mathcal{A}) \leq 2$. We claim that $\operatorname{rank}_{\mathbb{Q}}(\mathcal{A})>2$. Suppose not and that there exist $\mathbf{u}_{i}=\left[a_{i}, b_{i}\right]^{\top}, \mathbf{v}_{i}=\left[c_{i}, d_{i}\right]^{\top} \in \mathbb{Q}^{2}$, $i=1,2,3$, with

$$
\begin{equation*}
\mathcal{A}=\mathbf{u}_{1} \otimes \mathbf{u}_{2} \otimes \mathbf{u}_{3}+\mathbf{v}_{1} \otimes \mathbf{v}_{2} \otimes \mathbf{v}_{3} \tag{29}
\end{equation*}
$$

Identity (29) gives eight equations found in (30). Thus, by Lemma 8.1, $\operatorname{rank}_{\mathbb{Q}}(\mathcal{A})>2$. \square
Lemma 8.1. The system of 8 equations in 12 unknowns:

$$
\begin{align*}
& a_{1} a_{2} a_{3}+c_{1} c_{2} c_{3}=2, a_{1} a_{3} b_{2}+c_{1} c_{3} d_{2}=0, a_{2} a_{3} b_{1}+c_{2} c_{3} d_{1}=0 \\
& a_{3} b_{1} b_{2}+c_{3} d_{1} d_{2}=-4, a_{1} a_{2} b_{3}+c_{1} c_{2} d_{3}=0, a_{1} b_{2} b_{3}+c_{1} d_{2} d_{3}=-4, \tag{30}\\
& a_{2} b_{1} b_{3}+c_{2} d_{3} d_{1}=4, b_{1} b_{2} b_{3}+d_{1} d_{2} d_{3}=0
\end{align*}
$$

$h a s$ no solution in rational numbers $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}, c_{1}, c_{2}, c_{3}$, and d_{1}, d_{2}, d_{3}.
Proof. One may verify in exact symbolic arithmetic (see the Appendix) that the following two equations are polynomial consequences of (30):

$$
2 c_{2}^{2}-d_{2}^{2}=0 \quad \text { and } \quad c_{1} d_{2} d_{3}-2=0
$$

Since no rational number when squared equals 2 , the first equation implies that any rational solution to (30) must have $c_{2}=d_{2}=0$, an impossibility by the second. Thus, no rational solutions to (30) exist. \square

Theorem: There are rational tensors with different rank over rationals versus the reals

$$
\operatorname{rank}_{\mathbb{R}}(\mathcal{A})<\operatorname{rank}_{\mathbb{Q}}(\mathcal{A})
$$

Thus, Hastad's result doesn't necessarily apply.
Nevertheless, Hastad's proof shows that tensor rank is NP-hard over R and C

Theorem: Approximating rank-I tensor is NP-hard

Hyperdeterminant

- Defining equation for the dual variety to Segre variety

[Cayley I845]:

Example $3.2(2 \times 2 \times 2$ hyperdeterminant $)$. For $\mathcal{A}=\llbracket a_{i j k} \rrbracket \in \mathbb{C}^{2 \times 2 \times 2}$, define

$$
\begin{array}{r}
\operatorname{Det}_{2,2,2}(\mathcal{A}):=\frac{1}{4}\left[\operatorname{det}\left(\left[\begin{array}{ll}
a_{000} & a_{010} \\
a_{001} & a_{011}
\end{array}\right]+\left[\begin{array}{ll}
a_{100} & a_{110} \\
a_{101} & a_{111}
\end{array}\right]\right)-\operatorname{det}\left(\left[\begin{array}{ll}
a_{000} & a_{010} \\
a_{001} & a_{011}
\end{array}\right]-\left[\begin{array}{ll}
a_{100} & a_{110} \\
a_{101} & a_{111}
\end{array}\right]\right)\right]^{2} \\
-4 \operatorname{det}\left[\begin{array}{ll}
a_{000} & a_{010} \\
a_{001} & a_{011}
\end{array}\right] \operatorname{det}\left[\begin{array}{ll}
a_{100} & a_{110} \\
a_{101} & a_{111}
\end{array}\right]
\end{array}
$$

Given a matrix $A \in \mathbb{C}^{n \times n}$, the pair of linear equations $\mathbf{x}^{\top} A=0, A \mathbf{y}=0$ has a nontrivial solution (\mathbf{x}, y both nonzero) if and only if $\operatorname{det}(A)=0$. Cayley proved a multilinear version that parallels the matrix case. The following system of bilinear equations:
$a_{000} x_{0} y_{0}+a_{010} x_{0} y_{1}+a_{100} x_{1} y_{0}+a_{110} x_{1} y_{1}=0, \quad a_{001} x_{0} y_{0}+a_{011} x_{0} y_{1}+a_{101} x_{1} y_{0}+a_{111} x_{1} y_{1}=0$,
$a_{000} x_{0} z_{0}+a_{001} x_{0} z_{1}+a_{100} x_{1} z_{0}+a_{101} x_{1} z_{1}=0, \quad a_{010} x_{0} z_{0}+a_{011} x_{0} z_{1}+a_{110} x_{1} z_{0}+a_{111} x_{1} z_{1}=0$,
$a_{000} y_{0} z_{0}+a_{001} y_{0} z_{1}+a_{010} y_{1} z_{0}+a_{011} y_{1} z_{1}=0, \quad a_{100} y_{0} z_{0}+a_{101} y_{0} z_{1}+a_{110} y_{1} z_{0}+a_{111} y_{1} z_{1}=0$,
has a nontrivial solution $\left(\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{C}^{2}\right.$ all nonzero) if and only if $\operatorname{Det}_{2,2,2}(\mathcal{A})=0$.

Conjecture: NP-hard to compute hyperdeterminant

Conclusions

"All interesting problems are NP-hard"

- Bernd Sturmfels

Conclusions

"All interesting problems are NP-hard"

- Bernd Sturmfels

$$
+
$$

"Most tensor problems are NP-hard"

Conclusions

"All interesting problems are NP-hard" - Bernd Sturmfels

$$
+
$$

"Most tensor problems are NP-hard"

$$
\sqrt{7}
$$

"Most tensor problems are interesting!"

Redwood Center for Theoretical Neuroscience (U.C. Berkeley)

Mathematical Sciences Research Institute

Mathematical Sciences Research Institute National Science Foundation

