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Applications of “tensor methods”

Approximation algorithms [De LaVega et al. 2005; Brubaker and Vempala 2009]
Computational biology [Cartwright et al. 2009]

Computer graphics [Vasilescu and Terzopoulos 2004]

Computer vision [Shashua and Hazan 2005;Vasilescu and Terzopoulos 2002]
Data analysis [Coppi and Bolasco 1989]

Graph theory [Friedman 1991; Friedman and Wigderson 1995]
Neuroimaging [Schultz and Seidel 2008]

Pattern recognition [Vasilescu 2002]

Phylogenetics [Allman and Rhodes 2008]

Quantum computing [Miyake and Wadati 2002]

Scientific computing [Beylkin and Mohlenkamp 1997]

Signal processing [Comon 1994; 2004; Kofidis and Regalia 2001/02]
Spectroscopy [Smilde et al. 2004]

Wireless communication [Sidiropoulos et al. 2000]

Generalizee Ax =Db
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Computational complexity

l. Model of computation
- What are inputs / outputs!?
- What is a computation!?

5

ll. Model of complexity
- Cost of computation!?

lll. Model of reducibility
- What are equivalent problems!?

Leonid Levin
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l. Model of computation:

Turing Machine [Turing 1936]

Inputs: rational tensors
Outputs: YES/NO or rational vectors

ll. Model of complexity:

Time complexity
Number of Tape-Level moves

Turing Machine (Mike Davey)

lll. Model of reducibility:
P, NP, NP-complete, NP-hard, ...

l polynomial l NP-Complete

transformation

=

l l > |Matrix Problems| 4

YES/NO — YES/NO
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Complexity of tensor problems

Problem Complexity

™

Bivariate Matrix Flunctions over R, C Undecidable (Proposition 12.2)

Bilinear System over R, C NP-hard (Theorems 2.6, 3.7, 3.8)

Eigenvalue over R NP-hard (Theorem 1.3)

Approximating Eigenvector over R NP-hard (Theorem 1.5)

Symmetric Eigenvalue over R NP-hard (Theorem 9.3)

Approximating Symmetric Eigenvalue over R | NP-hard (Theorem 9.6)

Singular Value over R, C NP-hard (Theorem 1.7)

Symmetric Singular Value over R NP-hard (Theorem 10.2)

Approximating Singular Vector over R, C NP-hard (Theorem 6.3)

Spectral Norm over R NP-hard (Theorem 1.10)

Symmetric Spectral Norm over R NP-hard (Theorem 10.2)

Approximating Spectral Norm over R NP-hard (Theorem 1.11)

Nonnegative Definiteness NP-hard (Theorem 11.2)

Best Rank-1 Approximation NP-hard (Theorem 1.13)

Best Symmetric Rank-1 Approximation NP-hard (Theorem 10.2)

Rank over R or C NP-hard (Theorem 8.2)

Enumerating Eigenvectors over R #P-hard (Corollary 1.16)

Combinatorial Hyperdeterminant NP-, #P-, VNP-hard (Theorems 4.1 , 4.2, Corollary 4.3)

Geometric Hyperdeterminant Conjectures 1.9, 13.1
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Eigenvalues

Problem: Given A = [q;;] € Q"""
find (x,\) with x #0 s.t.:

Ax = \x

® [mage Segmentation [Shi-Malik, 2000]

E———

efficient algorithms
(in P)

top eigenvector
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Tensor eigenvalues

Problem: Given A = [[a;;r]] € Q"""""
find (x,\) with x #0 s.t.:

n

g ik Til; = Ax, k=1,...,n

2,7=1

[Lim 2005], [Qi 2005], [Ni, et al 2007], [Qi 2007], [Cartwright and Sturmfels 2012]

Facts: Generic or random tensors over complex numbers have a finite number
of eigenvalues and eigenvectors (up to scaling equivalence), although their count is exponential.

Still, it is possible for a tensor to have an infinite number of non-equivalent eigenvalues, but in
that case they comprise a cofinite set of complex numbers

Another important fact is that over the reals, every 3-tensor has a real eigenpair.
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Decision problem

Problem: Given A = [[a;;i]] € Q"*"""
and A € Q, does there exist 0 #x € C" :

n
g ik Til; = Ax, k=1,...,n
ii=1

Decidable (Computable on a Turing machine):
- Quantifier elimination
- Buchberger’s algorithm and Groebner bases
- Multivariate resultants

All quickly become inefficient
Is there an efficient algorithm?
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NP-complete / NP-hard problems
[Cook-Karp-Levin 1971/2]

Graph coloring: Given a graph G, is there a 3-coloring!?

NP-complete problem

YES NO
Million $$% prize (Clay Math)




Graph coloring: Given a graph G, is there a 3-coloring!?

Theorem [Bayer 1982]: Whether or not a graph is 3-
colorable can be encoded as whether a system of
quadratic equations over € has a nonzero solution

o] 7 ) p ) o ]

aicy — bidy —u”, b1 +ardy, cau—aj + by, diu —2a1b1, a1u — ey +dy, b1u — 2dyeq,
2 2 2 .- 2 2 ;

azcg — bada — u”, baco + azda, cou — a5 + b3, dou — 2a2b2, asu — c5 + d3, bou — 2daca,
2

- 2 2 " 2 D ]
aszcz — bads — u”, bzcs + azds, c3u — a3 + b3, dau — 2a3b3, azu — ¢35 + d3, bau — 2dsecs,

2 2 7 " 2 2 p
ascqy — bady — u”, bgeq + agdy, cgu —ajy + by, dau — 2a4by, agu — i + dj, bau — 2dyey,

2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 92 2 2 2 . )
a5 — b5 + azaz — babz + a3 — b3, a3 — b3 + azaq — b3bs + aj — by, 2a1b1 + a1b2 + a2b1 + 2a2b2,
2a9bo + aobs + azba + 2a3bs, 2a1b1 + a1b3 + a2b1 + 2a3b3, 2a1b1 + a1bs + a4b1 + 2a4b4,

‘ y 2 2 2 2
2a3b3 + azbs + asbsz + 2a4b4, wi + w35 + - - + wir + wig.
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Using symbolic algebra or numerical algebraic geometry software’ (see the Appendix
for a list), one can solve these equations to find six real solutions (without loss of gen-
erality, we may take © = 1 and all w; = 0), which correspond to the proper 3-colorings
of the graph G as follows. Fix one such solution and define z, := a, + ibp € C for

' 4 (we set i := y/—1). By construction, these z; are one of the three cube roots
of unity {1, , a?} where a = exp(27i/3) = —% + 1@ (see also Fig. 2).

To determine a 3-coloring from this solution, one “colors” each vertex i by the root of
unity that equals z;. It can be checked that no two adjacent vertices share the same
color in a coloring; thus, they are proper 3-colorings. For example, one solution is:

V3 | 1 V3
>

1
rn————1
P9

ro =1, x3=——4+1—, x4 =1.
9 9

i

Polynomials for the right-hand side graph in Fig. 1 are the same as (4) except for
two additional ones encoding a new restriction for colorings, the extra edge {2, 4}:

‘

) 9 9 ¢ ‘
ay — by + asag — baby + ay — by, 2aobs + asby + agbs + 2a4by.
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Quadratic equations are hard to solve

[Bayer 1982], [Lovasz |1994],
[Grenet et al 2010], ...

NP-Hard

NP-Complete

Corollary: Deciding tensor
eigenvalue is NP-hard

Quadratic equations undecidable over the integers!
(there is no Turing machine that can solve them)

[Davis-Putnam-Robinson, Matijasevic]
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Approximating tensor eigenvector is NP-hard

Corollary: Unless P = NP, there is no polynomial time
approximation scheme for finding tensor eigenvectors
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Rank

rank-1 tensors: A = [[z;y;2k]] =2 @y ® 2
- Segre variety

Definition: Tensor rank over F is
rankp(A) = min{A = Z T, QY; D 2}
1=1

Theorem [Hastad]: Tensor rank is NP-hard over Q

Note: rank can change over changing fields (not true linear algebra)
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Theorem: There are rational tensors with different
rank over rationals versus the reals

rankg (\A) < rankg(.A)

PROOF OF THEOREM 1.14. We explicitly construct a rational tensor A with
rankg(A) < rankg(A). Let x = [1,0]" and y = [0, 1]". First observe that

ZRZRZH+ZRZRZ=2XQIXIX—4dyRQyRx+4dyRXQYy —4xXx Ry X1
where z = x+ /2y and Z = x — v/2y. Let A be this tensor; thus, rankp(A) < 2. We claim
that rankg(A) > 2. Suppose not and that there exist u; = [a;, b;]", vi = [c;,di]T € Q2,
;= 1,2, 3, with
A=1u;Qus@us +v] @ vy @ vs.
Identity (29) gives eight equations found in (30). Thus, by Lemma 8.1, rankg(A) > :
LEMMA 8.1. The system of 8 equations in 12 unknowns:
ayagasz + cicocy = 2, aragby + cyeszda = 0, asazby + caczdy = 0,
asbi1by + c3dydy = — 4, ayasbs + c1cods = 0, a1bobs + c1dods = —4,
aob1bg + codsdy = 4, bibabs + dydads = 0

has no solution in rational numbers ay. as, as, by.bs, bs, ¢1.co, c3, and dy, ds, ds.

PROOF. One may verify in exact symbolic arithmetic (see the Appendix) that the
following two equations are polynomial consequences of (30):

2(':‘3 — (/:‘_‘; =0 and cjdods —2=0.

Since no rational number when squared equals 2, the first equation implies that any
rational solution to (30) must have ¢y = do = 0, an impossibility by the second. Thus,
no rational solutions to (30) exist. [
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Theorem: There are rational tensors with different
rank over rationals versus the reals

rankg (A) < rankg(.A)

Thus, Hastad’s result doesn’t necessarily apply.

Nevertheless, Hastad’s proof shows that tensor
rank is NP-hard over R and C

Theorem: Approximating rank-| tensor is NP-hard
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Hyperdeterminant

- Defining equation for the dual variety to Segre variety

[Cayley 1845]:

Example 3.2 (2 x 2 x 2 hyperdeterminant). For A = [a;;r] € C?*2%2 define

po— — o — o — o —

1 000 @010 100 @110 apoo ao10 100 @110
— 1 det 1 —det

| 2001 A011 | | 101 d111 | 4001 @011 | 2101 @111 |

apoo ao10 a100 @110
— 4 det det

| A001 A011 |a101 111

Given a matrix A € C"*", the pair of linear equations x' A = 0, Ay = 0 has a nontrivial
solution (x,y both nonzero) if and only if det(A4) = 0. Cayley proved a multilinear
version that parallels the matrix case. The following system of bilinear equations:

@p00ToYo + @o10ToY1 + G100T1Yo + ar110T1yY1 = 0,  @oo1ToYo + @o11ToY1 + a101T1Yo + a111x1y1 = 0,
a0o0oTozo + Goo1Toz1 + @100r120 + a101x121 = 0, @ap10To0zo0 + @p11T0z1 + @110T120 + 111121 = 0,

apooYozo + Qpo1Yoz1 + Go1oY120 + @o11Y121 = U,  @i00YoZ2o + @101Yo21 + @110Y120 + @111Y121 = 0,

[

Conjecture: NP-hard to compute hyperdeterminant
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Conclusions

“All interesting problems are NP-hard”
- Bernd Sturmfels
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Conclusions

“All interesting problems are NP-hard”
- Bernd Sturmfels

-

“Most tensor problems are NP-hard”
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Conclusions

“All interesting problems are NP-hard”
- Bernd Sturmfels

-

“Most tensor problems are NP-hard”

|

“Most tensor problems are interesting!”
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