On best C-approximation

Shmuel Friedland Univ. Illinois at Chicago

SIAM 2013 - Fort Collins, Co August 1, 2013 Mostly joint results with G. Ottaviani and M. Stawiska in progress

Shmuel Friedland Univ. Illinois at Chicago

/ 15

- Statement of the problem
- Uniqueness of best approximation
- Number of critical points
- Best border rank *k*-approximation to symmetric tensors
- Best approximation of vectors fixed under the action of a finite group

Statement of the problem

- $\nu: \mathbb{R}^n \to [0,\infty)$ a norm on \mathbb{R}^n
- $C \subset \mathbb{R}^n$ a closed subset

Problem: approximate a given vector $\mathbf{x} \in \mathbb{R}^n$ by a point $\mathbf{y} \in C$:

$$\operatorname{dist}_{\nu}(\mathbf{x}, \mathbf{C}) := \min\{\nu(\mathbf{x} - \mathbf{y}), \ \mathbf{y} \in \mathbf{C}\}$$

 $\mathbf{y}^{\star} \in C$ is called a best ν -(C)approximation of \mathbf{x} if $\nu(\mathbf{x} - \mathbf{y}^{\star}) = \operatorname{dist}_{\nu}(\mathbf{x}, C)$

 $\|\cdot\|$ the Euclidean norm on \mathbb{R}^n , dist $(\mathbf{x}, C) = \text{dist}_{\|\cdot\|}(\mathbf{x}, C)$. We call a best $\|\cdot\|$ -approximation briefly a best (*C*)-approximation

Example: $\mathbb{R}^n = \mathbb{R}^{m_1 \times \ldots \times m_d}$ - *d*-mode tensors and *C*:

- 1. Tensors of border rank k-at most, denoted as C_k
- 2. Tensors whose unfolded matrix in mode *i* has rank $r_i (\leq m_i)$ at most

for i = 1, ..., d - Best $\mathbf{r} := (r_1, ..., r_d)$ -approximation, denoted as $C(\mathbf{r})$

Uniqueness of best *v*-approximation

Dual norm
$$\nu^*(\mathbf{x}) := \max\{\mathbf{y}^\top \mathbf{x}, \nu(\mathbf{y}) = 1\}$$

Thm: Assume that ν and ν^* are differentiable, (i.e. differ. on $\mathbb{R}^n \setminus \{\mathbf{0}\}$) Then for a.a. $\mathbf{x} \in \mathbb{R}^n \setminus C$ a best ν -approximation is unique Outline of prf: $|\operatorname{dist}_{\nu}(\mathbf{x}, C) - \operatorname{dist}_{\nu} t(\mathbf{z}, C)| \leq \nu(\mathbf{x} - \mathbf{z})$ (triangle inequality) $\nu(\cdot)$ is Lipschitz \Rightarrow dist(\cdot, C) Lipschitz

Rademacher's thm: $dist_{\nu}(\cdot, C)$ is differentiable a.a.

Assume that dist_{ν}(·, *C*) is differentiable at $\mathbf{x} \in \mathbb{R}^n \setminus C$

 $\operatorname{dist}_{\nu}(\mathbf{x}, C) = \nu(\mathbf{x} - \mathbf{y}) \Rightarrow \mathbf{u}_1 := D\operatorname{dist}(\mathbf{x}, C)$ is supporting hyperplane

$$\{\mathbf{z} \in \mathbb{R}^n, \ \nu(\mathbf{z}) \le \nu(\mathbf{x} - \mathbf{y})\} \text{ at } \mathbf{x} - \mathbf{y} \Rightarrow \nu^*(\mathbf{u}) = 1, \mathbf{u} := \frac{1}{\nu(\mathbf{x} - \mathbf{y})}\mathbf{u}_1$$

 $\mathbf{v} := \frac{1}{\nu(\mathbf{x} - \mathbf{y})} (\mathbf{x} - \mathbf{y})$ supporting hyperplane of $\nu^*(\mathbf{z}) \le 1$ at \mathbf{u}

 ν^* differentiable \Rightarrow **v** unique. Hence **x** - **y** is unique, i.e. **y** unique

Semi-algebraic norms

 $S \subset \mathbb{R}^n$ is semi-algebraic if it is a finite union of basic semi-algebraic sets given by a finite number of polynomial equalities and inequalities $p_i(\mathbf{x}) = 0, i \in \{1, ..., \lambda\}, q_i(\mathbf{x}) > 0, j \in \{1, ..., \lambda'\}$ dim S is the maximal dimension of the basic set Semi-algebraic set $S \subset \mathbb{R}^n$ can be described by a quantifier-free first order formula. The class of semi-algebraic sets is closed under finite unions, finite intersections, complements and projections. $f : \mathbb{R}^n \to \mathbb{R}$ semi-algebraic if $G(f) = \{(\mathbf{x}, f(\mathbf{x})) : \mathbf{x} \in \mathbb{R}^n\}$ semi-algebraic

 ν semi-algebraic if $\nu(\cdot)$ semi-algebraic

$$\begin{aligned} \|(x_1, \dots, x_n)^{\top}\|_{a} &:= (\sum_{i=1}^{n} |x_i|^{a})^{\frac{1}{a}}, a \ge 1\\ \text{is semi-algebraic if } a &= \frac{b}{c} \text{ is rational as } G(\|\cdot\|_{a}) =\\ \{(x_1, \dots, x_n, t)^{\top} : x_i &= \pm y_i^{c}, y_i \ge 0, t = s^{c}, s \ge 0, \sum_{i=1}^{n} y_i^{b} - s^{b} = 0\} \end{aligned}$$

Uniqueness of ν -approxim. in semi-algebraic setting

- Lemma: $C \subset \mathbb{R}^n$ closed semi-algebraic set, ν a semi-algebraic Then the function dist_{ν}(\cdot , C) is semi-algebraic.
- Thm : Let $C \subset \mathbb{R}^n$ semi-algebraic, ν semi-algebraic norm, ν and ν^* are differentiable. Then the set of all points $\mathbf{x} \in \mathbb{R}^n \setminus C$, denoted by S(C), where ν -approximation to \mathbf{x} in C is not unique is a semi-algebraic set which does not contain an open set. In particular S(C) is contained in some hypersurface $H \subset \mathbb{R}^n$.

Prf:
$$f(\mathbf{x}) = \operatorname{dist}_{\nu}(\mathbf{x}, C), \ G(f) \times C$$

 $T(f) := \{(\mathbf{x}, t, \mathbf{y}, \mathbf{x}, t, \mathbf{z}) \in \mathbb{R}^{2(2n+1)}, (\mathbf{x}, t, \mathbf{y},), (\mathbf{x}, t, \mathbf{z},) \in G(f) \times C,$
 $\nu(\mathbf{x} - \mathbf{y}) = \nu(\mathbf{x} - \mathbf{z}) = t, \ \|\mathbf{y} - \mathbf{z}\|^2 > 0\}$
 $\pi_n(T(f)) = S(C)$ - hence semi-algebraic

Rademacher's or Durfee's theorem yield dim S(C) < n.

C an irreducible variety

C is the zero set of polynomials $p_i(\mathbf{x}), \mathbf{x} \in \mathbb{R}^n, i = 1, \dots, m$. $V := C_{\mathbb{C}}$ is the zero set of $p_i(\mathbf{z}), \mathbf{z} \in \mathbb{C}^n, i = 1, \dots, m$. $D(V)(\mathbf{y}) = ([\frac{\partial p_i}{\partial x_i}(\mathbf{y})]_{i=i=1}^{m,n})^\top \in \mathbb{C}^{n \times m}, \, \mathbf{x} = (x_1, \dots, x_n)^\top \in \mathbb{C}^n.$ For $\mathbf{y} \in V$, $D(V)(\mathbf{y})$ -Jacobian of V at \mathbf{y} , $D(V)(\mathbf{y})$ real for $\mathbf{y} \in C$. C, V is of real and complex dimension d respectively if rank $D(V)(\mathbf{y}) = n - d$ for most $\mathbf{y} \in V$. (Such \mathbf{y} is a smooth point of V.) For a smooth $\mathbf{y} \in V$ the null space of $D(V)(\mathbf{y})^{\top}$ is tangent hyperplane and the column space of $D(V)(\mathbf{y})$ is cotangent hyperplane Fix $\mathbf{x} \in \mathbb{R}^n$ and let $g_{\mathbf{x}}(\mathbf{u}) := \|\mathbf{x} - \mathbf{u}\|^2$ be a function on *C*. smooth $\mathbf{y} \in C$ is a critical point of $g_{\mathbf{x}}$ iff $\mathbf{x} - \mathbf{y} \in \text{Range}(D(V)(\mathbf{y}))$ i.e. all n - d + 1 minors of $[D(V)(\mathbf{y}) (\mathbf{x} - \mathbf{y})] \in \mathbb{R}^{n \times (m+1)}$ vanish

The critical variety

- $\Sigma_1(V) \subset \mathbb{C}^n \times V$ all (\mathbf{x}, \mathbf{y}) such that all n d + 1 minors of $[D(V)(\mathbf{y}) (\mathbf{x} \mathbf{y})]$ vanish
- $\Sigma_1(V)$ a variety that contains $\mathbb{C}^n \times \operatorname{Sing} V$, (dim $\mathbb{C}^n \times \operatorname{Sing} V \ge n$) $\Sigma_0(V) := \Sigma_1(V) \setminus \mathbb{C}^n \times \text{Sing } V \text{ all points}$ $(\mathbf{y} + \mathbf{z}, \mathbf{y}), \mathbf{y} \in V \setminus \text{Sing}(V), \mathbf{z} \in \text{Range}D(V)(\mathbf{y})$ So $\Sigma_0(V)$ vector bundle over **V** \ Sing V and quasi-variety Critical variety: $\Sigma(V) = Clos(\Sigma_0(V))$, an irreducible component of $\Sigma_1(V)$ dim $\Sigma(V) = n$ and $\pi_n : \Sigma(V) \to \mathbb{C}^n$ dominating of degree $\delta(V)$: \exists subvariety $U \subset \mathbb{C}^n$ s.t. $|\pi_n^{-1}(\mathbf{x})| = \delta(V)$ for each $\mathbf{x} \in \mathbb{C}^n \setminus U$ i.e. each $\mathbf{x} \in \mathbb{C}^n \setminus U$ has $\delta(V)$ smooth critical points in V Friedland-Ottaviani computed $\delta(V)$ for
- $\mathbb{R}^n = \mathbb{R}^{m_1 \times \ldots \times m_d}$ and *C*: tensors of rank 1 and zero tensor \mathcal{L} and \mathcal{L} is a set of tensor \mathcal{L} is a set of tensor \mathcal{L} and \mathcal{L} and

Smooth and singular C

Assume that C smooth, ($V = C_{\mathbb{C}}$ may be singular). Then dist(\mathbf{x}, C) = min{ $||\mathbf{x} - \mathbf{y}||, (\mathbf{x}, \mathbf{y}) \in \Sigma(V) \cap (\mathbb{R}^n \times C)$ } (1) Suppose C contains singular points Sing $(C) = \bigcup_{i=1}^{p} C_i$, each $C_i \subset \mathbb{R}^n$ is irreducible $dist(\mathbf{x}, C) \leq dist(\mathbf{x}, C_i)$ and $dist(\mathbf{x}, C) = dist(\mathbf{x}, C_i)$ on semi-algebraic Q_i Suppose that (2): dim $Q_i < n, i = 1, ..., p$ holds. Then (1) holds (2) holds for $\mathbb{R}^n = \mathbb{R}^{m_1 \times m_2}$ and *C* matrices of rank *k* at most Probably (2) holds for tensors? Assume (2) does not hold. $C = \bigcup_{i=0}^{q} (C_i \setminus \text{Sing } C_i)$ a smooth stratification of $C (C_0 := C)$ $V_i := (C_i)_{\mathbb{C}}$ Then (1) holds if we replace $\Sigma(V)$ by $\cup_{i=0}^q \Sigma(V_i)$, I.e., for $\mathbf{x} \in \mathbb{R}^n \setminus (\cup U_i)$ dist (\mathbf{x}, C) is the minimal distance of **x** to $k (\leq \sum \delta(V_i))$ points on C

Approximation of symmetric tensors: rank one at most

$$m^{ imes d} := (\underbrace{m, \dots, m}_{d}), \mathbb{R}^n = \mathbb{R}^{m^{ imes d}}, S(d, \mathbb{R}^n)$$
 symmetric tensors
 $C \subset \mathbb{R}^n$ either C_k or $C(\mathbf{r})$

Thm There exists a semi-algebraic set $Q \subset S(d, \mathbb{R}^m)$, dim $Q < \binom{m+d-1}{d}$ for $\mathcal{T} \in S(d, \mathbb{R}^n) \setminus Q$ best rank 1-approximation unique, and symmetric Prf. 1. Banach 1939, Chen-He-Li-Zhang 2012, Friedland 2013: best rank 1-approxim. of symmetric tensor can be chosen symmetric 2. Friedland-Ottaviani: $f := \text{dist}(\cdot, C_1)|S(d, \mathbb{R}^m)$. If f differentiable at \mathcal{T} then best rank 1-approximation unique up to permutation of factors in $\mathcal{X} = \mathbf{x}_1 \otimes \ldots \otimes \mathbf{x}_d$. Use 1. to deduce \mathcal{X} symmetric

3. Friedland-Stawiska: the set Q of symmetric tensor with not unique best rank approximation is semi-algebraic

Approximation of symmetric tensors: b. rank k at most

 $N(m, d) = \frac{1}{2}(\binom{m+d-3}{d-2} + 2m-2)$ for $d \ge 3$, $(N(m, 3) = \frac{3m-2}{2})$ Thm For $d \ge 3, 2 \le k \le N(m, d)$ the semi-algebraic set of all symmetric tensors for which best border rank k approximation is unique, (denoted as $P_k \subset \mathbb{R}^n$), has dimension $\binom{m+d-1}{d}$. Use Kruskal's theorem to show that a symmetric tensor of the form $\mathcal{T} = \sum_{i=1}^{k} \otimes^{d} \mathbf{u}_{i}, k$ -as above has rank k if any min(m, k) vectors from $\mathbf{u}_1, \ldots, \mathbf{u}_k$ and $\min(k, \binom{m+d-3}{d-2})$ vectors from $\otimes^{d-2} \mathbf{u}_1, \ldots, \otimes^{d-2} \mathbf{u}_k$ linearly independent Problem : Is dim $(\mathbb{R}^n \setminus P_k) < \binom{m+d-1}{d}$? Weaker problem: Is the best border rank k-approximation to a symmetric tensor can be chosen symmetric?

A (10) A (10)

 $C \subset \mathbb{R}^n$ irreducible variety, $\mathcal{G} \subset \mathbb{R}^{n \times n}$ a finite nontrivial group of matrices acting on \mathbb{R}^n : $\mathbf{x} \mapsto A\mathbf{x}$,

Assume:

1. $\mathbf{U} \subset \mathbb{C}^n$ the subspace of all fixed points of \mathcal{G} dim $\mathbf{U} = d \in [1, n-1]$.

2. *C* is fixed by \mathcal{G} . $C_U := C_{\mathbb{C}} \cap U$ contains a smooth point of $V = C_{\mathbb{C}}$.

Let $\mathbf{y} \in C_{\mathbf{U}}$ is a smooth point of V. $\exists O(\mathbf{y}) \subset \mathbb{C}^n$ neighborhood of \mathbf{y}

s.t. for $\mathbf{x} \in O(\mathbf{y}) \cap \mathbf{U}$, the unique critical point $\mathbf{y}(\mathbf{x}) \in O(\mathbf{y})$ is in \mathbf{U} .

If **y** a smooth point of *C* then for each $\mathbf{x} \in O(\mathbf{y}) \cap \mathbb{R}^n$ the best *C* approximation is in $\mathbf{U}_{\mathbb{R}} := \mathbf{U} \cap \mathbb{R}^n$.

4 D N 4 B N 4 B N 4 B

Define $\Phi := (\mathbf{U} \times \mathbf{V}) \cap \Sigma(\mathbf{V})$.

 Φ contains irreducible components $\Phi_1, \ldots \Phi_l$, dim $\Phi_i = d$,

s.t. $(\mathbf{x}, \mathbf{y}(x)), \mathbf{x} \in O(\mathbf{y})$ as above, is in some Φ_i .

$$\Phi_i \subset \mathbf{U} \times C_{\mathbf{U}}, i = 1, \dots, I$$

Let
$$\Phi = \Phi' \cup (\cup_{i=1}^{l} \Phi_i)$$
.

Suppose that $\pi_n(\Phi' \cap (\mathbb{R}^n \times C))$ is not dense in **U**_R.

Then the best approximation to $\mathbf{x} \in \mathbf{U}_{\mathbb{R}}$ can be chosen in $\mathbf{U}_{\mathbb{R}}$.

This is true for symmetric matrices where $C = C_k$.

- S. Banach, Über homogene polynome in (*L*²), *Studia Math.* 7 (1938), 36–44.
- B. Chen, S. He, Z. Li, and S, Zhang, Maximum block improvement and polynomial optimization, *SIAM J. Optimization*, 22 (2012), 87–107
- P. Comon, G. Golub, L.-H. Lim, and B. Mourrain, Symmetric tensors and symmetric tensor rank, *SIAM Journal on Matrix Analysis and Applications*, 30 (2008), 1254-1279.
- A. H. Durfee, Neighborhoods of algebraic sets, *Transactions of the American Mathematical Society*, 276 (1983), 517–530
- S. Friedland, Best rank one approximation of real symmetric tensors can be chosen symmetric, *Front. Math. China*, 8 (1) (2013), 19–40.

- S. Friedland and G. Ottaviani, The number of singular vector tuples and uniqueness of best rank one approximation of tensors, arXiv:1210.8316.
- L.-H. Lim. Singular values and eigenvalues of tensors: a variational approach. *Proc. IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing* (CAMSAP '05), 1 (2005), 129-132.

A I > A I > A