A Proof of the Set-theoretic Version of a Salmon Conjecture

Shmuel Friedland
University of Illinois at Chicago ${ }^{1}$

[^0]
Summary

(1) Statement of the problem
(2) Known results
(3) New conditions
(4) Outline of the complete solution

Notations

$\mathbb{C}^{m \times n \times I}:=\mathbb{C}^{m} \otimes \mathbb{C}^{n} \otimes \mathbb{C}^{\prime}$ consists of $\mathcal{T}=\left[t_{i, j, k}\right]_{i=j=k=1}^{m, n, l}$
$V_{r}(m, n, I) \subset \mathbb{C}^{m \times n \times I}$ the closure of 3-mode tensors of rank r at most
$\mathbb{P} V_{r}(m, n, l)=\operatorname{Sec}_{r}\left(\mathbb{P}^{m-1} \times \mathbb{P}^{m-1} \times \mathbb{P}^{l-1}\right)$.
$I_{r}(m, n, I) \subset \mathbb{C}\left[\mathbb{C}^{m \times n \times}\right]$ the ideal defining $V_{r}(m, n, I)$.
$\mathrm{T}_{3}(\mathcal{T}) \subset \mathbb{C}^{m \times n}$ subspace spanned by I frontal sections
$\left[t_{i, j, k}\right]_{i=j=1}^{m, l}, k=1, \ldots, l$.
Similarly $\mathbf{T}_{1}(\mathcal{T}) \subset \mathbb{C}^{n \times I}, \mathbf{T}_{2}(\mathcal{T}) \subset \mathbb{C}^{m \times I}$
$\mathrm{S}_{n}(\mathbb{C})$ - symmetric $n \times n$ matrices

A short history of the salmon conjecture

At the IMA workshop in March 2007, Elizabeth Allman offered an Alaskan speciality: smoked Copper river salmon for determining the generators of $I_{4}(4,4,4)$.
$V_{4}(4,4,4)$ appears as a basic bloc in molecular phylogenetics [3], in which DNA sequences are used to infer evolutionary trees describing the descent of species from a common ancestor. \mathbb{C}^{4} comes from 4 nucleotides A;C; G; T. 3-mode tensor comes from an ancestor splitting two species, since all internal nodes of an evolutionary tree are of degree 3.
In Pachter-Sturmfels book [2, Conjecture 3.24] states $I_{4}(4,4,4)$ is generated by polynomials of degree 5 and 9 . The degree 5 are coming from Strassen's commutative conditions [3, 1], degree 9 from Strassen's result: $V_{4}(3,3,3)$ is a hypersurface of degree 9. In view of degree 6 polynomials in $I_{4}(4,4,4)$ found by Landsberg and Manivel [5] Sturmfels revised the Salmon conjecture: $I_{4}(4,4,4)$ is generated by polynomials of degree $5,6,9[4, \S 2]$.

Tensors of rank m in $\mathbb{C}^{m \times m \times l}$
 Strassen's commutative conditions

$\mathcal{T} \in \mathbb{C}^{m \times m \times I}$, rank $\mathcal{T}=m, \mathbf{W}=\operatorname{span}\left(T_{1,3}, \ldots, T_{l, 3}\right) \in \mathbb{C}^{m \times m}$ spanned by $\mathbf{u}_{1} \mathbf{v}_{1}^{\top}, \ldots, \mathbf{u}_{m} \mathbf{v}_{m}^{\top}$.
generic case: $\exists P, Q \in \mathbf{G L}(m, \mathbb{C}) P \mathbf{W} Q$
subspace of commuting of diagonal matrices.
If \mathbf{W} contains invertible \boldsymbol{Z} then
$(P X Q)(P Z Q)^{-1}(P Y Q)=(P Y Q)(P Z Q)^{-1}(P X Q) \Rightarrow$
$X(\operatorname{adj} Z) Y=Y(\operatorname{adj} Z) X$
for all $X, Y \in \mathbf{W}$
equations of degree 5 for $m=4$
similarly $\mathrm{C}_{r}(X) \widetilde{\mathrm{C}_{m-r}(Z)} \mathrm{C}_{r}(Y)=\mathrm{C}_{r}(Y) \widetilde{\mathrm{C}_{m-r}(Z)} \mathrm{C}_{r}(Y)$
equations of degree $m+r$ for $r=1, \ldots,\left\lfloor\frac{m}{2}\right\rfloor$.
For $m=4, r=2$ polynomials of degree 6 but no new info.

Strassen and Manivel-Landsberg conditions

Strassen $1983 V_{4}(3,3,3)$ is a hypersurface of degree 9

$$
\frac{1}{\operatorname{det} Z} \operatorname{det}(X(\operatorname{adj} Z) Y-Y(\operatorname{adj} Z) X)=0
$$

X, Y, Z are three sections of $\mathcal{T}=\left[t_{i, j, k}\right] \in \mathbb{C}^{3 \times 3 \times 3}$
Landsberg-Manivel 2004: $I_{4}(3,3,4)$ contains polynomials of degree 6. Study the action of $\mathbf{G L}(3, \mathbb{C}) \times \mathbf{G L}(3, \mathbb{C}) \times \mathbf{G L}(4, \mathbb{C})$ on $\left.\mathbb{C}\left[\mathbb{C}^{3 \times 3 \times 4}\right)\right]$ use Schur duality and symbolic computations to conclude existence of polynomials of degree 6 .

Bates and Oeding[4] constructed explicitly using symbolic computations 10 polynomials of degree 6 in $I_{4}(3,3,4)$.

Symmetrization conditions for $V_{m+1}(m, m, /)$ [1]

For a generic $\mathcal{T}=\left[x_{i, j, k}\right] \in \mathbb{C}^{m \times n \times I}, X_{k}=\left[t_{i, j, k}\right]_{j=j=1}^{m n}$ of rank $m+1$
$\mathbf{T}_{3}(\mathcal{T}) \in \mathbb{C}^{m \times n}$ generated by $\mathbf{u}_{1} \mathbf{v}_{1}^{\top}, \ldots, \mathbf{u}_{m+1} \mathbf{v}_{m+1}^{\top}$,
any m vectors out of $\mathbf{u}_{1}, \ldots, \mathbf{u}_{m+1}$ or $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m+1}$ linearly independent
$\exists P, Q \in \mathbf{G L}(m, \mathbb{C}) \Rightarrow P \mathbf{u}_{i} \mathbf{v}_{i}^{\top} Q^{\top}=\mathbf{e}_{i} \mathbf{e}_{i}^{\top}$ for $i=1, \ldots, m$
and $P \mathbf{u}_{m+1} \mathbf{v}_{m+1}^{\top} Q^{\top}=\mathbf{w} \mathbf{w}^{\top}$.
$\exists L, R \in \mathbf{G L}(m, \mathbb{C})$ such that $L \mathbf{T}_{3}(\mathcal{T}), \mathbf{T}_{3}(\mathcal{T}) R \in \mathrm{~S}_{n}(\mathbb{C})$ (Symcon)
$L X_{i}-\left(L X_{i}\right)^{\top}=0, i=1, \ldots, I($ Lsymcon $):\left(\frac{l(m(m-1)}{2}\right)$ linear equation in
entries of L
$X_{i} R-\left(X_{i} R\right)^{\top}=0, i=1, \ldots, I$ (Rsymcon): $\left(\frac{I(m(m-1)}{2}\right)$ linear equation in entries of R
and $L R^{\top}=R^{\top} L=\frac{1}{n} \operatorname{tr}\left(L R^{\top}\right) I_{n}$ - (LRcond)
Existence of nonzero L, R : entries of \mathcal{T} satisfy polynomial equations of degree m^{2}
(LRcond) yield polynomial equations of degree $2\left(m^{2}-1\right)$.

Characterization of $V_{4}(3,3,4)$

Generic subspace $\mathbf{W} \subset S_{m}(\mathbb{C}), \operatorname{dim} \mathbf{W}=\frac{m(m-1)}{2}+1$ intersects variety of symmetric matrices of rank 1 at least at $\frac{m(m-1)}{2}+1$ lin. ind. mat.
generic $\mathcal{T} \in \mathbb{C}^{3 \times 3 \times 4}$ symmetric in the first is in $V_{4}(3,3,4)$
Thm[1]: $V_{4}(3,3,4)$ characterized by (Lsymcon) - (Rsymcon) and (LRcond) degrees 9, 16

Outline of proof: 1) assume only (Lsymcon) - (Rsymcon). $R, L \in \mathbf{G L}(3, \mathbb{C})$ for generic \mathcal{T} hence $\mathcal{T} \in V_{4}(3,3,4)$

Rest of proof: analyze cases where L, R are nonzero singular All cases except the following are fine A.I.3[1]: R, L are rank one matrices
(LRcond) (degree 16) yield $L R^{\top}=R^{\top} L=0 \Rightarrow \mathcal{T} \in V_{4}(3,3,4)$

Friedland-Gross simplification [2]

Assume A.I. 3 and either $L R^{\top} \neq 0$ or $R^{\top} L \neq 0$.
Change bases to get $L=\mathbf{e}_{3} \mathbf{e}_{3}^{\top}$ and $R \in\left\{\mathbf{e}_{2} \mathbf{e}_{2}^{\top}, \mathbf{e}_{2} \mathbf{e}_{3}^{\top}, \mathbf{e}_{3} \mathbf{e}_{2}^{\top}, \mathbf{e}_{3} \mathbf{e}_{3}^{\top}\right\}$
in first 3 cases for $R \mathcal{T} \in V_{4}(3,3,4)$
$R=\mathbf{e}_{3} \mathbf{e}_{3}^{\top} \Rightarrow X_{k}=\left[\begin{array}{ccc}x_{1,1, k} & x_{1,2, k} & 0 \\ x_{2,1, k} & x_{2,2, k} & 0 \\ 0 & 0 & x_{3,3, k}\end{array}\right], \quad k=1,2,3,4$,
It is shown in [1] that most \mathcal{T} in $V_{5}(3,3,4) \backslash V_{4}(3,3,4)$
10 polynomials [4] are $x_{3,3, k} x_{3,3, I} f(\mathcal{X})=0,1 \leq k \leq I \leq 4$
$\operatorname{det}\left[\begin{array}{llll}x_{1,1,1} & x_{1,2,1} & x_{2,1,1} & x_{2,2,1} \\ x_{1,1,2} & x_{1,2,2} & x_{2,1,2} & x_{2,2,2} \\ x_{1,1,3} & x_{1,2,3} & x_{2,1,3} & x_{2,2,3} \\ x_{1,1,4} & x_{1,2,4} & x_{2,1,4} & x_{2,2,4}\end{array}\right]$
So $\mathcal{T} \in V_{4}(3,3,4)$ since for $\mathcal{X} \in \mathbb{C}^{2 \times 2 \times 2}$: rank $\mathcal{X} \leq 4$ and $\operatorname{rank} \mathcal{X} \leq 3$ if $\operatorname{dim} \mathbf{T}_{3}(\mathcal{X}) \leq 3$.

From $V_{4}(3,3,4)$ to $V_{4}(4,4,4)$

Manivel-Landsberg[1]: Cor. 5.6: Let $\mathcal{T} \in \mathbb{C}^{4 \times 4 \times 4}$ satisfies Strassen's commutative conditions of degree 5 . Then either $\mathcal{T} \in V_{4}(4,4,4)$ or there exists $p \in\{1,2,3\}, \mathbf{u}, \mathbf{v} \in \mathbb{C}^{4} \backslash\{\mathbf{0}\}$ such that
$\mathbf{u}^{\top} \mathbf{T}_{p}(\mathcal{T})=\mathbf{0}^{\top}, \mathbf{T}_{p}(\mathcal{T}) \mathbf{v}=\mathbf{0}$.
I.e. after change of bases and permuting the factors of $\mathbb{C}^{4} \mathcal{T} \in \mathbb{C}^{3 \times 3 \times 4}$

Prf. is wrong as Prop. 5.4 wrong.
7 pages of [1] devoted to proof of Corollary 5.6.
Nice characterization of subspace $\mathbf{U} \subset \mathbb{C}^{m \times m}$ where most of the matrices are of rank $m-1$ which satisfy Strassen's commutative condition.

References I

E.S. Allman and J.A. Rhodes, Phylogenetic Invariants for the General Markov Model of Sequence Mutation, Math. Biosci. 186 (2003), 113-144.
E.S. Allman and J.A. Rhodes, Phylogenic ideals and varieties for general Markov model, Advances in Appl. Math., 40 (2008) 127-148.
E.S. Allman and J.A. Rhodes. Phylogenetics. In Reinhard Laubenbacher, editor, Modeling and Simulation of Biological Networks, Proc. Sympos. Appl. Math. Amer. Math. Soc., Providence, RI, 2007.
D.J. Bates and L. Oeding, Toward a salmon conjecture, arXiv:1009.6181.

圊 S. Friedland, On the generic rank of 3-tensors, Linear Algebra Appl. in press, arXiv: 0805.3777

References II

国 S．Friedland，On tensors of border rank／in $\mathbb{C}^{m \times n \times 1}$ ，Linear Algebra Appl．in press，2011，arXiv：1003．1968．
国 S．Friedland and E．Gross，A proof of the set－theoretic version of the salmon conjecture，arXiv：1104．1776，submitted．
E Thomas R．Hagedorn．A combinatorial approach to determining phylogenetic invariants for the general model，2000．Technical report，Centre de recherches mathmatiques．
R R．M．Guralnick and B．A．Sethuraman，Commuting pairs and triples of matrices and related varieties Linear Algebra and its Applications， 310 （2000），139－148．
围 J．M．Landsberg and L．Manivel，On the ideals of secant varieties of Segre varieties，Found．Comput．Math． 4 （2004），397－422．

References III

圊 J．M．Landsberg and L．Manivel，Generalizations of Strassen＇s equations for secant varieties of Segre varieties，Comm．Algebra 36 （2008），405－422．
围 L．Pachter and B．Sturmfels，Algebraic Statistics for Computational Biology，Cambridge University Press， 2005.

R．Strassen，Rank and optimal computations of generic tensors， Linear Algebra Appl．，52／53（1983）645－685

嗇 B．Sturmfels，Open problems in algebraic statistics，in Emerging Applications of Algebraic Geometry，（editors M．Putinar and S． Sullivant），I．M．A．Volumes in Mathematics and its Applications， 149，Springer，New York，2008，pp．351－364．

[^0]: ${ }^{1} 2011$ SIAM Conference on Applied Algebraic Geometry, October 6

