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V finite-dimensional vector space
Grp(V) := {v1 ∧ · · · ∧ vp | vi ∈ V} ⊆

∧p V
cone over Grassmannian

rank-one alternating tensors

Two properties:
1. if ϕ : V →W linear
 
∧p ϕ :

∧p V →
∧p W

maps Grp(V)→ Grp(W)

2. if dim V =: n + p
 natural map

∧p V → (
∧n V)∗ →

∧n(V∗)
maps Grp(V)→ Grn−p(V∗)
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Plücker variety {Xp}p is bounded
if ∃V : X2(V) ,

∧2 V

Theorem
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Results, with Eggermont

Definition
Plücker variety {Xp}p is bounded
if ∃V : X2(V) ,

∧2 V

Theorem
Any bounded Plücker variety is defined
set-theoretically in bounded degree, by
finitely many equations up to symmetry.

Theorem
For any fixed bounded Plücker variety there
exists a polynomial-time membership test.

Theorems apply, in particular, to
kGr = {alternating tensors of alternating rank ≤ k}.
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Definition∧
∞/2 V∞ := lim→

∧p Vn,p the infinite wedge (charge-0 part);
basis {xI := xi1 ∧ xi2 ∧ · · ·}I, I = {i1 < i2 < . . .}, ik = k for k� 0

On
∧
∞/2 V∞ acts GL∞ :=

⋃
n,p GL(Vn,p).
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{Xp}p≥0 a Plücker variety varieties Xn,p := Xp(V∗n,p)

Dual diagram∧0 V∗00

∧1 V∗01∧0 V∗10

∧1 V∗11

∧p V∗np∧p V∗n+1,p

∧p+1 V∗n,p+1

Xn,p Xn,p+1

Xn+1,p

Theorem (implies other theorems)
If X bounded X∞ cut out by finitely many GL∞-orbits of
equations.

 X∞ := lim← Xn,p is GL∞-stable subvariety of (
∧
∞/2 V∞)∗
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∑
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 not finitely many GL∞-orbits

But in fact the GL∞-orbit of
(x−2,−1,3,... · x1,2,3,...) − (x−2,1,3,... · x−1,2,3,...) + (x−2,2,3,... · x−1,1,3,...)

defines Gr∞ set-theoretically.
Our theorems imply that also higher secant varieties of
Sato’s Grassmannian are defined by finitely many
GL∞-orbits of equations. . . we just don’t know which!
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Poly time

Setting
X bounded Plücker variety ∃ n0, p0 such that GL∞-orbits
of equations of Xn0,p0 ⊆

∧p0 V∗n0,p0
define X∞ ⊆ (

∧
∞/2 V∞)∗.

Shape of randomised algorithm
Input: p,V,T ∈

∧p V
Output: T ∈ Xp(V)?

1. n := dim V − p
2. pick random linear iso ϕ : V → V∗n,p
3. set T′ := (

∧p ϕ)T
4. set T′′ := image of T′ in V∗n0,p0

5. return T′′ ∈ Xn0,p0 ?

n0

p0

n

p

T′

T′′
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∞/2 V∞)∗ | ∀g ∈ GL∞ :

image of gt in
∧2 V2,2l has rank ≤ 2l and

image of gt in
∧2k V2k,2 has rank ≤ 2k}.

 defined by orbits of two Pfaffians

Theorem (implies earlier)
Yk,l is GL∞-Noetherian

Don’t get new equations for secant varieties of Grassmannians!

Problem
How to make things work ideal-theoretically?
Landsberg-Ottaviani’s skew flattenings?
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