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V finite-dimensional vector space
Gr,(V):={vi A Av, |0 e VIC AV
cone over Grassmannian

rank-one alternating tensors

Two properties:

1. if @ : V. — W linear
W/\pgDZ/\pV—)/\pW
maps Gr,(V) — Gr,(W)

2.ifdimV =n+p
~ natural map A"V — (A" V) - A"(VY)
maps Gr,(V) = Gr,_, (V")
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1. p: V- W~ AP @ maps X,(V) — X,(W)
2. A"V = A"(V*) maps X,(V) — X, (V).

Constructions

X, Y Pliicker varieties ~~ so are
X +Y (join), TX (tangential),
XY, XNnY

skew analogue of Snowden’s A-varieties
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Definition
Pliicker variety {X,}, is bounded
if AV : Xo(V) £ A°V

Theorem ; (\ . \
Any bounded Pliicker variety is defined
set-theoretically in bounded degree, by

finitely many equations up to symmetry.

Theorem
For any fixed bounded Pliicker variety there
exists a polynomial-time membership test.

Theorems apply, in particular, to
kGr = {alternating tensors of alternating rank < k}.
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The infinite wedge

VOO = < oy X3,X-2,X-1,X1,X2,X3, .. >
Vn,p = <x_n, . .,x_l,X1, . .,xP> g Voo

Diagram
A Voo« ANV o NV » | AV Vi o AT Vi
A Vio o A"V o AV o | A Vieip

Definition
A®? Vo = im_, AP V' the infinite wedge (charge-0 part);
basis {x; :=x;, Axi, A=}, =1 <ip <...},ix=kfork>0

On AN*"? Ve, acts GLe := Unp GL(Vip).
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The limit of a Pliicker variety

Dual diagram

/\O

T

% 1 7
VOO - /\ VOl Rl

T

/\V*0<—/\V11<—

T

T

/\P P§ /\P+1§9+1

/\p np - np+1
n+1p

N

Xn+1,p

{Xplp=0 a Pliicker variety ~~ varieties X, := Xp(V, )

~ Xoo := lim X, , is GL-stable subvariety of ( INals Vo)’

Theorem (implies other theorems)
If X bounded ~ X cut out by finitely many GL-orbits of
equations.
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Sato’s Grassmannian

Definition

Gre C (A™/? V) is Sato’s Grassmannian

defined by polynomials ) ;. £x7_; - xj+; = 0
where iy =k—1fork> 0and jy =k+1fork> 0

~ not finitely many GLo-0rbits

But in fact the GL,-orbit of
(X—p-13.."X123,..)— (X213, " X-123.) + (X223 .. - X_113,.)

defines Gr, set-theoretically.

Our theorems imply that also higher secant varieties of
Sato’s Grassmannian are defined by finitely many
GL.-orbits of equations. . . we just don't know which!
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Poly time

Setting
X bounded Pliicker variety ~~ 3 ng, pg such that GL«-orbits

of equations of X, ,, € A" Voo po define Xeo € ( A Vo)

Shape of randomised algorithm po P
Input: p, V,T e NV
Output: T € X,(V)? Ny T’

l.n:=dimV —p

2. pick random linearisop : V=V, = 7 T
3.set T' := (A )T

4. set T” :=imageof T"in V;
5. return T € X, ,?
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Wrapping up

Pfaffians
Y= {t € (A™* Vo)* | V¢ € Gl :
image of ¢t in /\2 V501 has rank < 2/ and

image of gt in /\Zk Vo2 has rank < 2kj}.
~~ defined by orbits of two Pfaffians

Theorem (implies earlier)
Y*! is GL«-Noetherian

Don’t get new equations for secant varieties of Grassmannians!

Problem
How to make things work ideal-theoretically?
Landsberg-Ottaviani’s skew flattenings?
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