Higher Secants of Sato's Grassmannian

Jan Draisma TU Eindhoven

SIAM AG, Fort Collins, August 2, 2013

Grassmannians: functoriality and duality

V finite-dimensional vector space $\mathbf{Gr}_p(V) := \{v_1 \land \dots \land v_p \mid v_i \in V\} \subseteq \bigwedge^p V$ cone over Grassmannian

rank-one alternating tensors

Grassmannians: functoriality and duality

V finite-dimensional vector space $\mathbf{Gr}_p(V) := \{v_1 \land \cdots \land v_p \mid v_i \in V\} \subseteq \bigwedge^p V$ cone over Grassmannian

rank-one alternating tensors

Two properties: 1. if $\varphi : V \to W$ linear $\rightsquigarrow \bigwedge^{p} \varphi : \bigwedge^{p} V \to \bigwedge^{p} W$ maps $\mathbf{Gr}_{p}(V) \to \mathbf{Gr}_{p}(W)$

Grassmannians: functoriality and duality

V finite-dimensional vector space $\mathbf{Gr}_p(V) := \{v_1 \land \cdots \land v_p \mid v_i \in V\} \subseteq \bigwedge^p V$ cone over Grassmannian

rank-one alternating tensors

Two properties: 1. if $\varphi : V \to W$ linear $\rightsquigarrow \bigwedge^{p} \varphi : \bigwedge^{p} V \to \bigwedge^{p} W$ maps $\mathbf{Gr}_{p}(V) \to \mathbf{Gr}_{p}(W)$

2. if dim V =: n + p \rightsquigarrow natural map $\bigwedge^{p} V \rightarrow (\bigwedge^{n} V)^{*} \rightarrow \bigwedge^{n} (V^{*})$ maps $\mathbf{Gr}_{p}(V) \rightarrow \mathbf{Gr}_{n-p}(V^{*})$

Definition Rules X_0, X_1, X_2, \dots with

 $\mathbf{X}_p : \{ \text{vector spaces } V \} \rightarrow \{ \text{varieties in } \bigwedge^p V \}$

Definition Rules X_0, X_1, X_2, \ldots with

 $\mathbf{X}_p : \{ \text{vector spaces } V \} \rightarrow \{ \text{varieties in } \bigwedge^p V \}$

form a *Plücker variety* if 1. $\varphi: V \to W \rightsquigarrow \bigwedge^p \varphi$ maps $\mathbf{X}_p(V) \to \mathbf{X}_p(W)$ 2. $\bigwedge^p V \to \bigwedge^n(V^*)$ maps $\mathbf{X}_p(V) \to \mathbf{X}_n(V^*)$.

Definition Rules X_0, X_1, X_2, \dots with

 $\mathbf{X}_p : \{ \text{vector spaces } V \} \rightarrow \{ \text{varieties in } \bigwedge^p V \}$

form a *Plücker variety* if 1. $\varphi : V \to W \rightsquigarrow \bigwedge^p \varphi$ maps $\mathbf{X}_p(V) \to \mathbf{X}_p(W)$ 2. $\bigwedge^p V \to \bigwedge^n(V^*)$ maps $\mathbf{X}_p(V) \to \mathbf{X}_n(V^*)$.

Constructions X, **Y** Plücker varieties \rightsquigarrow so are **X** + **Y** (*join*), τ **X** (*tangential*), **X** \cup **Y**, **X** \cap **Y**

Definition Rules X_0, X_1, X_2, \ldots with

 $\mathbf{X}_p : \{ \text{vector spaces } V \} \rightarrow \{ \text{varieties in } \bigwedge^p V \}$

form a *Plücker variety* if 1. $\varphi : V \to W \rightsquigarrow \bigwedge^p \varphi$ maps $\mathbf{X}_p(V) \to \mathbf{X}_p(W)$ 2. $\bigwedge^p V \to \bigwedge^n(V^*)$ maps $\mathbf{X}_p(V) \to \mathbf{X}_n(V^*)$.

Constructions X, **Y** Plücker varieties \rightsquigarrow so are **X** + **Y** (*join*), τ **X** (*tangential*), **X** \cup **Y**, **X** \cap **Y**

skew analogue of Snowden's Δ -varieties

Definition Plücker variety $\{\mathbf{X}_p\}_p$ is *bounded* if $\exists V : \mathbf{X}_2(V) \neq \bigwedge^2 V$

Definition

Plücker variety $\{\mathbf{X}_p\}_p$ is *bounded* if $\exists V : \mathbf{X}_2(V) \neq \bigwedge^2 V$

Theorem

Any bounded Plücker variety is defined set-theoretically in bounded degree, by finitely many equations *up to symmetry*.

Definition

Plücker variety $\{\mathbf{X}_p\}_p$ is *bounded* if $\exists V : \mathbf{X}_2(V) \neq \bigwedge^2 V$

Theorem

Any bounded Plücker variety is defined set-theoretically in bounded degree, by finitely many equations *up to symmetry*.

Theorem

For any fixed bounded Plücker variety there exists a polynomial-time membership test.

Definition

Plücker variety $\{\mathbf{X}_p\}_p$ is *bounded* if $\exists V : \mathbf{X}_2(V) \neq \bigwedge^2 V$

Theorem

Any bounded Plücker variety is defined set-theoretically in bounded degree, by finitely many equations *up to symmetry*.

Theorem

For any fixed bounded Plücker variety there exists a polynomial-time membership test.

Theorems apply, in particular, to $k\mathbf{Gr} = \{\text{alternating tensors of alternating rank} \le k\}.$

 $V_{\infty} := \langle \dots, x_{-3}, x_{-2}, x_{-1}, x_1, x_2, x_3, \dots \rangle$ $V_{n,p} := \langle x_{-n}, \ldots, x_{-1}, x_1, \ldots, x_p \rangle \subseteq V_{\infty}$

$$V_{\infty} := \langle \dots, x_{-3}, x_{-2}, x_{-1}, x_1, x_2, x_3, \dots \rangle$$
$$V_{n,p} := \langle x_{-n}, \dots, x_{-1}, x_1, \dots, x_p \rangle \subseteq V_{\infty}$$

Diagram

 $\bigwedge^p V_{np} \qquad \bigwedge^{p+1} V_{n,p+1}$ $\bigwedge^p V_{n+1,p}$

$$V_{\infty} := \langle \dots, x_{-3}, x_{-2}, x_{-1}, x_1, x_2, x_3, \dots \rangle$$

$$V_{n,p} := \langle x_{-n}, \dots, x_{-1}, x_1, \dots, x_p \rangle \subseteq V_{\infty}$$

Diagram

$$\bigwedge^{p} V_{np} \longrightarrow \bigwedge^{p+1} V_{n,p+1}$$

$$\downarrow \quad t \mapsto t \wedge v_{p+1}$$

$$\bigwedge^{p} V_{n+1,p}$$

$$V_{\infty} := \langle \dots, x_{-3}, x_{-2}, x_{-1}, x_1, x_2, x_3, \dots \rangle$$

$$V_{n,p} := \langle x_{-n}, \dots, x_{-1}, x_1, \dots, x_p \rangle \subseteq V_{\infty}$$

Diagram

Definition

 $\bigwedge^{\infty/2} V_{\infty} := \lim_{\to} \bigwedge^{p} V_{n,p}$ the infinite wedge (charge-0 part); basis $\{x_{I} := x_{i_{1}} \land x_{i_{2}} \land \cdots \}_{I}, I = \{i_{1} < i_{2} < \ldots\}, i_{k} = k \text{ for } k \gg 0$

$$V_{\infty} := \langle \dots, x_{-3}, x_{-2}, x_{-1}, x_1, x_2, x_3, \dots \rangle$$

$$V_{n,p} := \langle x_{-n}, \dots, x_{-1}, x_1, \dots, x_p \rangle \subseteq V_{\infty}$$

Diagram

Definition

 $\bigwedge^{\infty/2} V_{\infty} := \lim_{\to} \bigwedge^{p} V_{n,p}$ the infinite wedge (charge-0 part); basis $\{x_{I} := x_{i_{1}} \land x_{i_{2}} \land \cdots \}_{I}, I = \{i_{1} < i_{2} < \ldots\}, i_{k} = k \text{ for } k \gg 0$

$$On \bigwedge^{\infty/2} V_{\infty} acts \operatorname{GL}_{\infty} := \bigcup_{n,p} \operatorname{GL}(V_{n,p}).$$

Dual diagram

$$\bigwedge^{p} V_{np}^{*} \longleftarrow \bigwedge^{p+1} V_{n,p+1}^{*}$$

$$\bigwedge^{p} V_{n+1,p}^{*}$$

Dual diagram

$$\bigwedge^{p} V_{np}^{*} \longleftarrow \bigwedge^{p+1} V_{n,p+1}^{*}$$

$$\bigwedge^{p} V_{n+1,p}^{*}$$

 $\{\mathbf{X}_p\}_{p\geq 0}$ a Plücker variety \rightsquigarrow varieties $X_{n,p} := \mathbf{X}_p(V_{n,p}^*)$

Dual diagram

 $\{\mathbf{X}_p\}_{p\geq 0}$ a Plücker variety \rightsquigarrow varieties $X_{n,p} := \mathbf{X}_p(V_{n,p}^*)$

Dual diagram

 $\{\mathbf{X}_p\}_{p\geq 0}$ a Plücker variety \rightsquigarrow varieties $X_{n,p} := \mathbf{X}_p(V_{n,p}^*)$ $\rightsquigarrow \mathbf{X}_{\infty} := \lim_{\leftarrow} X_{n,p}$ is GL_{∞} -stable subvariety of $(\bigwedge^{\infty/2} V_{\infty})^*$

Dual diagram

 $\{\mathbf{X}_p\}_{p\geq 0}$ a Plücker variety \rightsquigarrow varieties $X_{n,p} := \mathbf{X}_p(V_{n,p}^*)$

 $\rightsquigarrow \mathbf{X}_{\infty} := \lim_{\leftarrow} X_{n,p}$ is $\operatorname{GL}_{\infty}$ -stable subvariety of $(\bigwedge^{\infty/2} V_{\infty})^*$

Theorem (implies other theorems) If **X** bounded $\rightsquigarrow X_{\infty}$ cut out by finitely many GL_{∞} -orbits of equations.

Definition

 $\mathbf{Gr}_{\infty} \subseteq (\bigwedge^{\infty/2} V_{\infty})^*$ is *Sato's Grassmannian* defined by polynomials $\sum_{i \in I} \pm x_{I-i} \cdot x_{J+i} = 0$ where $i_k = k - 1$ for $k \gg 0$ and $j_k = k + 1$ for $k \gg 0$

Definition $\mathbf{Gr}_{\infty} \subseteq (\bigwedge^{\infty/2} V_{\infty})^*$ is *Sato's Grassmannian* defined by polynomials $\sum_{i \in I} \pm x_{I-i} \cdot x_{J+i} = 0$ where $i_k = k - 1$ for $k \gg 0$ and $j_k = k + 1$ for $k \gg 0$ \rightsquigarrow *not finitely many* GL_{∞} *-orbits*

Definition $\mathbf{Gr}_{\infty} \subseteq (\bigwedge^{\infty/2} V_{\infty})^*$ is *Sato's Grassmannian* defined by polynomials $\sum_{i \in I} \pm x_{I-i} \cdot x_{J+i} = 0$ where $i_k = k - 1$ for $k \gg 0$ and $j_k = k + 1$ for $k \gg 0$ \rightsquigarrow *not finitely many* GL_{∞} -*orbits*

Definition $\mathbf{Gr}_{\infty} \subseteq (\bigwedge^{\infty/2} V_{\infty})^*$ is *Sato's Grassmannian* defined by polynomials $\sum_{i \in I} \pm x_{I-i} \cdot x_{J+i} = 0$ where $i_k = k - 1$ for $k \gg 0$ and $j_k = k + 1$ for $k \gg 0$ \rightsquigarrow *not finitely many* GL_{∞} *-orbits*

defines Gr_{∞} set-theoretically.

Our theorems imply that also higher secant varieties of Sato's Grassmannian are defined by finitely many GL_{∞} -orbits of equations. . . *we just don't know which!*

Setting

X bounded Plücker variety $\rightsquigarrow \exists n_0, p_0$ such that GL_{∞} -orbits of equations of $X_{n_0,p_0} \subseteq \bigwedge^{p_0} V_{n_0,p_0}^*$ define $\mathbf{X}_{\infty} \subseteq (\bigwedge^{\infty/2} V_{\infty})^*$.

Setting

X bounded Plücker variety $\rightsquigarrow \exists n_0, p_0$ such that GL_{∞} -orbits of equations of $X_{n_0,p_0} \subseteq \bigwedge^{p_0} V_{n_0,p_0}^*$ define $\mathbf{X}_{\infty} \subseteq (\bigwedge^{\infty/2} V_{\infty})^*$.

Shape of randomised algorithm Input: $p, V, T \in \bigwedge^p V$ Output: $T \in X_p(V)$?

Setting

X bounded Plücker variety $\rightsquigarrow \exists n_0, p_0$ such that GL_{∞} -orbits of equations of $X_{n_0,p_0} \subseteq \bigwedge^{p_0} V^*_{n_0,p_0}$ define $\mathbf{X}_{\infty} \subseteq (\bigwedge^{\infty/2} V_{\infty})^*$.

Shape of randomised algorithm Input: $p, V, T \in \bigwedge^p V$ Output: $T \in X_p(V)$?

1. $n := \dim V - p$ 2. pick random linear iso $\varphi : V \to V_{n,p}^*$ 3. set $T' := (\bigwedge^p \varphi)T$

Setting

X bounded Plücker variety $\rightsquigarrow \exists n_0, p_0$ such that GL_{∞} -orbits of equations of $X_{n_0,p_0} \subseteq \bigwedge^{p_0} V^*_{n_0,p_0}$ define $\mathbf{X}_{\infty} \subseteq (\bigwedge^{\infty/2} V_{\infty})^*$.

Shape of randomised algorithm Input: $p, V, T \in \bigwedge^p V$ Output: $T \in X_p(V)$?

1. $n := \dim V - p$ 2. pick random linear iso $\varphi : V \to V_{n,p}^*$ 3. set $T' := (\bigwedge^p \varphi)T$ 4. set $T'' := \text{image of } T' \text{ in } V_{n_0,p_0}^*$ 5. return $T'' \in X_{n_0,p_0}$?

Pfaffians $Y^{k,l} := \{t \in (\bigwedge^{\infty/2} V_{\infty})^* \mid \forall g \in GL_{\infty} :$ image of *gt* in $\bigwedge^2 V_{2,2l}$ has rank ≤ 2*l* and image of *gt* in $\bigwedge^{2k} V_{2k,2}$ has rank ≤ 2*k*}. ~→ defined by orbits of two Pfaffians

Pfaffians $Y^{k,l} := \{t \in (\bigwedge^{\infty/2} V_{\infty})^* \mid \forall g \in GL_{\infty} :$ image of *gt* in $\bigwedge^2 V_{2,2l}$ has rank ≤ 2*l* and image of *gt* in $\bigwedge^{2k} V_{2k,2}$ has rank ≤ 2*k*}. ~→ defined by orbits of two Pfaffians

Theorem (implies earlier) $Y^{k,l}$ is GL_{∞} -Noetherian

Pfaffians $Y^{k,l} := \{t \in (\bigwedge^{\infty/2} V_{\infty})^* \mid \forall g \in GL_{\infty} :$ image of *gt* in $\bigwedge^2 V_{2,2l}$ has rank ≤ 2*l* and image of *gt* in $\bigwedge^{2k} V_{2k,2}$ has rank ≤ 2*k*}. ~→ defined by orbits of two Pfaffians

Theorem (implies earlier) $Y^{k,l}$ is GL_{∞} -Noetherian

Don't get new equations for secant varieties of Grassmannians!

Pfaffians $Y^{k,l} := \{t \in (\bigwedge^{\infty/2} V_{\infty})^* \mid \forall g \in GL_{\infty} :$ image of *gt* in $\bigwedge^2 V_{2,2l}$ has rank ≤ 2*l* and image of *gt* in $\bigwedge^{2k} V_{2k,2}$ has rank ≤ 2*k*}. ~→ defined by orbits of two Pfaffians

Theorem (implies earlier) $Y^{k,l}$ is GL_{∞} -Noetherian

Don't get new equations for secant varieties of Grassmannians!

Problem

How to make things work ideal-theoretically? Landsberg-Ottaviani's *skew flattenings*?