Higher Secants of Sato's Grassmannian

Jan Draisma
TU Eindhoven

SIAM AG, Fort Collins, August 2, 2013

Grassmannians: functoriality and duality

V finite-dimensional vector space
$\mathbf{G r}_{p}(V):=\left\{v_{1} \wedge \cdots \wedge v_{p} \mid v_{i} \in V\right\} \subseteq \Lambda^{p} V$ cone over Grassmannian
rank-one alternating tensors

Grassmannians: functoriality and duality

V finite-dimensional vector space
$\operatorname{Gr}_{p}(V):=\left\{v_{1} \wedge \cdots \wedge v_{p} \mid v_{i} \in V\right\} \subseteq \Lambda^{p} V$ cone over Grassmannian
rank-one alternating tensors

Two properties:

1. if $\varphi: V \rightarrow W$ linear
$\rightsquigarrow \bigwedge^{p} \varphi: \bigwedge^{p} V \rightarrow \bigwedge^{p} W$
maps $\mathbf{G r}_{p}(V) \rightarrow \mathbf{G r}_{p}(W)$

Grassmannians: functoriality and duality

V finite-dimensional vector space
$\operatorname{Gr}_{p}(V):=\left\{v_{1} \wedge \cdots \wedge v_{p} \mid v_{i} \in V\right\} \subseteq \Lambda^{p} V$ cone over Grassmannian
rank-one alternating tensors

Two properties:

1. if $\varphi: V \rightarrow W$ linear
$\rightsquigarrow \bigwedge^{p} \varphi: \bigwedge^{p} V \rightarrow \bigwedge^{p} W$
maps $\mathbf{G r}_{p}(V) \rightarrow \mathbf{G r}_{p}(W)$
2. if $\operatorname{dim} V=: n+p$
\rightsquigarrow natural map $\bigwedge^{p} V \rightarrow\left(\bigwedge^{n} V\right)^{*} \rightarrow \bigwedge^{n}\left(V^{*}\right)$
$\operatorname{maps} \mathbf{G r}_{p}(V) \rightarrow \mathbf{G r}_{n-p}\left(V^{*}\right)$

Plücker varieties

Definition
 Rules $\mathbf{X}_{0}, \mathbf{X}_{1}, \mathbf{X}_{2}, \ldots$ with

$\mathbf{X}_{p}:\{$ vector spaces $V\} \rightarrow\left\{\right.$ varieties in $\left.\bigwedge^{p} V\right\}$

Plücker varieties

Definition

Rules $\mathbf{X}_{0}, \mathbf{X}_{1}, \mathbf{X}_{2}, \ldots$ with
$\mathbf{X}_{p}:\{$ vector spaces $V\} \rightarrow\left\{\right.$ varieties in $\left.\wedge^{p} V\right\}$
form a Plücker variety if

1. $\varphi: V \rightarrow W \rightsquigarrow \bigwedge^{p} \varphi \operatorname{maps} \mathbf{X}_{p}(V) \rightarrow \mathbf{X}_{p}(W)$
2. $\bigwedge^{p} V \rightarrow \bigwedge^{n}\left(V^{*}\right) \operatorname{maps} \mathbf{X}_{p}(V) \rightarrow \mathbf{X}_{n}\left(V^{*}\right)$.

Plücker varieties

Definition

Rules $\mathbf{X}_{0}, \mathbf{X}_{1}, \mathbf{X}_{2}, \ldots$ with
$\mathbf{X}_{p}:\{$ vector spaces $V\} \rightarrow\left\{\right.$ varieties in $\left.\bigwedge^{p} V\right\}$
form a Plücker variety if

1. $\varphi: V \rightarrow W \rightsquigarrow \bigwedge^{p} \varphi \operatorname{maps} \mathbf{X}_{p}(V) \rightarrow \mathbf{X}_{p}(W)$
2. $\bigwedge^{p} V \rightarrow \bigwedge^{n}\left(V^{*}\right) \operatorname{maps} \mathbf{X}_{p}(V) \rightarrow \mathbf{X}_{n}\left(V^{*}\right)$.

Constructions
X, Y Plücker varieties \rightsquigarrow so are
$\mathbf{X}+\mathbf{Y}($ join $), \tau \mathbf{X}$ (tangential),
$\mathbf{X} \cup \mathbf{Y}, \mathbf{X} \cap \mathbf{Y}$

Plücker varieties

Definition

Rules $\mathbf{X}_{0}, \mathbf{X}_{1}, \mathbf{X}_{2}, \ldots$ with
$\mathbf{X}_{p}:\{$ vector spaces $V\} \rightarrow\left\{\right.$ varieties in $\left.\bigwedge^{p} V\right\}$
form a Plücker variety if

1. $\varphi: V \rightarrow W \rightsquigarrow \bigwedge^{p} \varphi \operatorname{maps} \mathbf{X}_{p}(V) \rightarrow \mathbf{X}_{p}(W)$
2. $\bigwedge^{p} V \rightarrow \bigwedge^{n}\left(V^{*}\right) \operatorname{maps} \mathbf{X}_{p}(V) \rightarrow \mathbf{X}_{n}\left(V^{*}\right)$.

Constructions

\mathbf{X}, \mathbf{Y} Plücker varieties \rightsquigarrow so are
$\mathbf{X}+\mathbf{Y}($ join $), \tau \mathbf{X}$ (tangential),
$\mathbf{X} \cup \mathbf{Y}, \mathbf{X} \cap \mathbf{Y}$
skew analogue of Snowden's Δ-varieties

Results, with Eggermont

Definition
Plücker variety $\left\{\boldsymbol{X}_{p}\right\}_{p}$ is bounded if $\exists V: \mathbf{X}_{2}(V) \neq \bigwedge^{2} V$

Results, with Eggermont

Definition

Plücker variety $\left\{\mathbf{X}_{p}\right\}_{p}$ is bounded
if $\exists V: \mathbf{X}_{2}(V) \neq \bigwedge^{2} V$

Theorem

Any bounded Plücker variety is defined
 set-theoretically in bounded degree, by finitely many equations up to symmetry.

Results, with Eggermont

Definition

Plücker variety $\left\{\mathbf{X}_{p}\right\}_{p}$ is bounded
if $\exists V: \mathbf{X}_{2}(V) \neq \bigwedge^{2} V$

Theorem

Any bounded Plücker variety is defined
 set-theoretically in bounded degree, by finitely many equations up to symmetry.

Theorem

For any fixed bounded Plücker variety there exists a polynomial-time membership test.

Results, with Eggermont

Definition

Plücker variety $\left\{\mathbf{X}_{p}\right\}_{p}$ is bounded
if $\exists V: \mathbf{X}_{2}(V) \neq \bigwedge^{2} V$

Theorem

Any bounded Plücker variety is defined
 set-theoretically in bounded degree, by finitely many equations up to symmetry.

Theorem

For any fixed bounded Plücker variety there exists a polynomial-time membership test.

Theorems apply, in particular, to $k \mathrm{Gr}=\{$ alternating tensors of alternating rank $\leq k\}$.

The infinite wedge

$$
\begin{aligned}
& V_{\infty}:=\left\langle\ldots, x_{-3}, x_{-2}, x_{-1}, x_{1}, x_{2}, x_{3}, \ldots\right\rangle \\
& V_{n, p}:=\left\langle x_{-n}, \ldots, x_{-1}, x_{1}, \ldots, x_{p}\right\rangle \subseteq V_{\infty}
\end{aligned}
$$

The infinite wedge

$$
\begin{aligned}
V_{\infty} & :=\left\langle\ldots, x_{-3}, x_{-2}, x_{-1}, x_{1}, x_{2}, x_{3}, \ldots\right\rangle \\
V_{n, p} & :=\left\langle x_{-n}, \ldots, x_{-1}, x_{1}, \ldots, x_{p}\right\rangle \subseteq V_{\infty}
\end{aligned}
$$

Diagram

$$
\begin{array}{ll}
\Lambda^{p} V_{n p} & \Lambda^{p+1} V_{n, p+1} \\
\vdots \\
\Lambda^{p} V_{n+1, p} & \\
\end{array}
$$

The infinite wedge

$$
\begin{aligned}
V_{\infty} & :=\left\langle\ldots, x_{-3}, x_{-2}, x_{-1}, x_{1}, x_{2}, x_{3}, \ldots\right\rangle \\
V_{n, p} & :=\left\langle x_{-n}, \ldots, x_{-1}, x_{1}, \ldots, x_{p}\right\rangle \subseteq V_{\infty}
\end{aligned}
$$

Diagram
$\Lambda^{0} V_{00} \rightarrow \Lambda^{1} V_{01} \rightarrow \bigwedge^{2} V_{02} \rightarrow$
$\Lambda^{p} V_{n p} \rightarrow \Lambda^{p+1} V_{n, p+1}$ $t \mapsto t \wedge v_{p+1}$
$\bigwedge^{p} V_{n+1, p}$

The infinite wedge

$$
\begin{aligned}
V_{\infty} & :=\left\langle\ldots, x_{-3}, x_{-2}, x_{-1}, x_{1}, x_{2}, x_{3}, \ldots\right\rangle \\
V_{n, p} & :=\left\langle x_{-n}, \ldots, x_{-1}, x_{1}, \ldots, x_{p}\right\rangle \subseteq V_{\infty}
\end{aligned}
$$

Diagram
$\bigwedge^{0} V_{00} \rightarrow \bigwedge^{1} V_{01} \rightarrow \bigwedge^{2} V_{02} \rightarrow$

$$
\begin{gathered}
\bigwedge^{p} V_{n p} \rightarrow \bigwedge^{p+1} V_{n, p+1} \\
\downarrow \mapsto \mapsto v_{p+1}
\end{gathered}
$$

$$
\bigwedge^{p} V_{n+1, p}
$$

Definition

$\bigwedge^{\infty / 2} V_{\infty}:=\lim _{\rightarrow} \bigwedge^{p} V_{n, p}$ the infinite wedge (charge-0 part); basis $\left\{x_{I}:=x_{i_{1}} \wedge x_{i_{2}} \wedge \cdots\right\}_{I}, I=\left\{i_{1}<i_{2}<\ldots\right\}, i_{k}=k$ for $k \gg 0$

The infinite wedge

$$
\begin{aligned}
V_{\infty} & :=\left\langle\ldots, x_{-3}, x_{-2}, x_{-1}, x_{1}, x_{2}, x_{3}, \ldots\right\rangle \\
V_{n, p} & :=\left\langle x_{-n}, \ldots, x_{-1}, x_{1}, \ldots, x_{p}\right\rangle \subseteq V_{\infty}
\end{aligned}
$$

Diagram
$\bigwedge^{0} V_{00} \rightarrow \bigwedge^{1} V_{01} \rightarrow \bigwedge^{2} V_{02} \rightarrow$

$$
\begin{gathered}
\bigwedge^{p} V_{n p} \rightarrow \underset{t}{\rightarrow} \bigwedge^{p+1} V_{n, p+1} \\
\downarrow \uparrow v_{p+1}
\end{gathered}
$$

$\wedge^{p} V_{n+1, p}$

Definition

$\bigwedge^{\infty / 2} V_{\infty}:=\lim _{\rightarrow} \bigwedge^{p} V_{n, p}$ the infinite wedge (charge-0 part); basis $\left\{x_{I}:=x_{i_{1}} \wedge x_{i_{2}} \wedge \cdots\right\}_{I}, I=\left\{i_{1}<i_{2}<\ldots\right\}, i_{k}=k$ for $k \gg 0$

On $\wedge^{\infty / 2} V_{\infty}$ acts $\mathrm{GL}_{\infty}:=\bigcup_{n, p} \mathrm{GL}\left(V_{n, p}\right)$.

The limit of a Plücker variety

Dual diagram

$$
\begin{aligned}
& \Lambda^{p} V_{n p}^{*} \longleftarrow \bigwedge^{p+1} V_{n, p+1}^{*} \\
& \Lambda^{p} V_{n+1, p}^{*}
\end{aligned}
$$

The limit of a Plücker variety

Dual diagram

$\left\{\mathbf{X}_{p}\right\}_{p \geq 0}$ a Plücker variety \rightsquigarrow varieties $X_{n, p}:=\mathbf{X}_{p}\left(V_{n, p}^{*}\right)$

The limit of a Plücker variety

Dual diagram

$\left\{\mathbf{X}_{p}\right\}_{p \geq 0}$ a Plücker variety \rightsquigarrow varieties $X_{n, p}:=\mathbf{X}_{p}\left(V_{n, p}^{*}\right)$

The limit of a Plücker variety

Dual diagram

$$
\bigwedge^{p} V_{n p}^{*} \longleftarrow \bigwedge^{p+1} V_{n, p+1}^{*}
$$

$\left\{\boldsymbol{X}_{p}\right\}_{p \geq 0}$ a Plücker variety \rightsquigarrow varieties $X_{n, p}:=\mathbf{X}_{p}\left(V_{n, p}^{*}\right)$ $\rightsquigarrow \mathbf{X}_{\infty}:=\lim _{\leftarrow} X_{n, p}$ is GL_{∞}-stable subvariety of $\left(\bigwedge^{\infty / 2} V_{\infty}\right)^{*}$

The limit of a Plücker variety

Dual diagram

$$
\bigwedge^{p} V_{n p}^{*} \longleftarrow \bigwedge^{p+1} V_{n, p+1}^{*}
$$

$\left\{\boldsymbol{X}_{p}\right\}_{p \geq 0}$ a Plücker variety \rightsquigarrow varieties $X_{n, p}:=\mathbf{X}_{p}\left(V_{n, p}^{*}\right)$
$\rightsquigarrow \mathbf{X}_{\infty}:=\lim _{\leftarrow} X_{n, p}$ is GL_{∞}-stable subvariety of $\left(\bigwedge^{\infty / 2} V_{\infty}\right)^{*}$
Theorem (implies other theorems)
If \mathbf{X} bounded $\rightsquigarrow \mathbf{X}_{\infty}$ cut out by finitely many GL_{∞}-orbits of equations.

Sato's Grassmannian

Definition

$\mathbf{G r}_{\infty} \subseteq\left(\bigwedge^{\infty / 2} V_{\infty}\right)^{*}$ is Sato's Grassmannian defined by polynomials $\sum_{i \in I} \pm x_{I-i} \cdot x_{I+i}=0$ where $i_{k}=k-1$ for $k \gg 0$ and $j_{k}=k+1$ for $k \gg 0$

Sato's Grassmannian

Definition

$\mathbf{G r}_{\infty} \subseteq\left(\bigwedge^{\infty / 2} V_{\infty}\right)^{*}$ is Sato's Grassmannian defined by polynomials $\sum_{i \in I} \pm x_{I-i} \cdot x_{I+i}=0$ where $i_{k}=k-1$ for $k \gg 0$ and $j_{k}=k+1$ for $k \gg 0$
\rightsquigarrow not finitely many GL_{∞}-orbits

Sato's Grassmannian

Definition

$\mathbf{G r}_{\infty} \subseteq\left(\bigwedge^{\infty / 2} V_{\infty}\right)^{*}$ is Sato's Grassmannian defined by polynomials $\sum_{i \in I} \pm x_{I-i} \cdot x_{I+i}=0$
where $i_{k}=k-1$ for $k \gg 0$ and $j_{k}=k+1$ for $k \gg 0$
\rightsquigarrow not finitely many GL_{∞}-orbits
But in fact the GL_{∞}-orbit of

$$
\begin{array}{r}
\left(x_{-2,-1,3, \ldots} \cdot x_{1,2,3, \ldots}\right)-\left(x_{-2,1,3, \ldots} \cdot x_{-1,2,3, \ldots}\right)+\left(x_{-2,2,3, \ldots} \cdot x_{-1,1,3, \ldots}\right) \\
\begin{array}{|l|l|}
\hline
\end{array} \\
\hline
\end{array}
$$

defines $\mathbf{G r}_{\infty}$ set-theoretically.

Sato's Grassmannian

Definition

$\mathbf{G r}_{\infty} \subseteq\left(\bigwedge^{\infty / 2} V_{\infty}\right)^{*}$ is Sato's Grassmannian defined by polynomials $\sum_{i \in I} \pm x_{I-i} \cdot x_{J+i}=0$
where $i_{k}=k-1$ for $k \gg 0$ and $j_{k}=k+1$ for $k \gg 0$
\rightsquigarrow not finitely many GL_{∞}-orbits
But in fact the GL_{∞}-orbit of

$$
\begin{array}{r}
\left(x_{-2,-1,3, \ldots} \cdot x_{1,2,3, \ldots}\right)-\left(x_{-2,1,3, \ldots} \cdot x_{-1,2,3, \ldots}\right)+\left(x_{-2,2,3, \ldots} \cdot x_{-1,1,3, \ldots}\right) \\
\begin{array}{|l|l|l|l|l|}
\\
\hline
\end{array} \\
\end{array}
$$

defines $\mathbf{G r}_{\infty}$ set-theoretically.
Our theorems imply that also higher secant varieties of Sato's Grassmannian are defined by finitely many GL ∞_{∞}-orbits of equations. . . we just don't know which!

Poly time

Setting

\mathbf{X} bounded Plücker variety $\rightsquigarrow \exists n_{0}, p_{0}$ such that GL_{∞}-orbits of equations of $X_{n_{0}, p_{0}} \subseteq \bigwedge^{p_{0}} V_{n_{0}, p_{0}}^{*}$ define $\mathbf{X}_{\infty} \subseteq\left(\bigwedge^{\infty / 2} V_{\infty}\right)^{*}$.

Poly time

Setting

\mathbf{X} bounded Plücker variety $\rightsquigarrow \exists n_{0}, p_{0}$ such that GL_{∞}-orbits of equations of $X_{n_{0}, p_{0}} \subseteq \bigwedge^{p_{0}} V_{n_{0}, p_{0}}^{*}$ define $\mathbf{X}_{\infty} \subseteq\left(\bigwedge^{\infty / 2} V_{\infty}\right)^{*}$.

Shape of randomised algorithm
Input: $p, V, T \in \bigwedge^{p} V$
Output: $T \in X_{p}(V)$?

Poly time

Setting

\mathbf{X} bounded Plücker variety $\rightsquigarrow \exists n_{0}, p_{0}$ such that GL_{∞}-orbits of equations of $X_{n_{0}, p_{0}} \subseteq \bigwedge^{p_{0}} V_{n_{0}, p_{0}}^{*}$ define $\mathbf{X}_{\infty} \subseteq\left(\bigwedge^{\infty / 2} V_{\infty}\right)^{*}$.

Shape of randomised algorithm
Input: $p, V, T \in \bigwedge^{p} V$
Output: $T \in X_{p}(V)$?

1. $n:=\operatorname{dim} V-p$
2. pick random linear iso $\varphi: V \rightarrow V_{n, p}^{*}$
3. set $T^{\prime}:=\left(\bigwedge^{p} \varphi\right) T$

Poly time

Setting

\mathbf{X} bounded Plücker variety $\rightsquigarrow \exists n_{0}, p_{0}$ such that GL_{∞}-orbits of equations of $X_{n_{0}, p_{0}} \subseteq \bigwedge^{p_{0}} V_{n_{0}, p_{0}}^{*}$ define $\mathbf{X}_{\infty} \subseteq\left(\bigwedge^{\infty / 2} V_{\infty}\right)^{*}$.

Shape of randomised algorithm
Input: $p, V, T \in \bigwedge^{p} V$
Output: $T \in X_{p}(V)$?

1. $n:=\operatorname{dim} V-p$
2. pick random linear iso $\varphi: V \rightarrow V_{n, p}^{*}$
3. set $T^{\prime}:=\left(\bigwedge^{p} \varphi\right) T$
4. set $T^{\prime \prime}:=$ image of T^{\prime} in $V_{n_{0}, p_{0}}^{*}$

5. return $T^{\prime \prime} \in X_{n_{0}, p_{0}}$?

Wrapping up

Pfaffians

$$
Y^{k, l}:=\left\{t \in\left(\bigwedge^{\infty / 2} V_{\infty}\right)^{*} \mid \forall g \in \mathrm{GL}_{\infty}:\right.
$$

image of $g t$ in $\Lambda^{2} V_{2,2 l}$ has rank $\leq 2 l$ and image of $g t$ in $\bigwedge^{2 k} V_{2 k, 2}$ has rank $\left.\leq 2 k\right\}$.
\rightsquigarrow defined by orbits of two Pfaffians

Wrapping up

Pfaffians

$$
Y^{k, l}:=\left\{t \in\left(\bigwedge^{\infty / 2} V_{\infty}\right)^{*} \mid \forall g \in \mathrm{GL}_{\infty}:\right.
$$

$$
\text { image of } g t \text { in } \bigwedge^{2} V_{2,2 l} \text { has rank } \leq 2 l \text { and }
$$ image of $g t$ in $\bigwedge^{2 k} V_{2 k, 2}$ has rank $\left.\leq 2 k\right\}$.

\rightsquigarrow defined by orbits of two Pfaffians
Theorem (implies earlier)
$Y^{k, l}$ is GL_{∞}-Noetherian

Wrapping up

Pfaffians

$Y^{k, l}:=\left\{t \in\left(\bigwedge^{\infty / 2} V_{\infty}\right)^{*} \mid \forall g \in \mathrm{GL}_{\infty}\right.$:
image of $g t$ in $\bigwedge^{2} V_{2,2 l}$ has rank $\leq 2 l$ and image of $g t$ in $\bigwedge^{2 k} V_{2 k, 2}$ has rank $\left.\leq 2 k\right\}$.
\rightsquigarrow defined by orbits of two Pfaffians
Theorem (implies earlier)
$Y^{k, l}$ is GL_{∞}-Noetherian
Don't get new equations for secant varieties of Grassmannians!

Wrapping up

Pfaffians

$$
Y^{k, l}:=\left\{t \in\left(\bigwedge^{\infty / 2} V_{\infty}\right)^{*} \mid \forall g \in \mathrm{GL}_{\infty}:\right.
$$

image of $g t$ in $\Lambda^{2} V_{2,2 l}$ has rank $\leq 2 l$ and image of $g t$ in $\bigwedge^{2 k} V_{2 k, 2}$ has rank $\left.\leq 2 k\right\}$.
\rightsquigarrow defined by orbits of two Pfaffians
Theorem (implies earlier)
$Y^{k, l}$ is GL_{∞}-Noetherian
Don't get new equations for secant varieties of Grassmannians!

Problem

How to make things work ideal-theoretically?
Landsberg-Ottaviani's skew flattenings?

