

A tropical approach to secant dimensions

Jan Draisma j.draisma@tue.nl

October 2011

SIAM conference Applications of Algebraic Geometry North Carolina State University

A tropical approach to secant dimensions

Jan Draisma j.draisma@tue.nl

October 2011

SIAM conference Applications of Algebraic Geometry North Carolina State University

Slicing the cube

Question

For $n \neq 4$ does $C = \{0,1\}^n$ have a regular partition into $C_1, \ldots, C_k, C_{k+1}$ with

- \bullet C_1, \ldots, C_k affine bases of \mathbb{R}^n and
- C_{k+1} affinely independent? $(k = \lfloor \frac{2^n}{n+1} \rfloor)$

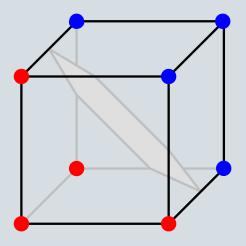
This would imply:

Theorem (Catalisano, Geramita, Gimigliano)

For $n \neq 4$ the *n*-th Segre power of \mathbb{P}^1 has no defective higher secant varieties.

Regular partitions

$$f_1, \dots, f_{k+1} : \mathbb{R}^n \to \mathbb{R}$$
 affine linear $C_i = \{ v \in C \mid f_i(v) < f_{j \neq i}(v) \}$



Slicing the cube

Question

For $n \neq 4$ does $C = \{0,1\}^n$ have a regular partition into $C_1, \ldots, C_k, C_{k+1}$ with

- \bullet C_1, \ldots, C_k affine bases of \mathbb{R}^n and
- C_{k+1} affinely independent? $(k = \lfloor \frac{2^n}{n+1} \rfloor)$

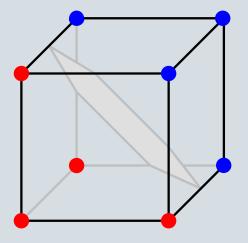
This would imply:

Theorem (Catalisano, Geramita, Gimigliano)

For $n \neq 4$ the *n*-th Segre power of \mathbb{P}^1 has no defective higher secant varieties.

Regular partitions

$$f_1, \dots, f_{k+1} : \mathbb{R}^n \to \mathbb{R}$$
 affine linear $C_i = \{ v \in C \mid f_i(v) < f_{j \neq i}(v) \}$



Secant varieties

$$arphi=(x^{lpha_1},\ldots,x^{lpha_p}):\mathbb{C}^n o \mathbb{C}^p$$
 monomial map (can be weakened) $X:=\overline{\operatorname{im} arphi}$ $kX:=\overline{\{u_1+\ldots+u_k\mid u_i\in X\}}$ k -th secant variety expect $\dim kX=\min\{k\dim X,p\}$ kX called defective otherwise

Interesting X pure tensors (Segre) powers of linear forms (Veronese) Segre-Veronese embeddings

pure alternating powers (Plücker)

Theorem (Abo-Ottaviani-Peterson)
Grassmannians of planes are
mostly non-defective.

Tropical approach

$$C = \{\alpha_1, \dots, \alpha_p\} \subseteq \mathbb{N}^n$$

 $f_1, \dots, f_k : \mathbb{R}^n \to \mathbb{R} \text{ linear}$
 $C_i := \{\alpha_q \mid f_i(\alpha_q) < f_{j \neq i}(\alpha_q)\}$

Theorem

 $\dim kX$ is at least $\sum_i \dim \langle C_i \rangle_{\mathbb{R}} =: H(f_1, \ldots, f_k)$. (The art is to maximise H.)

Ciliberto-Dumitrescu-Miranda degenerations

Develin, D—tropical:

- Trop φ is linear map $\mathbb{R}^n \to \mathbb{R}^p$;
- $\max_{(f_1,...,f_k)} H$ is dimension of k-th tropical secant variety of $\operatorname{Trop} X$, contained in $\operatorname{Trop} kX$;
- $\dim_{\mathbb{R}} \operatorname{Trop} kX = \dim_{\mathbb{C}} kX$.

Secant varieties

 $arphi=(x^{lpha_1},\ldots,x^{lpha_p}):\mathbb{C}^n o \mathbb{C}^p$ monomial map (can be weakened) $X:=\overline{\operatorname{im} arphi}$ $kX:=\overline{\{u_1+\ldots+u_k\mid u_i\in X\}}$ k-th secant variety expect $\dim kX=\min\{k\dim X,p\}$ kX called defective otherwise

Interesting X

pure tensors (Segre) powers of linear forms (Veronese) Segre-Veronese embeddings pure alternating powers (Plücker)

Theorem (Abo-Ottaviani-Peterson)

Grassmannians of planes are mostly non-defective.

Tropical approach

$$C = \{\alpha_1, \dots, \alpha_p\} \subseteq \mathbb{N}^n$$

 $f_1, \dots, f_k : \mathbb{R}^n \to \mathbb{R} \text{ linear}$
 $C_i := \{\alpha_q \mid f_i(\alpha_q) < f_{j \neq i}(\alpha_q)\}$

Theorem

 $\dim kX$ is at least $\sum_i \dim \langle C_i \rangle_{\mathbb{R}} =: H(f_1, \ldots, f_k)$. (The art is to maximise H.)

Ciliberto-Dumitrescu-Miranda degenerations

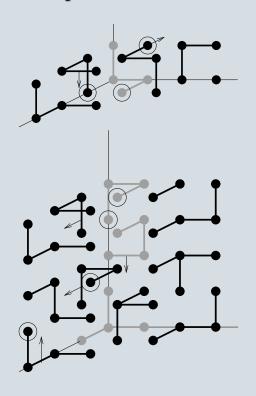
Develin, D—tropical:

- \bullet Trop φ is linear map $\mathbb{R}^n \to \mathbb{R}^p$;
- $\max_{(f_1,...,f_k)} H$ is dimension of k-th tropical secant variety of $\operatorname{Trop} X$, contained in $\operatorname{Trop} kX$;
- $\bullet \dim_{\mathbb{R}} \operatorname{Trop} kX = \dim_{\mathbb{C}} kX.$

A Segre-Veronese example

Theorem (Baur-D)

All Segre-Veronese embeddings of $\mathbb{P}^1 \times \mathbb{P}^2$ are non-defective, except an explicit list.

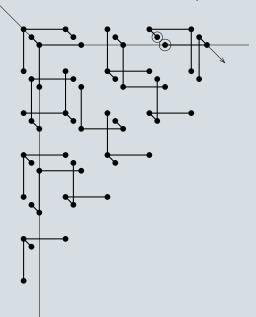


A non-monomial example

F variety of point-line flags in \mathbb{P}^2

Theorem (Baur-D)

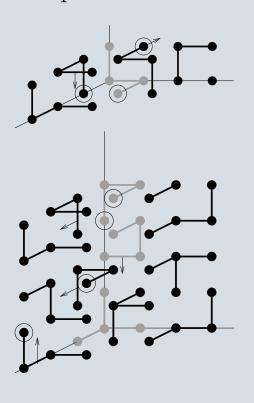
All SL_3 -equivariant embeddings of F into projective spaces are non-defective, except into V_{λ} with λ once or twice the adjoint weight.



A Segre-Veronese example

Theorem (Baur-D)

All Segre-Veronese embeddings of $\mathbb{P}^1 \times \mathbb{P}^2$ are non-defective, except an explicit list.

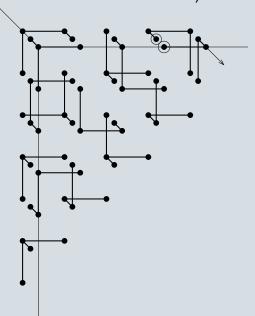


A non-monomial example

F variety of point-line flags in \mathbb{P}^2

Theorem (Baur-D)

All SL_3 -equivariant embeddings of F into projective spaces are non-defective, except into V_{λ} with λ once or twice the adjoint weight.



Thank you!

Questions?