Ranks and Nuclear Norms of Tensors

Harm Derksen

University of Michigan

August 2, 2013

Tensor Rank

 $V^{(1)}, V^{(2)}, \dots, V^{(d)}$ finite dimensional Hilbert spaces and let

$$V = V^{(1)} \otimes V^{(2)} \otimes \cdots \otimes V^{(d)}$$
.

A pure tensor is a tensor of the form

$$v = v^{(1)} \otimes v^{(2)} \otimes \cdots \otimes v^{(d)} \in V.$$

Definition

The rank of a tensor $T \in V$ is the smallest nonnegative integer r such that we can write T as a sum of r pure tensors.

It is difficult to determine the rank of a tensor.

Example: Matrix Multiplication

$$V=\mathsf{Mat}_{n,n}(\mathbb{C})\otimes\mathsf{Mat}_{n,n}(\mathbb{C})\otimes\mathsf{Mat}_{n,n}(\mathbb{C})$$

$$T_n = \sum_{i,j,k=1}^n e_{i,j} \otimes e_{j,k} \otimes e_{k,i}$$

rank(T_n) is the number of multiplications needed to multiply two $n \times n$ matrices. Clearly rank(T_n) $\leq n^3$.

Example: Matrix Multiplication

$$V=\mathsf{Mat}_{n,n}(\mathbb{C})\otimes\mathsf{Mat}_{n,n}(\mathbb{C})\otimes\mathsf{Mat}_{n,n}(\mathbb{C})$$

$$T_n = \sum_{i,j,k=1}^n e_{i,j} \otimes e_{j,k} \otimes e_{k,i}$$

rank(T_n) is the number of multiplications needed to multiply two $n \times n$ matrices. Clearly rank(T_n) $\leq n^3$.

Theorem

If
$$\operatorname{rank}(T_m) \leq k$$
, then $\operatorname{rank}(T_n) = O(n^{\log_m(k)})$.

Example: Matrix Multiplication

Theorem (Strassen 1969)

$$\operatorname{rank}(T_2) \le 7$$
, so $\operatorname{rank}(T_n) = O(n^{\log_2(7)}) = O(n^{2.8073...})$.

Theorem (Williams 2012)

$$\operatorname{rank}(T_n) = O(n^{2.3727})$$

Theorem (Landsberg 2012)

$$rank(T_n) \ge 3n^2 - 4n^{3/2} + n.$$

Motivation/Digression: Convex Relaxation

Suppose $A \in \operatorname{Mat}_{m,n}(\mathbb{C})$, $b \in \mathbb{C}^n$ and you want to solve a linear system Ax = b where $x \in \mathbb{C}^m$ is a sparse vector. Want to minimize

$$||x||_0 = \#\{i \mid x_i \neq 0\}.$$

But, $\|\cdot\|_0$ is not convex and this optimization problem is difficult.

Instead, minimize the convex function $||x||_1$. Often this will also give the optimal solution for $||\cdot||_0$.

Motivation/Digression: Convex Relaxation

Suppose $A \in \operatorname{Mat}_{m,n}(\mathbb{C})$, $b \in \mathbb{C}^n$ and you want to solve a linear system Ax = b where $x \in \mathbb{C}^m$ is a sparse vector. Want to minimize

$$||x||_0 = \#\{i \mid x_i \neq 0\}.$$

But, $\|\cdot\|_0$ is not convex and this optimization problem is difficult.

Instead, minimize the convex function $||x||_1$. Often this will also give the optimal solution for $||\cdot||_0$.

The tensor rank is not convex, so we can use convex relaxation.

Nuclear Norm

Definition

The nuclear norm $||T||_{\star}$ is the smallest value of $\sum_{i=1}^{r} ||v_i||$ where $T = \sum_{i=1}^{r} v_i$ and v_1, \ldots, v_r are pure tensors.

Nuclear Norm

Definition

The nuclear norm $||T||_{\star}$ is the smallest value of $\sum_{i=1}^{r} ||v_i||$ where $T = \sum_{i=1}^{r} v_i$ and v_1, \ldots, v_r are pure tensors.

Theorem (D.)

For the matrix multiplication tensor we have

$$||T_n||_{\star}=n^3.$$

(proof sketch later)

Spectral Norm

Definition

The spectral norm is defined by

$$[T] = \max\{|\langle T, v \rangle| \mid v \text{ pure tensor with } ||v|| = 1\}.$$

The spectral norm is dual to the nuclear norm, in particular

$$|\langle T, S \rangle| \le ||T||_{\star}[S]$$

for all tensors S, T.

Example: Determinant Tensor

Consider the tensor

$$D_n = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) e_{\sigma(1)} \otimes e_{\sigma(2)} \otimes \cdots \otimes e_{\sigma(n)} \in \mathbb{C}^n \otimes \cdots \otimes \mathbb{C}^n.$$

Clearly rank $(D_n) \le n!$, but actually rank $(D_n) \le (\frac{5}{6})^{\lfloor n/3 \rfloor} n!$.

Example: Determinant Tensor

Consider the tensor

$$D_n = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) e_{\sigma(1)} \otimes e_{\sigma(2)} \otimes \cdots \otimes e_{\sigma(n)} \in \mathbb{C}^n \otimes \cdots \otimes \mathbb{C}^n.$$

Clearly rank $(D_n) \leq n!$, but actually rank $(D_n) \leq (\frac{5}{6})^{\lfloor n/3 \rfloor} n!$.

$$[D_n] = \max\{\det(v_1v_2\cdots v_n) \mid ||v_1|| = \cdots = ||v_n|| = 1\} = 1$$

by Hadamard's inequality.

$$||D_n||_{\star} = ||D_n||_{\star}[D_n] \ge \langle D_n, D_n \rangle = n!$$
, so

Theorem (D.)

$$||D_n||_* = n!$$

$$P_n = \sum_{\sigma \in S_n} e_{\sigma(1)} \otimes e_{\sigma(2)} \otimes \cdots \otimes e_{\sigma(n)} \in \mathbb{C}^n \otimes \cdots \otimes \mathbb{C}^n.$$
$$[P_n] = \max\{ \operatorname{perm}(v_1 v_2 \cdots v_n) \mid ||v_1|| = \cdots = ||v_n|| = 1 \}$$

$$P_n = \sum_{\sigma \in S_n} e_{\sigma(1)} \otimes e_{\sigma(2)} \otimes \cdots \otimes e_{\sigma(n)} \in \mathbb{C}^n \otimes \cdots \otimes \mathbb{C}^n.$$
$$[P_n] = \max\{ \operatorname{perm}(v_1 v_2 \cdots v_n) \mid ||v_1|| = \cdots = ||v_n|| = 1 \}$$

Theorem (Carlen, Lieb and Moss, 2006)

$$\max\{\mathsf{perm}(v_1v_2\cdots v_n) \mid \|v_1\| = \cdots = \|v_n\| = 1\} = n!/n^{n/2}$$

$$\|P_n\|_{\star} = \frac{n^{n/2}}{n!} \|P_n\|_{\star} [P_n] \ge \frac{n^{n/2}}{n!} \langle P_n, P_n \rangle = n^{n/2}.$$

Theorem (Glynn 2010)

$$P_n = \frac{1}{2^{n-1}} \sum_{\delta} (\sum_{i=1}^n \delta_i e_i) \otimes \cdots \otimes (\sum_{i=1}^n \delta_i e_i)$$

where δ runs over $\{1\} \times \{-1,1\}^{n-1}$.

Theorem (Glynn 2010)

$$P_n = \frac{1}{2^{n-1}} \sum_{\delta} (\sum_{i=1}^n \delta_i e_i) \otimes \cdots \otimes (\sum_{i=1}^n \delta_i e_i)$$

where δ runs over $\{1\} \times \{-1,1\}^{n-1}$.

In particular, rank $(P_n) \le 2^{n-1}$ and $||P_n||_{\star} \le n^{n/2}$, so

Theorem (D.)

$$||P_n||_{\star} = n^{n/2}$$

t-Orthogonality

Definition

Tensors v_1, v_2, \ldots, v_r are t-orthogonal if

$$\sum_{i=1}^r |\langle v_i, w \rangle|^{2/t} \leq 1$$

for every pure tensor w with ||w|| = 1.

t-Orthogonality

Definition

Tensors v_1, v_2, \ldots, v_r are t-orthogonal if

$$\sum_{i=1}^r |\langle v_i, w \rangle|^{2/t} \le 1$$

for every pure tensor w with ||w|| = 1.

1-orthogonal \Leftrightarrow orthogonal \Rightarrow s-orthogonal.

t-Orthogonality

Definition

Tensors v_1, v_2, \ldots, v_r are t-orthogonal if

$$\sum_{i=1}^r |\langle v_i, w \rangle|^{2/t} \le 1$$

for every pure tensor w with ||w|| = 1.

1-orthogonal \Leftrightarrow orthogonal If t > s then t-orthogonal \Rightarrow s-orthogonal.

Theorem (D.)

If $v_1, \ldots, v_r \in V$ are t-orthogonal, then $r \leq \dim(V)^{1/t}$.

Horizontal and Vertical Tensor Product

Theorem ("horizontal tensor product", D.)

If v_1, \ldots, v_r are t-orthogonal, and w_1, \ldots, w_r are s-orthogonal, then $v_1 \otimes w_1, \ldots, v_r \otimes w_r$ are (s+t)-orthogonal.

Horizontal and Vertical Tensor Product

Theorem ("horizontal tensor product", D.)

If v_1, \ldots, v_r are t-orthogonal, and w_1, \ldots, w_r are s-orthogonal, then $v_1 \otimes w_1, \ldots, v_r \otimes w_r$ are (s+t)-orthogonal.

If
$$V=V^{(1)}\otimes\cdots\otimes V^{(d)}$$
 and $W=W^{(1)}\otimes\cdots\otimes W^{(d)}$, then
$$V\boxtimes W:=(V^{(1)}\otimes W^{(1)})\otimes\cdots\otimes (V^{(d)}\otimes W^{(d)}).$$

Theorem ("vertical tensor product", D.)

If $v_1, v_2, \ldots, v_r \in V$ and $w_1, \ldots, w_s \in W$ are t-orthogonal, then $\{v_i \boxtimes w_j \mid 1 \le i \le r, 1 \le j \le s\}$ are t-orthogonal.

Definition

Suppose that $(\star): T = \sum_{i=1}^{r} \lambda_i v_i$ such that $\lambda_1 \geq \cdots \geq \lambda_r > 0$ and v_1, \ldots, v_r are 2-orthogonal pure tensors of unit length, then (\star) is called a *diagonal singular value decomposition* of T (DSVD).

If d=2 (tensor product of 2 spaces) then the DSVD is the usual singular value decomposition. For d>2, the DSVD is different from the *Higher Order Singular Value Decomposition* defined by De Lathauer, De Moor, and Vandewalle. Not every tensor has a DSVD.

Definition

Suppose that $(\star): T = \sum_{i=1}^{r} \lambda_i v_i$ such that $\lambda_1 \geq \cdots \geq \lambda_r > 0$ and v_1, \ldots, v_r are 2-orthogonal pure tensors of unit length, then (\star) is called a *diagonal singular value decomposition* of T (DSVD).

If d=2 (tensor product of 2 spaces) then the DSVD is the usual singular value decomposition. For d>2, the DSVD is different from the *Higher Order Singular Value Decomposition* defined by De Lathauer, De Moor, and Vandewalle. Not every tensor has a DSVD.

Theorem (D.)

If T has a DSVD then

$$\|T\|_{\star} = \sum_{i} \lambda_{i}, \quad \|T\| = \sqrt{\sum_{i} \lambda_{i}^{2}}, \quad [T] = \lambda_{1}$$

Theorem (D.)

If T has a DSVD then

$$||T||_{\star} = \sum_{i} \lambda_{i}, \quad ||T|| = \sqrt{\sum_{i} \lambda_{i}^{2}}, \quad [T] = \lambda_{1}$$

Theorem (D.)

If $\lambda_1 > \lambda_2 > \cdots > \lambda_r$ then the DSVD is unique.

Theorem (D.)

If v_1, \ldots, v_r are t-orthogonal with t > 2, then the DSVD is unique.

 $e_1, \ldots, e_n \in \mathbb{C}^n$ are orthogonal $e_1 \otimes e_1, \ldots, e_n \otimes e_n \in \mathbb{C}^n \otimes \mathbb{C}^n$ are 2-orthogonal

 $e_1,\ldots,e_n\in\mathbb{C}^n$ are orthogonal $e_1\otimes e_1,\ldots,e_n\otimes e_n\in\mathbb{C}^n\otimes\mathbb{C}^n$ are 2-orthogonal

$$e_1 \otimes e_1 \otimes 1, \ldots, e_n \otimes e_n \otimes e_1 \in \mathbb{C}^n \otimes \mathbb{C}^n \otimes \mathbb{C}$$
 are 2-orthogonal $e_1 \otimes 1 \otimes e_1, \ldots, e_n \otimes 1 \otimes e_n \in \mathbb{C}^n \otimes \mathbb{C} \otimes \mathbb{C}^n$ are 2-orthogonal $1 \otimes e_1 \otimes e_1, \ldots, 1 \otimes e_n \otimes e_n \in \mathbb{C} \otimes \mathbb{C}^n \otimes \mathbb{C}^n$ are 2-orthogonal

$$e_1,\ldots,e_n\in\mathbb{C}^n$$
 are orthogonal $e_1\otimes e_1,\ldots,e_n\otimes e_n\in\mathbb{C}^n\otimes\mathbb{C}^n$ are 2-orthogonal

$$e_1 \otimes e_1 \otimes 1, \ldots, e_n \otimes e_n \otimes e_1 \in \mathbb{C}^n \otimes \mathbb{C}^n \otimes \mathbb{C}$$
 are 2-orthogonal $e_1 \otimes 1 \otimes e_1, \ldots, e_n \otimes 1 \otimes e_n \in \mathbb{C}^n \otimes \mathbb{C} \otimes \mathbb{C}^n$ are 2-orthogonal $1 \otimes e_1 \otimes e_1, \ldots, 1 \otimes e_n \otimes e_n \in \mathbb{C} \otimes \mathbb{C}^n \otimes \mathbb{C}^n$ are 2-orthogonal

Using vertical tensor product, we get

$$\{(e_i \otimes e_j) \otimes (e_j \otimes e_k) \otimes (e_k \otimes e_i) \mid 1 \leq i, j, k \leq n\}$$

are 2-orthogonal.

Theorem (D.)

The matrix multiplication tensor

$$T_n = \sum_{i,j,k=1}^n e_{i,j} \otimes e_{j,k} \otimes e_{k,i}$$

is a DSVD.

The singular values of T_n are

$$\underbrace{1,1,\ldots,1}_{n^3}$$

In particular,

$$||T_n||_{\star} = \sum_{i=1}^{n^3} 1 = n^3.$$

DFT

Define

$$F_n = \sum_{\substack{1 \le i,j,k \le n \\ i+j+k \equiv 0 \bmod n}} e_i \otimes e_j \otimes e_k$$

This tensor is related to the multiplication of univariate polynomials. Clearly rank $(F_n) \le n^2$ and $||F_n||_* \le n^2$.

DFT

Define

$$F_n = \sum_{\substack{1 \leq i,j,k \leq n \\ i+j+k \equiv 0 \bmod n}} e_i \otimes e_j \otimes e_k$$

This tensor is related to the multiplication of univariate polynomials. Clearly rank $(F_n) \le n^2$ and $||F_n||_* \le n^2$.

Discrete Fourier Transform (DFT):

$$F_n = \sum_{j=1}^n \sqrt{n} \left(\frac{1}{\sqrt{n}} \sum_{i=1}^n \zeta^{ij} e_i \right) \otimes \left(\frac{1}{\sqrt{n}} \sum_{i=1}^n \zeta^{ij} e_i \right) \otimes \left(\frac{1}{\sqrt{n}} \sum_{i=1}^n \zeta^{ij} e_i \right).$$

where $\zeta = e^{\pi i/n}$. This is the *unique* DSVD of F_n . So the singular values are $\sqrt{n}, \ldots, \sqrt{n}$ (n times), $\operatorname{rank}(F_n) = n$ and $||F_n||_* = n\sqrt{n}$.

Generalization: Group Algebra Multiplication Tensor

G is a group with n elements and $\mathbb{C}G\cong\mathbb{C}^n$ is the group algebra

$$T_G = \sum_{g,h \in G} g \otimes h \otimes h^{-1} g^{-1}.$$

DFT case corresponds to $G = \mathbb{Z}/n\mathbb{Z}$.

Generalization: Group Algebra Multiplication Tensor

G is a group with n elements and $\mathbb{C}G\cong\mathbb{C}^n$ is the group algebra

$$T_G = \sum_{g,h \in G} g \otimes h \otimes h^{-1}g^{-1}.$$

DFT case corresponds to $G = \mathbb{Z}/n\mathbb{Z}$.

Theorem (D.)

 T_G has a DSVD and its singular values are

$$\underbrace{\sqrt{\frac{n}{d_1}}, \dots, \sqrt{\frac{n}{d_1}}}_{d_1^3}, \dots, \underbrace{\sqrt{\frac{n}{d_s}}, \dots, \sqrt{\frac{n}{d_s}}}_{d_s^3}$$

where d_1, d_2, \ldots, d_s are the dimension of the irreducible representations of G.

