KRUSKAL'S UNIQUENESS INQUALITY IS SHARP

HARM DERKSEN

Abstract

Kruskal proved that a tensor in $V_{1} \otimes V_{2} \otimes \cdots \otimes V_{m}$ of rank r has a unique decomposition as a sum of r pure tensors if a certain inequality is satisfied. We will show the uniqueness fails if the inequality is weakened. We give 2 different constructions for counterexamples.

In this paper, \mathbb{F} will denote a field. Suppose that V is an \mathbb{F}-vector space. For a subset $A \subseteq V$, we define its Kruskal rank $k(A)$ as the largest integer such that A has at least $k(A)$ elements and every subset of A with $k(A)$ elements is linearly independent.

Kruskal proved in $[1,2]$ the following theorem for $\mathbb{F}=\mathbb{C}$ and $m=3$:
Theorem 1 (Kruskal's theorem). Suppose $V_{1}, V_{2}, \ldots, V_{m}$ are \mathbb{F}-vector spaces,

$$
\begin{equation*}
z=\sum_{i=1}^{r} v_{1, i} \otimes v_{2, i} \otimes \cdots \otimes v_{m, i} \in V_{1} \otimes V_{2} \otimes \cdots \otimes V_{m}, \tag{1}
\end{equation*}
$$

and $k_{1}+k_{2}+\cdots+k_{m} \geq 2 r+m-1$, where $k_{j}:=k\left(\left\{v_{j, 1}, v_{j, 2}, \ldots, v_{j, r}\right\}\right)$ for $j=1,2, \ldots, m$. Then the decomposition (1) is unique in the following sense: If

$$
z=\sum_{i=1}^{q} w_{1, i} \otimes w_{2, i} \otimes \cdots \otimes w_{m, i}
$$

and $q \leq r$, then we have $q=r$ and

$$
\left\{v_{1, i} \otimes v_{2, i} \otimes \cdots \otimes v_{m, i} \mid 1 \leq i \leq r\right\}=\left\{w_{1, i} \otimes w_{2, i} \otimes \cdots \otimes w_{m, i} \mid 1 \leq i \leq r\right\}
$$

It was shown in [5] that the case $m>3$ easily follows from the case $m=3$. Many easier and shorter proof of this result have been given, see for example [6, 4, 3]. Kruskal's theorem is usually formulated for $\mathbb{F}=\mathbb{C}$, but for the proofs in $[3,4]$ are valid in arbitrary fields.

We will show that Kruskal's theorem is sharp: The theorem is no longer true if $k_{1}+k_{2}+$ $\cdots+k_{m}=2 r+m-2$.

Theorem 2. Suppose that \mathbb{F} is a field with more than s elements, or that \mathbb{F} is a finite field of characteristic $\geq s$. If $k_{1}, k_{2}, \ldots, k_{m}$ are positive integers with $k_{1}+k_{2}+\cdots+k_{m}=s+m-2$, then there exist \mathbb{F}-vector spaces $V_{1}, V_{2}, \ldots, V_{m}$, a positive integer q and vectors $\left\{v_{i, j}\right\}$ such that $q \leq s$,

$$
\begin{equation*}
0=\sum_{i=1}^{q} v_{1, i} \otimes v_{2, i} \otimes \cdots \otimes v_{m, i} \tag{2}
\end{equation*}
$$

and

$$
k\left(\left\{v_{j, 1}, v_{j, 2}, \ldots, v_{j, q}\right\}\right) \geq k_{j}
$$

for all j.
The author was partially supported by NSF grant DMS 0901298.

Corollary 3. Suppose that $r \geq 2$ and that \mathbb{F} is a field with more than $2 r$ elements. Then Theorem 1 is no longer true if we replace the condition $k_{1}+\cdots+k_{m} \geq 2 r+m-1$ by $k_{1}+\cdots+k_{m} \geq 2 r+m-2$.

Proof. We can apply Theorem 2 for $s=2 r$. By Theorem 1, we get $2 r+m-2=k_{1}+k_{2}+$ $\cdots+k_{m} \leq 2 q+m-2$, so $r \leq q \leq 2 r$. Then we have

$$
\sum_{i=1}^{r} v_{1, i} \otimes v_{2, i} \otimes \cdots \otimes v_{m, i}=\sum_{i=r+1}^{q}\left(-v_{1, i}\right) \otimes v_{2, i} \otimes \cdots \otimes v_{m, i}
$$

Since $k_{1}+\cdots+k_{m}>m$, we have $k_{j} \geq 2$ for some j. The vectors $v_{j, 1}, v_{j, 2}, \ldots, v_{j, q}$ are pairwise linearly independent. It follows that the tensors

$$
v_{1, i} \otimes v_{2, i} \otimes \cdots \otimes v_{m, i}, \quad 1 \leq i \leq q
$$

are pairwise linearly independent.
Suppose that $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{s} \in \mathbb{F}$. Then we define a Vandermonde matrix

$$
V_{k}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{s}\right)=\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\lambda_{1} & \lambda_{2} & \cdots & \lambda_{s} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \cdots & \lambda_{s}^{2} \\
\vdots & \vdots & & \vdots \\
\lambda_{1}^{k-1} & \lambda_{2}^{k-1} & \cdots & \lambda_{s}^{k-1}
\end{array}\right)
$$

The following is a well-known property of the Vandermonde matrix:
Lemma 4. If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{s}$ are distinct, then every k columns of $V_{k}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{s}\right)$ are linearly independent.

Proposition 5. Suppose that \mathbb{F} is a field with more than s elements. Choose $\lambda \in \mathbb{F} \backslash\{0\}$ whose multiplicative order is at least s. Define

$$
v_{j, i}:=\left(\begin{array}{c}
1 \\
\lambda^{i} \\
\lambda^{2 i} \\
\vdots \\
\lambda^{\left(k_{j}-1\right) i}
\end{array}\right)
$$

for $1 \leq j \leq m$ and $0 \leq i<s$. Define $p(x) \in \mathbb{F}[x], p_{0}, \ldots, p_{s-1} \in \mathbb{F}$ by

$$
p(x)=(x-1)(x-\lambda) \cdots\left(x-\lambda^{s-2}\right)=p_{0}+p_{1} x+\cdots+p_{s-1} x^{s-1} .
$$

Then we have

$$
\begin{equation*}
\sum_{i=0}^{s-1} p_{i}\left(v_{1, i} \otimes v_{2, i} \otimes \cdots \otimes v_{m, i}\right)=0 \tag{3}
\end{equation*}
$$

and

$$
k\left(\left\{v_{j, 0}, v_{j, 1}, \ldots, v_{j, s-1}\right\}\right)=k_{j}
$$

for $j=1,2, \ldots, m$.

Proof. For every k choose the basis

$$
e_{0}=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right), e_{1}=\left(\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right), \ldots, e_{k-1}=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right)
$$

in \mathbb{F}^{k} and $f_{0}, f_{1}, \ldots, f_{k-1}$ be a dual basis. Suppose that $0 \leq t_{j} \leq k_{j}-1$ for all j. An element $f_{t_{1}} \otimes f_{t_{2}} \otimes \cdots \otimes f_{t_{m}}$ can be viewed as linear function on $\mathbb{F}^{k} \otimes \mathbb{F}^{k} \otimes \cdots \mathbb{F}^{k}$ via

$$
\begin{aligned}
& f_{t_{1}} \otimes f_{t_{2}} \otimes \cdots \otimes f_{t_{m}}\left(e_{u_{1}} \otimes e_{u_{2}} \otimes \cdots \otimes e_{u_{m}}\right)=f_{t_{1}}\left(e_{u_{1}}\right) f_{t_{2}}\left(e_{u_{2}}\right) \cdots f_{t_{m}}\left(e_{u_{m}}\right)= \\
& = \begin{cases}1 & \text { if } t_{i}=u_{i} \text { for } i=1,2, \ldots, m \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

We have
$\left(f_{t_{1}} \otimes f_{t_{2}} \otimes \cdots \otimes f_{t_{m}}\right)\left(\sum_{i=0}^{s-1} p_{i}\left(v_{1, i} \otimes v_{2, i} \otimes \cdots \otimes v_{m, i}\right)\right)=\sum_{i=0}^{s-1} p_{i} \lambda^{\left(t_{1}+t_{2}+\cdots+t_{m}\right) i}=p\left(\lambda^{t_{1}+t_{2}+\cdots+t_{m}}\right)=0$ because $t_{1}+t_{2}+\cdots+t_{m} \leq k_{1}+k_{2}+\cdots+k_{m}-m \leq s-2$ and $\lambda^{t_{1}+t_{2}+\cdots+t_{m}}$ is a root of $p(x)$.

The vectors $v_{j, 0}, v_{j, 1}, \ldots, v_{j, s-1}$ are the columns of $V_{k_{j}}\left(1, \lambda, \lambda^{2}, \ldots, \lambda^{s-1}\right)$. Since $1, \lambda, \ldots, \lambda^{s-1}$ are distinct, we have

$$
k\left(\left\{v_{j, 0}, v_{j, 1}, \ldots, v_{j, s-1}\right\}\right)=k_{j} .
$$

We will need the following well-known combinatorial identity:
Lemma 6. If $0 \leq k \leq n-1$, then we have

$$
\sum_{i=0}^{n}(-1)^{i}\binom{n}{i} i^{k}=0
$$

Proof. Define a \mathbb{Q}-linear operator $S: \mathbb{Q}[x] \rightarrow \mathbb{Q}[x]$ by $S(p(x))=p(x+1)$ and let $I: \mathbb{Q}[x] \rightarrow$ $\mathbb{Q}[x]$ be the identity operator. If $p(x)$ is a polynomial of degree k, then $(S-I)(p(x))$ is a polynomial of degree $\leq k-1$. In particular, we have

$$
0=(S-I)^{n} p(x)=\sum_{i=0}^{n}(-1)^{i}\binom{n}{i} p(x+i)=0 .
$$

Now the lemma follows from the case $p(x)=x^{k}$, after substituting $x=0$.
Proposition 7. Suppose that \mathbb{F} is a field of characteristic 0 or characteristic at least s. Define

$$
v_{j, i}=\left(\begin{array}{c}
1 \\
i \\
i^{2} \\
\vdots \\
i^{k_{j}-1}
\end{array}\right)
$$

for $0 \leq i \leq s-1$ and $1 \leq j \leq m$. Then we have

$$
\sum_{i=0}^{s-1}(-1)^{i}\binom{s-1}{i} v_{1, i} \otimes v_{2, i} \otimes \cdots \otimes v_{m, i}=0
$$

and

$$
k\left(\left\{v_{j, 1}, v_{j, 2}, \ldots, v_{j, s}\right\}\right)=k_{j}
$$

for $j=1,2, \ldots, m$.
Proof. Suppose that $0 \leq t_{j} \leq k_{j}-1$ for all j. Then we have

$$
\left(f_{t_{1}} \otimes f_{t_{2}} \otimes \cdots \otimes f_{t_{m}}\right)\left(\sum_{i=0}^{s-1}(-1)^{i}\binom{s-1}{i}\left(v_{1, i} \otimes v_{2, i} \otimes \cdots \otimes v_{m, i}\right)\right)=\sum_{i=0}^{s-1}(-1)^{i}\binom{s-1}{i} i^{t_{1}+t_{2}+\cdots+t_{m}}=0
$$

because of Lemma 6 and the inequality

$$
t_{1}+t_{2}+\cdots+t_{m} \leq\left(k_{1}-1\right)+\left(k_{2}-1\right)+\cdots+\left(k_{m}-1\right) \leq s-2 .
$$

The vectors $v_{j, 0}, v_{j, 1}, \ldots, v_{j, s-1}$ are the columns of the matrix $V_{k_{j}}(0,1,2, \ldots, s-1)$. Since $0,1, \ldots, s-1 \in \mathbb{F}$ are distinct, we have

$$
k\left(\left\{v_{j, 0}, v_{j, 1}, \ldots, v_{j, s-1}\right\}\right)=k_{j} .
$$

Proof of Theorem 2. The theorem follows from Proposition 5 and Proposition 7. Note that in Proposition 5 we can replace $v_{1, i}$ by $p_{i} v_{1, i}$ so that (3) becomes (2) after relabeling the $v_{j, i}$'s. For some i we may have $p_{i}=0$. In that case q will be strictly less than s. Clearly we have $p_{s-1}=1$, so $q \geq 1$. In fact, q is more than $\max \left\{k_{1}, \ldots, k_{m}\right\}$ because otherwise, the vectors on the right-hand side of (2) would be linearly independent.

Example 8. The construction in Proposition 7 for $\mathbb{F}=\mathbb{C}, r=3, s=2 r=6, m=3$, $k_{1}=k_{2}=2, k_{3}=3$ yields:

$$
\begin{aligned}
&\binom{1}{0} \otimes\binom{1}{0} \otimes\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)-5\binom{1}{1} \otimes\binom{1}{1} \otimes\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)+10\binom{1}{2} \otimes\binom{1}{2} \otimes\left(\begin{array}{l}
1 \\
2 \\
4
\end{array}\right)= \\
& 10\binom{1}{3} \otimes\binom{1}{3} \otimes\left(\begin{array}{l}
1 \\
3 \\
9
\end{array}\right)-5\binom{1}{4} \otimes\binom{1}{4} \otimes\left(\begin{array}{c}
1 \\
4 \\
16
\end{array}\right)+\binom{1}{5} \otimes\binom{1}{5} \otimes\left(\begin{array}{c}
1 \\
5 \\
25
\end{array}\right) .
\end{aligned}
$$

Example 9. We use the construction in Proposition 5 for $\mathbb{F}=\mathbb{R}, r=3, s=2 r=6, m=3$, $k_{1}=k_{2}=2, k_{3}=3, \lambda=2$. We expand

$$
(x-1)(x-2)(x-4)(x-8)(x-16)=-\underset{4}{-1024}+1984 x-1240 x^{2}+310 x^{3}-31 x^{4}+x^{5}
$$

We have

$$
\begin{gathered}
1024\binom{1}{1} \otimes\binom{1}{1} \otimes\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)+1240\binom{1}{4} \otimes\binom{1}{4} \otimes\left(\begin{array}{c}
1 \\
4 \\
16
\end{array}\right)+31\binom{1}{16} \otimes\binom{1}{16} \otimes\left(\begin{array}{c}
1 \\
16 \\
256
\end{array}\right)= \\
1984\binom{1}{2} \otimes\binom{1}{2} \otimes\left(\begin{array}{l}
1 \\
2 \\
4
\end{array}\right)+310\binom{1}{8} \otimes\binom{1}{8} \otimes\left(\begin{array}{c}
1 \\
8 \\
64
\end{array}\right)+\binom{1}{32} \otimes\binom{1}{32} \otimes\left(\begin{array}{c}
1 \\
32 \\
1024
\end{array}\right) .
\end{gathered}
$$

Note that in this example the tensors have nonnegative entries when they are viewed as multi-arrays. Whenever one chooses $\lambda>0$ in Proposition 5 one obtains counterexamples with nonnegative entries, because exactly half of the coefficients of $p(x)$ are positive and half of them are negative when $s=2 r$ is even.

Acknowledgement. The ideas for this paper were inspired by the AIM workshop Geometry and representation theory of tensors for computer science, statistics and other areas, July $21-25,2008$. The author would like to thank AIM, the organizers of the workshop, and Lek-Heng Lim in particular for encouragement for writing this paper. The author also thanks the anonymous referees for useful comments and suggestions.

References

[1] J. B. Kruskal, Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics, Linear Algebra and Appl. 18 (1977), no. 2, 95-138.
[2] J. B. Kruskal, Rank, decomposition, and uniqueness for 3-way and N-way arrays, Multiway data analysis (Rome, 1988), North-Holland, Amsterdam, 1989, 7-18.
[3] J. M. Landsberg, Kruskal's theorem, arXiv:0902.0543.
[4] J. A. Rhodes, A concise proof of Kruskal's theorem on tensor decomposition, Linear Algebra Appl. 432 (2010), no. 7, 1818-1824.
[5] N. D. Sidiropolous, R. Bro, On the uniqueness of multilinear decomposition of N-way arrays, J. Chemometrics 14 (2000), 229-239.
[6] A. Stegeman, N. D. Sidiropoulos, On Kruskal's uniqueness condition for the Candecomp/Parafac decomposition, Linear Algebra Appl. 420 (2007), 540-552.

