KRUSKAL’S UNIQUENESS INQUALITY IS SHARP

HARM DERKSEN

ABSTRACT. Kruskal proved that a tensor in V4 ® Vo ® --- ® V,,, of rank r has a unique
decomposition as a sum of r pure tensors if a certain inequality is satisfied. We will show
the uniqueness fails if the inequality is weakened. We give 2 different constructions for
counterexamples.

In this paper, F will denote a field. Suppose that V is an F-vector space. For a subset
A CV, we define its Kruskal rank k(A) as the largest integer such that A has at least k(A)
elements and every subset of A with k(A) elements is linearly independent.

Kruskal proved in [1, 2] the following theorem for F = C and m = 3:

Theorem 1 (Kruskal’s theorem). Suppose Vi, Vs, ..., V,, are F-vector spaces,
(1) 22201,i®02,i®“'®0m,i€V1®V2®"'®Vm,
i=1

and ky + ko + - + ky > 2r +m — 1, where kj = k({vj1,vj2,...,0;,}) for j=1,2,... m.
Then the decomposition (1) is unique in the following sense: If

q
z = E w17i®w2,i®---®wm,¢
=1

and q < r, then we have ¢ =r and
{1, @02, @ QUi | 1 <i<r}={w1,;, Qwe; @ - @y | 1 <i <}

It was shown in [5] that the case m > 3 easily follows from the case m = 3. Many easier
and shorter proof of this result have been given, see for example [6, 4, 3]. Kruskal’s theorem
is usually formulated for F = C, but for the proofs in [3, 4] are valid in arbitrary fields.

We will show that Kruskal’s theorem is sharp: The theorem is no longer true if ki + ko +
itk =2r+m — 2.

Theorem 2. Suppose that F is a field with more than s elements, or that F is a finite field of
characteristic > s. If ki, ko, ..., k,, are positive integers with ki + ke +---+k,, = s+m —2,

then there exist F-vector spaces Vi, Va, ..., Vi, a positive integer ¢ and vectors {v; ;} such
that g < s,
q
(2) OZZU1,i®U2,i®"-®Um,z’
i=1
and

k({vﬁlv V52, - 7Ujvq}) > kj
for all j.
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Corollary 3. Suppose that r > 2 and that F is a field with more than 2r elements. Then
Theorem 1 is no longer true if we replace the condition ki + --- 4+ k,, > 2r +m — 1 by
ky+ - +kn>2r+m—2.

Proof. We can apply Theorem 2 for s = 2r. By Theorem 1, we get 2r +m — 2 = ky + ko +
oot by <2¢+m—2,s0r < g <2r. Then we have

q

T
E V1, QU2 Q-+ QU = E (—01,) QU2 @+ -+ ® Uy
=1 i=r+1

Since ki +- - - +k,, > m, we have k; > 2 for some j. The vectors v;1,vj2,...,v;, are pairwise
linearly independent. It follows that the tensors

V1; QUi @ QUpy, 1<1<4¢
are pairwise linearly independent. U

Suppose that A1, Ao, ..., A\; € F. Then we define a Vandermonde matrix

1 1 . 1

>\1 )\2 e )\s

Vel day oA = | AT A8 o A
)\lf'_l As_l . /\k:.—l

The following is a well-known property of the Vandermonde matrix:

Lemma 4. If A\, Ao, ..., s are distinct, then every k columns of Vi.(A1, Ae, ..., As) are lin-
early independent.

Proposition 5. Suppose that F is a field with more than s elements. Choose A € F \ {0}
whose multiplicative order is at least s. Define

1
)\i

%
Vi 1= A

)\(k;“—l)i

for1<j<m and 0 <i<s. Define p(x) € Flz|, po,...,ps—1 € F by

p)=(—-1)(x =N (x— )\372) =po+pr 4+ +psqxtl

Then we have
s—1

(3) D D01 ® 02 @ @ vy) =0,
=0

and
k({vj0, V15> Vjs—1}) = kj
forg=1,2... m.



Proof. For every k choose the basis

1 0 0

0 1 0
€0 = , €1 = : yeeey €1 =

0 0 1

in F* and fy, f1,..., fx—1 be a dual basis. Suppose that 0 < tj < k;j—1forall j. An element
fi, @ fi, ® -+ ® f;,, can be viewed as linear function on F* @ F* @ - - . F* via

ft1 @ ftz Q& ftm(eul ® Cusy DY eum) = ftl(eul)ftQ(euz) e ftm(eum) =
1 ity =ufori=1,2,... ,m;
1 0 otherwise.

We have
s—1 s—1

(ft1®ft2®' . '®ftm) ( Zpi(vl,z’@UQ,z‘@' . '®Um,z‘)> — Zpi/\(tlﬂz—i-..-—i-tm)z — p()\t1+t2+..-+tm) =0
i=0 =0

because t; +to+ -+t < ki+ko+ -+ ky—m < s—2and N2t g g root of p(z).
The vectors v;0, Vj1, - - -, Ujs—1 are the columns of Vi (1, A\, \?,..., A*71). Since 1, A, ..., A5
are distinct, we have

k({vj0,vj1, -+ Vjs1}) = Kj.

We will need the following well-known combinatorial identity:

Lemma 6. If0 < k <n — 1, then we have

S 1) =0

Proof. Define a Q-linear operator S : Q[x] — Q[z| by S(p(z)) = p(x + 1) and let I : Q[z] —
Q[z] be the identity operator. If p(z) is a polynomial of degree k, then (S — I)(p(x)) is a
polynomial of degree < k — 1. In particular, we have

n

0=(S—1I)"p(x) =Y (=1)'(})plx+i) = 0.

=0
Now the lemma follows from the case p(x) = z*, after substituting z = 0. O

Proposition 7. Suppose that F is a field of characteristic 0 or characteristic at least s.
Define



for0<i<s—1and1<j5<m. Then we have

s—1

D (1N @00 @+ @ v =0,
1=0

and
k({via, vi, - v5s}) = K
forj=1,2,...,m.

Proof. Suppose that 0 <t; < k; — 1 for all j. Then we have

s—1 a1
([ ®@f, @ - fi,) ( Z(—1)i(szl) (01, QU9 @+ ®Um,¢)) _ Z(_l)i(szl)it1+t2+---+tm —0
=0 i=0

because of Lemma 6 and the inequality
titto+ ottty < (ki =1+ (ko —1)+ 4 (b —1) <s—2.

The vectors vjo,vj1, .. .,vjs—1 are the columns of the matrix Vj,;(0,1,2,...,s —1). Since
0,1,...,5s —1 € I are distinct, we have

k({vm, Uj,l; P ,Uj73_1}) = k:j-

O

Proof of Theorem 2. The theorem follows from Proposition 5 and Proposition 7. Note that
in Proposition 5 we can replace vy, by p;v1,; so that (3) becomes (2) after relabeling the
v;;’s. For some 7 we may have p; = 0. In that case ¢ will be strictly less than s. Clearly
we have p,_1 =1, so ¢ > 1. In fact, ¢ is more than max{ky, ..., k,} because otherwise, the
vectors on the right-hand side of (2) would be linearly independent. O

Example 8. The construction in Proposition 7 for F = C, »r = 3, s = 2r = 6, m = 3,
kl = kg = 2, ]{,'3 =3 yields:

(o ()e (o) -5 (oo () -0()e()e
o3 ()e () -0 @)e 1)+ (o)

Example 9. We use the construction in Proposition 5 for F =R, r =3, s =2r =6, m = 3,
k1 =ky =2, k3 =3, A = 2. We expand

=N

(z—1)(z —2)(z — 4)(z — 8)(x — 16) = —1024 + 19842 — 12402* + 3102° — 312" + 2°.
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We have

1 1 1
(1o (e (1) e (o (e (1) var(L)e () (1) -
1 16 256
1 1 1
1984 (;) & (;) ® 2] +310 <§13> ® (;) @ 8|+ (312) & (312) ® | 32
4 64 1024

Note that in this example the tensors have nonnegative entries when they are viewed as
multi-arrays. Whenever one chooses A > 0 in Proposition 5 one obtains counterexamples
with nonnegative entries, because exactly half of the coefficients of p(z) are positive and half
of them are negative when s = 2r is even.
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