Secant varieties of Segre-Veronese varieties

Dustin Cartwright ${ }^{1}$

October 6, 2011
${ }^{1}$ joint with Daniel Erman and Luke Oeding

Tensor rank for matrices

U, V : finite dimensional vector spaces

$$
x \in U \otimes V
$$

The rank of x is the smallest integer r such that x can be written

$$
x=u_{1} \otimes v_{1}+\cdots+u_{r} \otimes v_{r} \text { where } u_{i} \in U, v_{i} \in V
$$

Tensor rank for matrices

U, V : finite dimensional vector spaces

$$
x \in U \otimes V
$$

The rank of x is the smallest integer r such that x can be written

$$
x=u_{1} \otimes v_{1}+\cdots+u_{r} \otimes v_{r} \text { where } u_{i} \in U, v_{i} \in V
$$

- The rank can jump down but never up at special points.

Tensor rank for matrices

U, V : finite dimensional vector spaces

$$
x \in U \otimes V
$$

The rank of x is the smallest integer r such that x can be written

$$
x=u_{1} \otimes v_{1}+\cdots+u_{r} \otimes v_{r} \text { where } u_{i} \in U, v_{i} \in V
$$

- The rank can jump down but never up at special points.
- The rank is the same if we pass to a bigger field.

Tensor rank for matrices

U, V : finite dimensional vector spaces

$$
x \in U \otimes V
$$

The rank of x is the smallest integer r such that x can be written

$$
x=u_{1} \otimes v_{1}+\cdots+u_{r} \otimes v_{r} \text { where } u_{i} \in U, v_{i} \in V
$$

- The rank can jump down but never up at special points.
- The rank is the same if we pass to a bigger field.
- The set of possible decompositions is a homogeneous space.

Partially symmetric tensors

$$
\begin{aligned}
& U: m \text {-dimensional } \mathbb{C} \text {-vector space } \\
& V: n \text {-dimensional } \mathbb{C} \text {-vector space } \\
& x \in U \otimes S^{2} V
\end{aligned}
$$

The rank of x is the smallest integer r such that x can be written in the form:

$$
x=u_{1} \otimes v_{1} \otimes v_{1}+\cdots+u_{r} \otimes v_{r} \otimes v_{r}
$$

Partially symmetric tensors

$$
\begin{aligned}
& U: m \text {-dimensional } \mathbb{C} \text {-vector space } \\
& V: n \text {-dimensional } \mathbb{C} \text {-vector space } \\
& x \in U \otimes S^{2} V
\end{aligned}
$$

The rank of x is the smallest integer r such that x can be written in the form:

$$
x=u_{1} \otimes v_{1} \otimes v_{1}+\cdots+u_{r} \otimes v_{r} \otimes v_{r}
$$

The rank can jump both down and up for special tensors.

Partially symmetric tensors

$$
\begin{aligned}
& U: m \text {-dimensional } \mathbb{C} \text {-vector space } \\
& V: n \text {-dimensional } \mathbb{C} \text {-vector space } \\
& x \in U \otimes S^{2} V
\end{aligned}
$$

The border rank of x is the smallest integer r such that x can be approximated arbitrarily closely by expressions of the form:

$$
x \approx u_{1} \otimes v_{1} \otimes v_{1}+\cdots+u_{r} \otimes v_{r} \otimes v_{r}
$$

Partially symmetric tensors

$$
\begin{aligned}
& U: m \text {-dimensional } \mathbb{C} \text {-vector space } \\
& V: n \text {-dimensional } \mathbb{C} \text {-vector space } \\
& x \in U \otimes S^{2} V
\end{aligned}
$$

The border rank of x is the smallest integer r such that x can be approximated arbitrarily closely by expressions of the form:

$$
x \approx u_{1} \otimes v_{1} \otimes v_{1}+\cdots+u_{r} \otimes v_{r} \otimes v_{r}
$$

The set of such decompositions will in general be a finite set of points, possibly defined over a larger field than x.

Equations for bounded border rank

When $U=\mathbb{C} e_{1} \oplus \mathbb{C} e_{2}$, we can write

$$
x=e_{1} \otimes A+e_{2} \otimes B
$$

where A and B are symmetric matrices.

Equations for bounded border rank

When $U=\mathbb{C} e_{1} \oplus \mathbb{C} e_{2}$, we can write

$$
x=e_{1} \otimes A+e_{2} \otimes B
$$

where A and B are symmetric matrices.
Theorem
The ideal of partially symmetric tensors whose border rank is at most r is generated by the $(r+1) \times(r+1)$-minors of the block matrix
$\left(\begin{array}{ll}A & B\end{array}\right)$

Equations for small border rank

When $U=\mathbb{C} e_{1} \oplus \mathbb{C} e_{2} \oplus \mathbb{C} e_{3}$, we can write

$$
x=e_{1} \otimes A+e_{2} \otimes B+e_{3} \otimes C
$$

Equations for small border rank

When $U=\mathbb{C} e_{1} \oplus \mathbb{C} e_{2} \oplus \mathbb{C} e_{3}$, we can write

$$
x=e_{1} \otimes A+e_{2} \otimes B+e_{3} \otimes C
$$

Theorem (C.-Erman-Oeding 2010)
If $r \leq 5$, the ideal of tensors whose border rank is at most r is generated by the $(r+1) \times(r+1)$-minors and $(2 r+2) \times(2 r+2)$-Pfaffians respectively of

$$
\left(\begin{array}{lll}
A & B & C
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{ccc}
0 & A & -B \\
-A & 0 & C \\
B & -C & 0
\end{array}\right)
$$

Equations for small border rank

When $U=\mathbb{C} e_{1} \oplus \mathbb{C} e_{2} \oplus \mathbb{C} e_{3}$, we can write

$$
x=e_{1} \otimes A+e_{2} \otimes B+e_{3} \otimes C
$$

Theorem (C.-Erman-Oeding 2010)
If $r \leq 5$, the ideal of tensors whose border rank is at most r is generated by the $(r+1) \times(r+1)$-minors and $(2 r+2) \times(2 r+2)$-Pfaffians respectively of

$$
\left(\begin{array}{lll}
A & B & C
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{ccc}
0 & A & -B \\
-A & 0 & C \\
B & -C & 0
\end{array}\right)
$$

Remark
The $n=4, r=5$ case is due to Emil Toeplitz in 1869.

Outline of the proof

- Assume $n=r$ and A is the identity matrix. Then

$$
\left(\begin{array}{ccc}
0 & 1 & -B \\
-I & 0 & C \\
B & -C & 0
\end{array}\right) \sim\left(\begin{array}{ccc}
0 & I & 0 \\
-1 & 0 & 0 \\
0 & 0 & B C-C B
\end{array}\right)
$$

The $2 r+2$-Pfaffians of this matrix are the entries of the commutator $B C-C B$, which is a prime, Gorenstein ideal, defining the variety of commuting symmetric matrices.

Outline of the proof

- Assume $n=r$ and A is the identity matrix. Then

$$
\left(\begin{array}{ccc}
0 & 1 & -B \\
-I & 0 & C \\
B & -C & 0
\end{array}\right) \sim\left(\begin{array}{ccc}
0 & I & 0 \\
-1 & 0 & 0 \\
0 & 0 & B C-C B
\end{array}\right)
$$

The $2 r+2$-Pfaffians of this matrix are the entries of the commutator $B C-C B$, which is a prime, Gorenstein ideal, defining the variety of commuting symmetric matrices.

- Now just assume $n=r$. We need to bound the dimension of the set of tensors where A is singular. This is computational and is only true for $r \leq 5$.

Outline of the proof

- Assume $n=r$ and A is the identity matrix. Then

$$
\left(\begin{array}{ccc}
0 & 1 & -B \\
-1 & 0 & C \\
B & -C & 0
\end{array}\right) \sim\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & B C-C B
\end{array}\right)
$$

The $2 r+2$-Pfaffians of this matrix are the entries of the commutator $B C-C B$, which is a prime, Gorenstein ideal, defining the variety of commuting symmetric matrices.

- Now just assume $n=r$. We need to bound the dimension of the set of tensors where A is singular. This is computational and is only true for $r \leq 5$.
- Arbitrary n. Here the minors come in.

Unifying framework for these equations

Given decomposable $u \otimes v \otimes v \in U \otimes S^{2} V$, we have linear map

$$
\begin{aligned}
\psi_{j, u \otimes v \otimes v}: V^{*} \otimes \bigwedge^{j} U & \rightarrow V \otimes \bigwedge^{j+1} U \\
v^{*} \otimes\left(u_{1}^{\prime} \wedge \cdots \wedge u_{j}^{\prime}\right) & \mapsto\left\langle v^{*}, v\right\rangle v \otimes u_{1}^{\prime} \wedge \cdots \wedge u_{j}^{\prime} \wedge u
\end{aligned}
$$

Unifying framework for these equations

Given decomposable $u \otimes v \otimes v \in U \otimes S^{2} V$, we have linear map

$$
\begin{aligned}
& \psi_{j, u \otimes v \otimes v}: V^{*} \otimes \bigwedge^{j} U \rightarrow V \otimes \bigwedge^{j+1} U \\
& v^{*} \otimes\left(u_{1}^{\prime} \wedge \cdots \wedge u_{j}^{\prime}\right) \mapsto\left\langle v^{*}, v\right\rangle v \otimes u_{1}^{\prime} \wedge \cdots \wedge u_{j}^{\prime} \wedge u
\end{aligned}
$$

For arbitrary $x \in U \otimes S^{2} V$, define $\psi_{j, x}$ by extending linearly.

Unifying framework for these equations

Given decomposable $u \otimes v \otimes v \in U \otimes S^{2} V$, we have linear map

$$
\begin{aligned}
\psi_{j, u \otimes v \otimes v}: V^{*} \otimes \bigwedge^{j} U & \rightarrow V \otimes \bigwedge^{j+1} U \\
v^{*} \otimes\left(u_{1}^{\prime} \wedge \cdots \wedge u_{j}^{\prime}\right) & \mapsto\left\langle v^{*}, v\right\rangle v \otimes u_{1}^{\prime} \wedge \cdots \wedge u_{j}^{\prime} \wedge u
\end{aligned}
$$

For arbitrary $x \in U \otimes S^{2} V$, define $\psi_{j, x}$ by extending linearly. If U is 3 -dimensional,

- The $j=0$ and $j=2$ cases give the rectangular matrix
- The $j=1$ case gives the skew-symmetric square matrix

Robust testing of determinantal equations

Let

$$
\sigma_{1} \geq \cdots \geq \sigma_{4} \quad \text { and } \quad \sigma_{1}^{\prime} \geq \cdots \geq \sigma_{12}^{\prime}
$$

be the singular values of

$$
\left(\begin{array}{lll}
A & B & C
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{ccc}
0 & A & -B \\
-A & 0 & C \\
B & -C & 0
\end{array}\right)
$$

respectively.

Robust testing of determinantal equations

Let

$$
\sigma_{1} \geq \cdots \geq \sigma_{4} \quad \text { and } \quad \sigma_{1}^{\prime} \geq \cdots \geq \sigma_{12}^{\prime}
$$

be the singular values of

$$
\left(\begin{array}{lll}
A & B & C
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{ccc}
0 & A & -B \\
-A & 0 & C \\
B & -C & 0
\end{array}\right)
$$

respectively.
The functions

$$
\gamma_{r}^{2}=\sum_{i=r+1}^{4} \sigma_{i}^{2} \quad \delta_{r}^{2}=\sum_{i=2 r+1}^{12}\left(\sigma_{i}^{\prime}\right)^{2}
$$

Robust testing of determinantal equations

Let

$$
\sigma_{1} \geq \cdots \geq \sigma_{4} \quad \text { and } \quad \sigma_{1}^{\prime} \geq \cdots \geq \sigma_{12}^{\prime}
$$

be the singular values of

$$
\left(\begin{array}{lll}
A & B & C
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{ccc}
0 & A & -B \\
-A & 0 & C \\
B & -C & 0
\end{array}\right)
$$

respectively.
The functions

$$
\gamma_{r}^{2}=\sum_{i=r+1}^{4} \sigma_{i}^{2} \quad \delta_{r}^{2}=\sum_{i=2 r+1}^{12}\left(\sigma_{i}^{\prime}\right)^{2}
$$

are continuous, non-negative functions which are both zero if and only if the tensor has rank at most r.

Bounded real rank is a semi-algebraic set

Tensors with real border rank at most r characterized by same equalities, but additional inequalities

Bounded real rank is a semi-algebraic set

Equalities are more important than inequalities for detecting deviations

Thank you

