Ranks of Real Symmetric Tensors
 Greg Blekherman

SIAM AG 2013

Algebraic Geometry of Tensor Decompositions

Real Symmetric Tensor Decompositions

Let f be a form of degree d in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$. We would like to decompose f as

$$
f=\sum_{i=1}^{r} c_{i} \ell_{i}^{d}
$$

where ℓ_{i} are real linear forms. The minimal r for which such decomposition exists is the rank of f.

Illustrative example: $2 x^{3}-6 x y^{2}=(x+\sqrt{-1} y)^{3}+(x-\sqrt{-1} y)^{3}$.
Over \mathbb{C} a generic form has unique rank, given by the Alexander-Hirschowitz theorem.

Call rank r typical for forms in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]_{d}$ if the set of forms of ranks r includes an open subset of $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]_{d}$. For real forms there can be many typical ranks.

Binary Forms

Theorem(Comon-Ottaviani, Causa-Re, Reznick): Let $f \in \mathbb{R}[x, y]_{d}$ be a form with distinct roots. Then f has rank d if and only if all roots of f are real.

Conjecture (Comon-Ottaviani): All ranks r with $\left\lfloor\frac{d+2}{2}\right\rfloor \leq r \leq d$ are typical for forms in $\mathbb{R}[x, y]_{d}$. Now a Theorem (B.).

Enter Apolarity

To a monomial $x^{\alpha}=x_{1}^{a_{1}} \ldots x_{n}^{a_{n}}$ associate a differential operator

$$
\frac{\partial}{\partial x^{\alpha}}=\frac{\partial}{\partial x_{1}^{a_{1}} \ldots \partial x_{n}^{a_{n}}}
$$

To a polynomial $f=\sum c_{\alpha} x^{\alpha}$ associate a differential operator

$$
\partial f=\sum c_{\alpha} \frac{\partial}{\partial x^{\alpha}}
$$

For $f \in k\left[x_{1}, \ldots, x_{n}\right]$ define the apolar ideal f^{\perp} of f by

$$
f^{\perp}=\left\{g \in k\left[x_{1}, \ldots, x_{n}\right] \mid \partial g(f)=0\right\} .
$$

Apolar inner product:

$$
\langle f, g\rangle=\partial f(g)
$$

The Key Lemma

Apolarity Lemma: Let f be a form of degree d. Then f can be written as $f=\sum_{i=1}^{r} \ell_{i}^{d}$ with $\ell_{i}=c_{i 1} x_{1}+\cdots+c_{i n} x_{n}$ if and only if the vanishing ideal of the points $c_{i}=\left(c_{i 1}, \ldots, c_{i n}\right), 1 \leq i \leq r$ is contained in the apolar ideal f^{\perp}.

Restatement about rank: A form f has rank at most r if and only if the apolar ideal f^{\perp} contains the vanishing ideal of some r points.

For binary forms: A form f has rank at most r if and only if f^{\perp} contains a form of degree r that factors completely into distinct factors (over the appropriate field!).

Idea of Proof: Let f be a form of rank r. We need that for any small perturbation g of f the apolar ideal g^{\perp} contains a form of degree r with all real roots and no forms of degree $r-1$ with all real roots.

Nonnegative Decompositions

Two Questions: (1) Given a real form f of even degree $2 d$ is is possible to write f as a positive combination of $2 d$-th powers of linear forms:

$$
f=\sum \alpha_{i} \ell_{i}^{2 d}, \quad \alpha_{i} \geq 0
$$

(2) Given a linear functional $\mathcal{L}: \mathbb{R}[x]_{n, 2 d} \rightarrow \mathbb{R}$ is it possible to write \mathcal{L} as integration with respect to a measure μ :

$$
\mathcal{L}(f)=\int_{\mathbb{R}^{n}} f d \mu
$$

The 2nd question is the homogeneous truncated moment problem. But the questions are equivalent via apolarity! Let $\mathbf{v}=\left(v_{1} x_{1}+\cdots+v_{n} x_{n}\right)^{2 d}$ and define linear operator $\mathcal{L}_{\mathbf{v}}$ by

$$
\mathcal{L}_{\mathbf{v}}(f)=\partial \mathbf{v}(f)=f(v)
$$

Some Convexity

Sums of $2 d$-th powers of linear forms are a convex cone in $\mathbb{R}[x]_{n, 2 d}$. By the above this cone is dual to the cone of nonnegative forms $P_{n, 2 d}$ in $\mathbb{R}[x]_{n, 2 d}$.

The dual cone $\Sigma_{n, 2 d}^{*}$ to the cone of sums of squares $\Sigma_{n, 2 d}$ consists of forms with positive semidefinite middle catalecticant matrix; this is the matrix of the quadratic form $Q_{f}: \mathbb{R}[x]_{n, d} \rightarrow \mathbb{R}$ given by:

$$
Q_{f}(p)=\partial f\left(p^{2}\right)
$$

Corollary: Suppose $P_{n, 2 d}=\Sigma_{n, 2 d}$ and f has a positive semidefinite middle catalecticant matrix. Then f is a sum of $2 d$-th powers and nonnegative rank of f is equal to the rank of the middle catalecticant matrix.

By Hilbert's Theorem this only happens for (1) Binary forms (2) Quadratic Forms (3) Ternary Quartics.

A Generalization

Can this situation be repeated? YES!

Theorem: (B.) Let $f \in \mathbb{R}[x]_{n, 2 d}$ and suppose that

$$
\text { rank } Q_{f} \leq 3 d-3 \text { for } d \geq 3 \text { or } \operatorname{rank} Q_{f} \leq 5 \text { for } d=2 .
$$

Then f is a sum of $2 d$-th powers and rank $f=\operatorname{rank} Q_{f}$. These bounds are tight.

Proposition: (B.) Let $f \in \mathbb{R}[x]_{3,6}$ be a sum of 6 -th powers. Then rank $f \leq 11$ and this bound is sharp.

Can construct example where nonnegative rank is larger than the real rank.

Completely Speculative

Let $f \in \mathbb{R}[x]_{n, 2 d}$. Suppose that we demand that the decomposition is not real but conjugate invariant, i.e. if $\ell^{2 d}$ occurs in the decomposition of f, then so does $\bar{\ell}^{2 d}$.

What can be said about the conjugate rank?

Open Questions

- What happens for more variables?

Describe all typical ranks for ternary quartics. Can show that 7 is a typical rank and any ternary quartic has rank at most 8.

- Conjugate invariant rank.
- Describe all cases (in terms of degree and number of variables) where nonnegative rank is equal to the real rank.

THANK YOU!

$$
4 \square>4 \text { 鸟 } 1 \text { 引 }
$$

