On Waring's Problem for Systems of Skew-Symmetric Forms

 (joint work with Jia Wan)Hirotachi Abo
Department of Mathematics
University of Idaho
abo@uidaho.edu
http://www.uidaho.edu/~abo

August 2, 2013

Waring's Problem

- $m \in \mathbb{N} \cup\{0\}$ and $n, k \in \mathbb{N}$.
- $W=(n+1)$-dimensional vector space over \mathbb{C}.
- $\bigwedge^{k+1} W=(k+1)^{\text {st }}$ exterior power of W.
- A skew-symmetric tensor \mathbf{w} of $\bigwedge^{k+1} W$ is called decomposable if $\exists w_{0}, \ldots, w_{k} \in W$ such that $\mathbf{w}=w_{0} \wedge \cdots \wedge w_{k}$.

Problem.

Find the smallest $s(m, n, k)$ such that $m+1$ generic skew-symmetric tensors $\mathbf{w}_{0}, \ldots, \mathbf{w}_{m} \in \bigwedge^{k+1} W$ are expressible as linear combinations of the same $s(m, n, k)$ decomposable skew-symmetric tensors.

Geometric Interpretation of Waring's Problem

- $V=(m+1)$-dimensional vector space over \mathbb{C}.
- $\mathbb{P}^{m}=$ projective space of lines in V through the origin.
- $X=$ projective variety in \mathbb{P}^{ℓ}.
- The $s^{\text {th }}$ secant variety of X is defined to be the Zariski closure of the union of secant $(s-1)$-planes to X :

$$
\sigma_{s}(X)=\overline{\bigcup_{p_{1}, \cdots, p_{s} \in X}\left\langle p_{1}, \ldots, p_{s}\right\rangle}
$$

- For simplicity, we write $\mathbb{P}^{m} \times X$ for the image of the Segre embedding of $\mathbb{P}^{m} \times \mathbb{P}^{\ell}$ restricted to $\mathbb{P}^{m} \times X$.

Geometric Interpretation of Waring's Problem (Cont'd)

- $\mathbb{G}(k, n) \subseteq \mathbb{P}^{\binom{n+1}{k+1}-1}=$ Grassmannian of $(k+1)$-planes of W.

Problem. Find the smallest $s(m, n, k)$ such that

$$
\sigma_{s(m, n, k)}\left(\mathbb{P}^{m} \times \mathbb{G}(k, n)\right)=\mathbb{P}^{(m+1)\binom{n+1}{k+1}-1}
$$

Note.
$(*) \operatorname{dim} \sigma_{s}\left(\mathbb{P}^{m} \times \mathbb{G}(k, n)\right) \leq \min \left\{s[m+\operatorname{dim} \mathbb{G}(k, n)+1],(m+1)\binom{n+1}{k+1}\right\}-1$

It is expected that $s(m, n, k)=\left\lceil(m+1)\binom{n+1}{k+1} /[m+(k+1)(n-k)+1]\right\rceil$.
Question. Does equality (*) always hold?
Answer. No.

- Since $\mathbb{G}(k, n) \simeq \mathbb{G}(n-k-1, n)$, we may consider the problem of classifying defective $\mathbb{G}(k, n)$ only $k \leq(n-1) / 2$.
- $\mathbb{G}(1, n)$ is defective for most of n.
- Let $k \geq 2$. The following are the only known defective cases:

		Actual codimension	Expected codimension
(i)	$\sigma_{3}(\mathbb{G}(2,6))$	1	0
(ii)	$\sigma_{3}(\mathbb{G}(3,7))$	20	19
(iii)	$\sigma_{4}(\mathbb{G}(3,7))$	6	2
(iv)	$\sigma_{4}(\mathbb{G}(2,8))$	10	8

Conjecture (Bauer-Drisma-de Graaf).
If $k \geq 2$, then $\sigma_{s}(\mathbb{G}(k, n))$ has the expected dimension except for (i), (ii), (ii), and (iv).

What happens if $m \geq 1$?

- $X \subseteq \mathbb{P}^{\ell}=$ non-degenerate subvariety of dimension d.
- (m, ℓ, d) is called unbalanced if $m>\ell-d+1$

Theorem 1 (B-L, B-B-C-C).
Let (m, ℓ, d) be unbalanced. Then $\sigma_{s}\left(\mathbb{P}^{m} \times X\right)$ is defective iff $\ell-d+1<s \leq \min \{m, \ell\}$.

Corollary 2.

$$
\begin{gathered}
\binom{n+1}{k+1}-(k+1)(n-k)<m \Rightarrow \sigma_{s}\left(\mathbb{P}^{m} \times \mathbb{G}(k, n)\right) \text { is defective for } \\
\binom{n+1}{k+1}-(k+1)(n-k)<s \leq \min \left\{m,\binom{n+1}{k+1}-1\right\}
\end{gathered}
$$

Main Result

Theorem 3 (A-Wan, 2013).
$\sigma_{s}\left(\mathbb{P}^{m} \times \mathbb{G}(k, n)\right)$ is defective if ($m, n, k . s$) is one of the following:

	(m, n, k, s)	Actual codimension	Expected codimension
(i)	$(2,4 \ell+2,1,3 \ell+2)$	1	0
(ii)	$(2,5,1,4)$	3	1
(iii)	$(2,7,1,5)$	10	9
(iv)	$(1,5,2,3)$	8	7
(v)	$(2,5,2,5)$	1	0

Table 1: Previously unknown defective cases

What happens if $m \geq 1$? (Cont'd)

It is an immediate consequence that if (m, n, k) is one of the following, then $s(m, n, k)$ is strictly larger than expected:

- (m, n, k) with $\binom{n+1}{k+1}-(k+1)(n-k)<m$,
- $(2,4 \ell+2,3 \ell+2)$ with $\ell \in \mathbb{N}$,
- $(2,5,2)$.

What happens if $m \geq 1$? (Cont'd)

Question.

Are there any quadruples (m, n, k, s) (other than the ones listed in Corollary 2 and Table 2) such that $\sigma_{s}\left(\mathbb{P}^{m} \times \mathbb{G}(k, n)\right)$ are defective?

Main Result Revisited

Theorem 3 (A-Wan, 2013).
$\sigma_{s}\left(\mathbb{P}^{m} \times \mathbb{G}(k, n)\right)$ is defective if ($m, n, k . s$) is one of the following:

	(m, n, k, s)	Actual codimension	Expected codimension
(i)	$(2,4 \ell+2,1,3 \ell+2)$	1	0
(ii)	$(2,5,1,4)$	3	1
(iii)	$(2,7,1,5)$	10	9
(iv)	$(1,5,2,3)$	8	7
(v)	$(2,5,2,5)$	1	0

Table 2: Previously unknown defective cases

Proof for (i)

- $\sigma_{3 \ell+2}\left(\mathbb{P}^{2} \times \mathbb{G}(1,4 \ell+2)\right)$ is expected to fill out $\mathbb{P}^{3\binom{4 \ell+3}{2}-1}$.
- The existence of a point of $\mathbb{P}^{3\binom{4 \ell+3}{2}-1}$, which does not lie on $\sigma_{3 \ell+2}\left(\mathbb{P}^{2} \times \mathbb{G}(1,4 \ell+2)\right)$, shows that $\sigma_{3 \ell+2}\left(\mathbb{P}^{2} \times \mathbb{G}(1,4 \ell+2)\right)$ does not have the expected dimension.

A Theorem of Chiantini and Ciliberto

- $X \subseteq \mathbb{P}^{\ell}=$ non-degenerate, non-singular subvariety.
- $p_{1}, \ldots, p_{s} \in X=$ generic points.

Theorem 4 (Chiantini-Ciliberto).
If \exists non-singular suvbariety C of X through p_{1}, \ldots, p_{s}, then

$$
\operatorname{dim} \sigma_{s}(X) \leq s(\operatorname{dim} X-\operatorname{dim} C)+\operatorname{dim} \sigma_{s}(C)
$$

In particular, if

$$
s(\operatorname{dim} X-\operatorname{dim} C)+\operatorname{dim} \sigma_{s}(C)<\min \{s(\operatorname{dim} X+1)-1, \ell\}
$$

then $\sigma_{s}(X)$ is defective.

Example

- $\nu_{d}: \mathbb{P}^{n} \rightarrow \mathbb{P}^{\binom{n+d}{d}-1}=$ the $d^{\text {th }}$ Veronese embedding.
- $n=d=s=2$.
- $\forall p_{1}, p_{2} \in \nu_{2}\left(\mathbb{P}^{2}\right) \exists$ a unique conic $C \in \nu_{2}\left(\mathbb{P}^{2}\right)$ passing through p_{1} and p_{2}.
- We have

$$
\begin{aligned}
\operatorname{dim} \sigma_{2}\left(\nu_{2}\left(\mathbb{P}^{2}\right)\right) & \leq 2\left[\operatorname{dim} \nu_{2}\left(\mathbb{P}^{2}\right)-\operatorname{dim} C\right]+\operatorname{dim} \sigma_{2}(C) \\
& =2(2-1)+2 \\
& =4<5
\end{aligned}
$$

- By Theorem $4, \nu_{2}\left(\mathbb{P}^{2}\right)$ is defective.

Proofs for (ii)-(v)

The defectivity of each of (ii)-(v) is verified by the existence of the following subvarieties:

	(m, n, k, s)	C
(ii)	$(2,5,1,4)$	$\mathbb{P}^{2} \times \nu_{2}\left(\mathbb{P}^{2}\right)$
(iii)	$(2,7,1,5)$	$\mathbb{P}^{2} \times \nu_{2}\left(\mathbb{P}^{3}\right)$
(iv)	$(1,5,2,3)$	$\mathbb{P}^{2} \times \nu_{3}\left(\mathbb{P}^{3}\right)$
(v)	$(2,5,2,5)$	$\nu_{8}\left(\mathbb{P}^{2}\right)$

For example, if $(m, n, k, s)=(2,5,2,5)$, then $\operatorname{dim} \sigma_{5}\left(\mathbb{P}^{2} \times \mathbb{G}(2,5)\right) \leq 5\left[\operatorname{dim}\left(\mathbb{P}^{2} \times \mathbb{G}(2,5)\right)-\operatorname{dim} \nu_{8}\left(\mathbb{P}^{2}\right)\right]+\operatorname{dim} \sigma_{5}\left(\nu_{8}\left(\mathbb{P}^{2}\right)\right)$

$$
\leq 5[2+3(5-2)-1]+8
$$

$$
\leq 58<59 .
$$

Problem

- An application of Terracini's lemma shows that

$$
\operatorname{dim} \sigma_{5}\left(\mathbb{P}^{2} \times \mathbb{G}(2,5)\right) \geq 58
$$

which implies that $\sigma_{5}\left(\mathbb{P}^{2} \times \mathbb{G}(2,5)\right) \subset \mathbb{P}^{59}$ is a hypersurface.
Problem. Find the equation for $\sigma_{5}\left(\mathbb{P}^{5} \times \mathbb{G}(2,5)\right)$.

Thank you very much for your attention!

