On Waring's Problem for Systems of Skew-Symmetric Forms (joint work with Jia Wan)

Hirotachi Abo

Department of Mathematics University of Idaho

abo@uidaho.edu http://www.uidaho.edu/~abo

August 2, 2013

Waring's Problem

- $m \in \mathbb{N} \cup \{0\}$ and $n, k \in \mathbb{N}$.
- W = (n+1)-dimensional vector space over \mathbb{C} .
- $\bigwedge^{k+1} W = (k+1)^{\text{st}}$ exterior power of W.
- A skew-symmetric tensor \mathbf{w} of $\bigwedge^{k+1} W$ is called decomposable if $\exists w_0, \ldots, w_k \in W$ such that $\mathbf{w} = w_0 \land \cdots \land w_k$.

Problem.

Find the smallest s(m, n, k) such that m + 1 generic skew-symmetric tensors $\mathbf{w}_0, \ldots, \mathbf{w}_m \in \bigwedge^{k+1} W$ are expressible as linear combinations of the same s(m, n, k) decomposable skew-symmetric tensors. Geometric Interpretation of Waring's Problem

- V = (m+1)-dimensional vector space over \mathbb{C} .
- \mathbb{P}^m = projective space of lines in V through the origin.
- X =projective variety in \mathbb{P}^{ℓ} .
- The s^{th} secant variety of X is defined to be the Zariski closure of the union of secant (s-1)-planes to X:

$$\sigma_s(X) = \bigcup_{p_1, \cdots, p_s \in X} \langle p_1, \dots, p_s \rangle.$$

• For simplicity, we write $\mathbb{P}^m \times X$ for the image of the Segre embedding of $\mathbb{P}^m \times \mathbb{P}^\ell$ restricted to $\mathbb{P}^m \times X$.

Geometric Interpretation of Waring's Problem (Cont'd)

• $\mathbb{G}(k,n) \subseteq \mathbb{P}^{\binom{n+1}{k+1}-1} = \text{Grassmannian of } (k+1)\text{-planes of } W.$

Problem. Find the smallest s(m, n, k) such that

$$\sigma_{s(m,n,k)}(\mathbb{P}^m \times \mathbb{G}(k,n)) = \mathbb{P}^{(m+1)\binom{n+1}{k+1}-1}.$$

Note.

$$(*)\dim\sigma_s(\mathbb{P}^m\times\mathbb{G}(k,n))\leq\min\left\{s[m+\dim\mathbb{G}(k,n)+1],\ (m+1)\binom{n+1}{k+1}\right\}-1$$

It is expected that $s(m, n, k) = \left[(m+1) \binom{n+1}{k+1} / [m+(k+1)(n-k)+1] \right]$. Question. Does equality (*) always hold?

Answer. No.

Known Defective Cases (m = 0)

- Since $\mathbb{G}(k, n) \simeq \mathbb{G}(n k 1, n)$, we may consider the problem of classifying defective $\mathbb{G}(k, n)$ only $k \le (n 1)/2$.
- $\mathbb{G}(1,n)$ is defective for most of n.
- Let $k \ge 2$. The following are the only known defective cases:

		Actual codimension	Expected codimension
(i)	$\sigma_3(\mathbb{G}(2,6))$	1	0
(ii)	$\sigma_3(\mathbb{G}(3,7))$	20	19
(iii)	$\sigma_4(\mathbb{G}(3,7))$	6	2
(iv)	$\sigma_4(\mathbb{G}(2,8))$	10	8

Conjecture (Bauer-Drisma-de Graaf).

If $k \geq 2$, then $\sigma_s(\mathbb{G}(k, n))$ has the expected dimension except for (i), (ii), (ii), and (iv).

What happens if $m \ge 1$?

- $X \subseteq \mathbb{P}^{\ell}$ = non-degenerate subvariety of dimension d.
- (m, ℓ, d) is called unbalanced if $m > \ell d + 1$

Theorem 1 (B-L, B-B-C-C).

Let (m, ℓ, d) be unbalanced. Then $\sigma_s(\mathbb{P}^m \times X)$ is defective iff $\ell - d + 1 < s \leq \min\{m, \ell\}.$

Corollary 2.

 $\binom{n+1}{k+1} - (k+1)(n-k) < m \Rightarrow \sigma_s(\mathbb{P}^m \times \mathbb{G}(k,n)) \text{ is defective for}$ $\binom{n+1}{k+1} - (k+1)(n-k) < s \le \min\left\{m, \binom{n+1}{k+1} - 1\right\}.$

Main Result

Theorem 3 (A-Wan, 2013).

 $\sigma_s(\mathbb{P}^m \times \mathbb{G}(k,n))$ is defective if (m, n, k.s) is one of the following:

	(m,n,k,s)	Actual codimension	Expected codimension
(i)	$(2, 4\ell + 2, 1, 3\ell + 2)$	1	0
(ii)	(2, 5, 1, 4)	3	1
(iii)	(2,7,1,5)	10	9
(iv)	(1,5,2,3)	8	7
(v)	(2, 5, 2, 5)	1	0

Table 1: Previously unknown defective cases

What happens if $m \ge 1$? (Cont'd)

It is an immediate consequence that if (m, n, k) is one of the following, then s(m, n, k) is strictly larger than expected:

- (m, n, k) with $\binom{n+1}{k+1} (k+1)(n-k) < m$,
- $(2, 4\ell + 2, 3\ell + 2)$ with $\ell \in \mathbb{N}$,
- (2, 5, 2).

What happens if $m \ge 1?$ (Cont'd)

Question.

Are there any quadruples (m, n, k, s) (other than the ones listed in Corollary 2 and Table 2) such that $\sigma_s(\mathbb{P}^m \times \mathbb{G}(k, n))$ are defective?

Main Result Revisited

Theorem 3 (A-Wan, 2013).

 $\sigma_s(\mathbb{P}^m \times \mathbb{G}(k,n))$ is defective if (m, n, k.s) is one of the following:

	(m,n,k,s)	Actual codimension	Expected codimension
(i)	$(2, 4\ell + 2, 1, 3\ell + 2)$	1	0
(ii)	(2, 5, 1, 4)	3	1
(iii)	(2,7,1,5)	10	9
(iv)	(1,5,2,3)	8	7
(v)	(2, 5, 2, 5)	1	0

Table 2: Previously unknown defective cases

Proof for (i)

- $\sigma_{3\ell+2}(\mathbb{P}^2 \times \mathbb{G}(1, 4\ell+2))$ is expected to fill out $\mathbb{P}^{3\binom{4\ell+3}{2}-1}$.
- The existence of a point of $\mathbb{P}^{3\binom{4\ell+3}{2}-1}$, which does not lie on $\sigma_{3\ell+2}(\mathbb{P}^2 \times \mathbb{G}(1, 4\ell+2))$, shows that $\sigma_{3\ell+2}(\mathbb{P}^2 \times \mathbb{G}(1, 4\ell+2))$ does not have the expected dimension.

A Theorem of Chiantini and Ciliberto

- $X \subseteq \mathbb{P}^{\ell} =$ non-degenerate, non-singular subvariety.
- $p_1, \ldots, p_s \in X = \text{generic points.}$

Theorem 4 (Chiantini-Ciliberto).

If \exists non-singular subtraction C of X through p_1, \ldots, p_s , then

$$\dim \sigma_s(X) \le s(\dim X - \dim C) + \dim \sigma_s(C).$$

In particular, if

 $s(\dim X - \dim C) + \dim \sigma_s(C) < \min\{s(\dim X + 1) - 1, \ell\},\$

then $\sigma_s(X)$ is defective.

Example

- $\nu_d : \mathbb{P}^n \to \mathbb{P}^{\binom{n+d}{d}-1} = \text{the } d^{\text{th}} \text{ Veronese embedding.}$
- n = d = s = 2.
- $\forall p_1, p_2 \in \nu_2(\mathbb{P}^2) \exists$ a unique conic $C \in \nu_2(\mathbb{P}^2)$ passing through p_1 and p_2 .
- We have

$$\dim \sigma_2(\nu_2(\mathbb{P}^2)) \leq 2[\dim \nu_2(\mathbb{P}^2) - \dim C] + \dim \sigma_2(C)$$
$$= 2(2-1) + 2$$
$$= 4 < 5.$$

• By Theorem 4, $\nu_2(\mathbb{P}^2)$ is defective.

Proofs for (ii)-(v)

The defectivity of each of (ii)-(v) is verified by the existence of the following subvarieties:

	(m,n,k,s)	C
(ii)	(2, 5, 1, 4)	$\mathbb{P}^2 imes u_2(\mathbb{P}^2)$
(iii)	(2, 7, 1, 5)	$\mathbb{P}^2 imes u_2(\mathbb{P}^3)$
(iv)	(1, 5, 2, 3)	$\mathbb{P}^2 imes u_3(\mathbb{P}^3)$
(v)	(2, 5, 2, 5)	$ u_8(\mathbb{P}^2)$

For example, if (m, n, k, s) = (2, 5, 2, 5), then

 $\dim \sigma_5(\mathbb{P}^2 \times \mathbb{G}(2,5)) \leq 5[\dim(\mathbb{P}^2 \times \mathbb{G}(2,5)) - \dim \nu_8(\mathbb{P}^2)] + \dim \sigma_5(\nu_8(\mathbb{P}^2))$ $\leq 5[2+3(5-2)-1] + 8$ $\leq 58 < 59.$

Problem

• An application of Terracini's lemma shows that

 $\dim \sigma_5(\mathbb{P}^2 \times \mathbb{G}(2,5)) \ge 58,$

which implies that $\sigma_5(\mathbb{P}^2 \times \mathbb{G}(2,5)) \subset \mathbb{P}^{59}$ is a hypersurface.

Problem. Find the equation for $\sigma_5(\mathbb{P}^5 \times \mathbb{G}(2,5))$.

Thank you very much for your attention!