Report on the recent progress on the study of the secant defectivity of Segre-Veronese varieties

(joint work with M. C. Brambilla)

Hirotachi Abo

Department of Mathematics University of Idaho

abo@uidaho.edu http://www.uidaho.edu/~abo

October 6, 2011

Notation

- V = (n+1)-dimensional vector space over \mathbb{C} .
- $\mathbb{P}V(=\mathbb{P}^n)$ = projective space of V.
- $[\mathbf{v}] \in \mathbb{P}V =$ equivalence class containing $\mathbf{v} \in V$.
- $S^d V = d^{\text{th}}$ symmetric power of V.
- $\langle A \rangle$ = linear span of $A \subseteq \mathbb{P}V$.

Secant varieties

- X =projective variety in $\mathbb{P}V$.
- Let p_1, \ldots, p_s be generic points of X. Then $\langle p_1, \ldots, p_s \rangle$ is called a secant (s-1)-plane to X.
- The s^{th} secant variety of X is defined to be the Zariski closure of the union of secant (s-1)-planes to X:

$$\sigma_s(X) = \bigcup_{p_1, \cdots, p_s \in X} \langle p_1, \dots, p_s \rangle.$$

Secant dimension and secant defectivity

• A simple parameter count implies that the following inequality holds:

 $\dim \sigma_s(X) \le \min \left\{ s \cdot (\dim X + 1) - 1, \dim \mathbb{P}V \right\}.$

- If Equality holds, we say X has the expected dimension.
- Not all the secant varieties have the expected dimension.
- If σ_s(X) does not have the expected dimension, then σ_s(X) is said to be defective.
- X is said to be defective if $\sigma_s(X)$ is defective for some s.

Why do we care about the secant defectivity?

The dimensions of higher secant varieties of parameter spaces of tensors have something to do with:

- Tensor rank, bordar rank, and typical tensor rank.
- Uniqueness of tensor decomposition.
- Equations.

Secant varieties of other classically studied varieties

- Let $v_d : \mathbb{P}V \to \mathbb{P}S^d V$ be the d^{th} Veronese map, i.e., v_d is the map given by $v_d([\mathbf{v}]) = [\mathbf{v}^d]$.
- Theorem (Alexander-Hirschowitz, 1995)

 $\sigma_s[v_d(\mathbb{P}V)]$ is non-defective except for the following cases:

$\dim \mathbb{P} V$	d	s
≥ 2	2	$2 \le s \le n$
2	4	5
3	4	9
4	3	7
4	4	14

Secant defectivity for Segre varieties and Grassmann varieties

- There are corresponding conjecturally complete lists of defective secant varieties for Segre varieties (A-Ottaviani-Peterson, 2009) and Grassmann varieties (Bauer-Draisma-de Graaf, 2007).
- There is no general conjecture on defective secant varieties for the Segre-Veronese case known yet.

Secant varieties of Segre-Veronese varieties

•
$$\mathbf{n} = (n_1, \ldots, n_k), \, \mathbf{d} = (d_1, \ldots, d_k) \in \mathbb{N}^k.$$

- $V_i = (n_i + 1)$ -dimensional vector space.
- Seg : $\prod_{i=1}^{k} \mathbb{P}V_i \to \mathbb{P}\left(\bigotimes_{i=1}^{k} V_i\right)$ = Segre map, i.e., the map given by Seg($[\mathbf{v}_1], \ldots, [\mathbf{v}_k]$) = $[\mathbf{v}_1 \otimes \cdots \otimes \mathbf{v}_k]$.
- $X_{\mathbf{n},\mathbf{d}} := \operatorname{Seg}\left(\prod_{i=1}^{k} v_{d_i}\left(\mathbb{P}V_i\right)\right) \hookrightarrow \mathbb{P}\left(\bigotimes_{i=1}^{k} S^{d_i}V_i\right)$ is called a Segre-Veronese variety.

Conjecturally complete list of defective two factor cases

n	d	S
$(m,n) \text{ with } m \ge 2$	(d,1)	$\left(\binom{m+d}{d} - m < s < \min\left\{ \binom{m+d}{d}n + 1 \right\} \right)$
(2, 2k+1)	(1, 2)	3k+2
(4,3)	(1,2)	6
(1,2)	(1,3)	5
(1,n)	(2,2)	$n+2 \le s \le 2n+1$
(2,2)	(2,2)	7, 8
(2,n)	(2,2)	$\left\lfloor \frac{3n^2 + 9n + 5}{n+3} \right\rfloor \le s \le 3n+2$
(3,3)	(2,2)	14,15
(3,4)	(2,2)	19
(n,1)	(2,2k)	$kn + k + 1 \le s \le kn + k + n$

This conjecture is based on:

- already existing results (by many people including E. Carlini, T. Geramita, J. Draisma, and G. Ottaviani).
- computational experiments;
- the theorems we proved.

Méthode d'Horace différentielle

• $\mathbf{n} = (n_1, \ldots, n_k), \mathbf{d} = (d_1, \ldots, d_k) \in \mathbb{N}^k$ with $d_1 \ge 3$.

•
$$\mathbf{n}' = (n_1 - 1, n_2, \dots, n_k), \, \mathbf{d}' = (d_1 - 1, d_2, \dots, d_k), \\ \mathbf{d}'' = (d_1 - 2, d_2, \dots, d_k).$$

• For a given positive integer s, let s' and ϵ be the quotient and remainder when dividing the following integer by $\sum_{i=1}^{k} n_i$:

$$s\left(1+\sum_{i=1}^{k}n_{i}\right)-\binom{n_{1}+d_{1}-1}{d_{1}-1}\prod_{i=2}^{k}\binom{n_{i}+d_{i}}{d_{i}}.$$

Méthode d'Horace différentielle (cont'd)

• Theorem (A-Brambilla, 2009)

If $\sigma_{s'}(X_{\mathbf{n}',\mathbf{d}})$, $\sigma_{s-s'}(X_{\mathbf{n},\mathbf{d}'})$, and $\sigma_{s-s'-\epsilon}(X_{\mathbf{n},\mathbf{d}''})$ have the expected dimension and if

$$(s-s'-\epsilon)\left(1+\sum_{i=1}^{k}n_i\right) \ge \binom{n_1+d_1-2}{d_1-2}\prod_{i=2}^{k}\binom{n_i+d_i}{a_i},$$

then $\sigma_s(X_{\mathbf{n},\mathbf{d}})$ also has the expected dimension.

Results

• Theorem (A-Brambilla, 2009)

Let $n, a \ge 1, b \ge 3$, $\mathbf{n} = (n, 1)$ and $\mathbf{d} = (a, b)$. Then $X_{\mathbf{n}, \mathbf{d}}$ is not defective except for (n, a, b) = (n, 2, 2k) with $k \ge 1$.

- Remark. In 2011, this theorem was extended to b ≥ 1 by
 E. Ballico, A. Bernardi and M. V. Catalisano.
- Corollary (A-Brambilla, 2009)
 Suppose that X_{n,d} is not defective for every n and for d = (3,3), (3,4) and (4,4). Then X_{n,d} is not defective for every n and for every d ≥ (3,3).

More realistic conjecture

• Conjecture (A-Brambilla, 2009)

If $\mathbf{d} \geq (3,3)$, then there are no defective two-factor Segre-Veronese varieties $X_{\mathbf{n},\mathbf{d}}$ for all $\mathbf{n} \in \mathbb{N}^2$.

- The completion of this conjecture is equivalent to establishment of the non-defectivity of X_{n,d} for d ∈ {(3,3), (3,4), (4,4)}.
- Problem. Show the non-defectivity of $\sigma_s(X_{n,d})$ for smaller $\mathbf{d}'s$. (It is frequent that the Horace theorem cannot be applied directly v to such cases.)

Méthode d'Horace différentielle Revisited

•
$$\mathbf{n} = (n_1, \dots, n_k), \mathbf{d} = (d_1, \dots, d_k) \in \mathbb{N}^k$$
 with $d_1 \ge 3$.

•
$$\mathbf{n}' = (n_1 - 1, n_2, \dots, n_k), \, \mathbf{d}' = (d_1 - 1, d_2, \dots, d_k), \\ \mathbf{d}'' = (d_1 - 2, d_2, \dots, d_k).$$

If $\sigma_{s'}(X_{\mathbf{n}',\mathbf{d}})$, $\sigma_{s-s'}(X_{\mathbf{n},\mathbf{d}'})$, and $\sigma_{s-s'-\epsilon}(X_{\mathbf{n},\mathbf{d}''})$ have the expected dimension and if

$$(s-s'-\epsilon)\left(1+\sum_{i=1}^{k}n_i\right) \ge \binom{n_1+d_1-2}{d_1-2}\prod_{i=2}^{k}\binom{n_i+d_i}{a_i},$$

then $\sigma_s(X_{\mathbf{n},\mathbf{d}})$ also has the expected dimension.

What about Segre-Veronese varieties with 3 or more factors?

• Theorem (A-Brambilla, 2010)

Let $k \in \{3, 4\}$, let $\mathbf{n} = (n_1, \ldots, n_k)$ and let $\mathbf{d} = (1, \ldots, 1, 2)$. Then there exist infinitely many defective secant varieties of $X_{\mathbf{n},\mathbf{d}}$, which were previously not known. Time for reception!