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Outline for Lecture I.

1. Waves in heterogeneous media

2. High Frequency regime and Geometrical optics

3. Wigner transforms

4. Radiative Transfer model in the weak coupling regime

5. Random Liouville, paraxial and Itô-Schrödinger approximations

6. More general Radiative Transfer models
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Outline for Lecture II.

1. Time Reversal in random media

2. Statistical stability

3. Validity of Radiative Transfer Models

4. Applications to Detection and Imaging



CIRM, Marseille September 8, 2005CIRM, Marseille September 8, 2005CIRM, Marseille September 8, 2005

Time Reversal framework
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Numerical Experiment: Initial Data
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Numerical Experiment: Forward Solution



CIRM, Marseille September 8, 2005CIRM, Marseille September 8, 2005CIRM, Marseille September 8, 2005

Numerical Experiment: Truncated Solution
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Numerics: Time-reversed Solution
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Zoom on Refocused and Original Signals
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Time-reversal in changing 3D media

We consider time reversal with possibly a change of medium between the

forward (ϕ = 1) and backward (ϕ = 2) stages. The forward problem for

uϕ = (v, p) = (v1, v2, v3, p) is

Aϕ(x)
∂uϕ(t,x)

∂t
+Dj∂u

ϕ(t,x)

∂xj
= 0, x ∈ R3, ϕ = 1,2,

with initial condition u1(t = 0) = u0; A
ϕ(x) = Diag(ρ, ρ, ρ, κϕ(x)).

Using Green’s propagators Gϕ(t,x;y), the back-propagated signal is

uB(x) =
∫
R9

ΓG2(T,x;y)ΓG1(T,y′; z)χΩ(y)χΩ(y′)f(y − y′)u0(z)dydy
′dz.

•Γ = Diag(−1,−1,−1,1) models the time reversal process

•χΩ(y) models the array of detectors and f(y) blurring at the detectors

•T is the duration of each propagation stages.
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High Frequency scaling

We are interested in high frequency (O(ε−1)) wave propagation and thus

wish to analyze the refocusing signal at distances O(ε) away from the

source center.

Rescale the problem with u0(x) = S
(
x−x0
ε

)
and accordingly with a filter

1
εd
f(y−y′

ε ). An observation point x close to x0 is written as x = x0 + εξ,

so that in the new variables

uBε (ξ;x0)=
∫
R9

ΓG2
ε(T,x0 + εξ;y)ΓG1

ε(T,y
′;x0 + εz)

×S(z)χΩ(y)χΩ(y′)f(
y − y′

ε
)dydy′dz.

We thus want to understand the limiting properties (as ε → 0) of the

4 × 4-matrix G2
ε(T,x0 + εξ;y)ΓG1

ε(T,y
′;x0 + εz). We use kinetic models

for this.
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How to use kinetic theories

Recall that the Wigner transform of two fields u and v satisfies an equa-

tion of the form

ε
∂Wε

∂t
+ P (ik +

εD

2
)Wε +WεP ∗(ik−

εD

2
) +

√
ε

(
K1
εKWε +K2∗

ε WεK∗
)

= 0,

which comes from u and v solving equations of the form

ε
∂u

∂t
+Bεu = 0, ε

∂v∗

∂t
+ v∗B∗ε = 0,

where v∗B∗ε has to be interpreted in the pseudo-differential sense, i.e.,

as in the inverse Fourier transform of the vector v̂∗(t,k)B̂ε(x,k), where

B̂ε(x,k) is the symbol of Bε(x, D).

To find an equation for the Wigner transform of matrix-valued Green

functions, we need a pair similarly satisfying the equations

ε
∂Gε

∂t
+BεGε = 0, ε

∂G∗ε
∂t

+G∗εB
∗
ε = 0.
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An adjoint Green’s matrix

Recall that the Green function G1(t,x;y) solves the equation

A1∂G
1(t,x;y)

∂t
+Dj ∂

∂xj
(G1(t,x;y)) = 0, G1(0,x;y) = δ(x− y)I.

Introduce the adjoint Green’s matrix G1
∗, solution of

∂G1
∗(t,x;y)

∂t
+
∂G1

∗(t,x;y)

∂xj
Dj(A1)−1(x) = 0, G1

∗(0,x;y) = δ(x−y)ΓA−1(y)Γ.

We verify the following Maxwell reciprocity-type result

ΓG1(t,y;x) = G1
∗(t,x;y)A1(x)Γ.

This allows us to recast the back-propagated signal as

uBε (ξ;x0)=
∫
R9

ΓG2
ε(T,x0 + εξ;y)G1

ε∗(T,x0 + εz;y′)A1
ε(x0 + εz)Γ

×S(z)χΩ(y)χΩ(y′)f(
y − y′

ε
)dydy′dz.
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Theory of time-reversal refocusing

Introduce now the Wigner transform

Wε(t,x,k) =
∫
R6

[∫
R3
eik·zG2

ε(t,x−
εz

2
;y)G1

ε∗(t,x +
εz

2
;y′)

dz

(2π)3

]

×χΩ(y)χΩ(y′)f(
y − y′

ε
)dydy′,

which satisfies the same equation as we have seen before. This allows

us to write the refocused signal in terms of the Wigner transform as

uBε (ξ;x0) =
∫
R6

ΓWε(t,x0 + ε
ξ + z

2
,k)e−ik·(z−ξ)A1

ε(x0 + εz)ΓS(z)dzdk.

High frequency estimates of refocusing are obtained by analyzing the limit

of Wε(t,x,k) as ε→ 0: ûB(k;x0) = ΓW0(t,x0,k)A1
0(x0)ΓŜ(k) .
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Kinetic theory in weak coupling regime

The Wigner distribution at time t = 0 is given by

W (0,x,k) = |χΩ(x)|2f̂(k)A−1
0 (x), where (Aϕε )

−1 = A−1
0 +O(

√
ε).

The limit Wigner distribution is decomposed as:

W (t,x,k) = a+(t,x,k)b+b∗++a−(t,x,k)b−b∗−. Furthermore, the radiative

transfer equation for a+ is (with ω+ = −c0|k|)

∂a+
∂t

+ c0k̂ · ∇a+ + (Σ(k) + iΠ(k))a+

=
πω2

+(k)

2(2π)d

∫
Rd
R̂12(k− q)a+(q)δ

(
ω+(q)− ω+(k)

)
dq,

Σ(k) =
πω2

+(k)

2(2π)d

∫
Rd
R̂11 + R̂22

2
(k− q)δ

(
ω+(q)− ω+(k)

)
dq

iΠ(k) =
−iπ

∑
j=±

4(2π)d
p.v.

∫
Rd

(
R̂11 − R̂22

)
(k− q)

ωj(k)ω+(q)

ωj(q)− ω+(k)
dq.
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Robustness of Time Reversal

The refocusing is extremely sensitive to modifications in the “random”

medium. It is however very robust when other operations than time

reversal are performed at the receivers.

Let us assume that the usual time reversal operation represented by

Γ0 = Diag(−1,−1,−1,1) is replaced by multiplication by an (almost)

arbitrary Γ(x). The initial conditions for the Wigner transform are then

W (0,x,k) = |χ(x)|2Γ(x)Γ0A
−1(x)f̂(k).

The rest of the theory stays unchanged.
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Robustness of Time Reversal (II)

The initial conditions for the acoustic modes are then

a±(0,x,k) = |χ(x)|2f̂(k)
(
A(x)Γ(x)b∓(x,k) · b±(x,k)

)
.

When Γ(x) = Γ0 we get back full time reversal results. When Γ = Id,

we obtain that a±(0,x,k) = 0 by orthogonality of the eigenvectors bj.

When only pressure is measured, Γ = Diag(0,0,0,1), we obtain

a±(0,x,k) =
1

2
|χ(x)|2f̂(k).

When only the first component of the velocity field is measured with

Γ = Diag(−1,0,0,0), the initial data is

a±(0,x,k) = |χ(x)|2f̂(k)
k21

2|k|2
.
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Outline for Lecture II.

1. Time Reversal in random media

2. Statistical stability

3. Validity of Radiative Transfer Models

4. Applications to Detection and Imaging
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Statistical stability in Time Reversal

We saw that there were few theoretical results in the weak coupling

regime for the wave equation and they are concerned with ensemble

averages of the Wigner transform, not its limiting law.

However such limiting laws are accessible for simplifed regimes of radia-

tive transfer, including paraxial approximations, Itô-Schrödinger approxi-

mations, and random Liouville equations.

Such limiting laws directly translate into results on the statistical stability

of the time reversed signals whether the underlying media change or not

between the two stages of the time reversal experiment.
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Main stability result in paraxial approximation

Theorem. Let the array χ(y) and the filter f(y) be in L1∩L∞(Rd), while

ψ0 ∈ L2(Rd) for a given κ ∈ R. Then for each ξ ∈ Rd the back-propagated

signal ψBε (ξ,x0, κ) converges in probability and weakly in L2
x0

(Rd) as ε→ 0

to the deterministic

ψB(ξ, κ;x0) =
∫
R2d

eik·(ξ−y)W (L,x0,k, κ)ψ0(y, κ)
dydk

(2π)d
.

The function W satisfies the transport equation

∂W

∂z
+

1

κ
k · ∇xW = κLW,

with initial data W0(x,k) = f̂(k)|χ(x)|2 and operator L defined by

Lλ =
∫
Rd

dp

(2π)d
R̂(
|p|2 − |k|2

2
,p− k)(λ(p)− λ(k)),

where R̂(ω,p) is the Fourier transform of the correlation function of V .
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Stability of TR in Itô-Schrödinger regime

Theorem. Assume that the initial condition ψ0(y) ∈ L2(Rd), the filter

f(y) ∈ L1(Rd)∩L2(Rd), and the detector amplification χ(x) is sufficiently

smooth. Then ψBη (ξ;x0) converges weakly and in probability as η → 0 to

the deterministic back-propagated signal

ψB(ξ;x0) =
∫
Rd
eik·ξW (x0,k, L)ψ̂0(k)dk,

where W (x0,k, L) is the solution of a RTE with initial conditions W (x,k,0) =

f̂(k)|χ(x)|2. Moreover introducing λ(ξ,x0) = λ̃(x0)µ(ξ) we have the fol-

lowing estimate〈
(ψBη − 〈ψBη 〉, λ)2

〉
≤ Cηd‖ψ0‖22‖λ‖

2
2 = Cηd‖ψ0‖22‖µ‖

2
2‖λ̃‖

2
2,

uniformly in L on compact intervals.

We do not have such an estimate for the parabolic approximation and

the test function is allowed to have much smaller support.
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Stability of TR in random Liouville regime

Theorem. The re-propagated field vδ,Bε (ξ,x0) converges as (ε, δ) → 0

vB(ξ,x0) =
∫
eik·ξ[ u+(T,x0,k)〈Ŝ0(k),b−(k)〉b+(k)

+ u−(T,x0,k)〈Ŝ0(k),b+(k)〉b−(k)]
dk

(2π)d

in the sense that

sup
ξ∈Rd

E
{∫

|vδ,Bε (ξ,x0)− vB(ξ,x0)|2dx0

}
→ 0.

The functions u±(t,x,k) are the solutions of the Fokker-Planck equation

∂ū±
∂t

± c0k̂ · ∇xū± =
∂

∂km

[
|k|2Dmn(k̂)

∂ū±
∂kn

]
, u±(0,x,k) = |χ(x)|2f̂(k),

where

Dmn =
1

2

∫ ∞

−∞

∂2R(c0sk̂)

∂xn∂xm
ds, E {c1(y)c1(x + y)} = R(x).



CIRM, Marseille September 8, 2005CIRM, Marseille September 8, 2005CIRM, Marseille September 8, 2005

Outline for Lecture II.

1. Time Reversal in random media

2. Statistical stability

3. Validity of Radiative Transfer Models

4. Applications to Detection and Imaging
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Time reversal in changing media

Consider two media such that the compressibility fluctuations are given by

κ̂2(x,k) = φ(x)eiτ ·kκ̂1(x,k). For instance φ(x) corresponds to a change

in the amplitude of the fluctuations at the macroscopic scale x and τ

corresponds to a spatial shift in the domain before back-propagation.

Then the propagating modes satisfy

∂a±
∂t

± c0k̂ · ∇a± +
(
σa(k)± iΠ(k)

)
a± = Qa±,

a±(0,x,k) = |χ(x)|2

Qa(k) =
∫
R3
σ(k,p)φ(x,p− k)

(
a(p)− a(k)

)
δ(c0(|k| − |p|))dp

Π(k) =
∫
R3

(1− |φ(x,p− k)|2)
c0
2

|k||p|2

|k|2 − |p|2
R̂(k− p)

(2π)3
dp

σa(k) =
∫
R3
σ(k,p)

(
1 + |φ(x,p− k)|2

2
− φ(x,p− k)

)
δ(c0(|k| − |p|))dp.
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Diffusion Approximation

Assume Σ = O(η−1), σa = O(η), and |φ| = (1 + ηψ). Use a = a0 + ηa1 +

η2a2, plug Ansatz into transport equation, equate like powers of η and

deduce that a0 solves the following diffusion equation:

∂a0
∂t

+
Σ(|k|)ψ2

2
a0 −D(|k|)∆a0 = 0,

e−iΠ(|k|)t/η2a0(0,x) = |χ(x)|2
1

4π

∫
S2
eiτ ·kdk̂ = |χ(x)|2

sin |τ ||k|
|τ ||k|

D(|k|) =
c20

3[Σ(|k|)− λ(|k|)]
=
c0 l

∗

3
=

c0 l

3
(
1− λ(|k|)

Σ(|k|)

)
λ(|k|)k̂ =

c20|k|
2

(4π)2

∫
R3
R̂(p− k)p̂δ(c0(|k| − |p|))dp.
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Application to Filters in Time Reversal

The back-propagated signal in the diffusive regime takes the form

ûB(k;x0) =


sin(ΠsT )

√
κ0

ρ
ik̂

cos(ΠsT )

p̂0(k) +

 cos(ΠsT )ik̂

− sin(ΠsT )

√
ρ

κ0

|k|ϕ̂(k)


× e−iτ ·k

sin |τ ||k|
|τ ||k|

e−Σψ2T/2 a(T,x0, |k|).

This is to be compared to the case where Πs = ψ = |τ | = 0 when the

medium remains the same during the forward and backward propagations.
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2D Numerical simulations

In two space dimensions and in the case of periodic media with distances

of propagation large compared to the size of the box, the filter is asymp-

totically given by

F (ψ, |τ |, |k|, T, L, kmax, κ) = ā J0(|τ ||k|) cos(2ψΠ0T ) e−
Σ
2ψ

2T .

It should be compared to the numerical simulation

Fdata =
(pB(x + τ), p0(x))

‖p0(x)‖2
.

We consider some simulations with varying |τ | (shifting medium).
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2D Numerical simulations (II)

Comparison of Fdata (solid lines) and the theoretical prediction F (dashed

lines) as a function of τ with ψ = 0. Periodic box of size L = 20,

propagation time T = 200, number of modes in power spectrum: 50.
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Duke experimental setting
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Spatial shift before backpropagation



CIRM, Marseille September 8, 2005CIRM, Marseille September 8, 2005CIRM, Marseille September 8, 2005

Back-propagated signal

Back-propgated signal as a function of spatial shift for several frequencies.

The minimum of the back-propagated signal exactly occurs where it is

predicted by the two-dimensional theory.
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Numerical validation of radiative transfer

Wave propagation in heterogeneous media may sometimes be difficult to

control in real experiments. Numerical simulations offer an interesting

complement to physical experiments.

In order to be relevant the simulations need to simulate spatial domains

that are much larger than the typical wavelength in the system. This

requires us to use multi-processor architectures and parallelized codes.

We have developed such a computational tool to solve acoustic waves

(easily extendible to micro-waves) in the time domain, as required by the

time reversal framework.
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Details of the wave (microscopic) code.
The codes solves a discrete version (centered second-order discretization

in space and time) of the following acoustic wave system of equation

∂v

∂t
+ ρ−1(x)∇p = 0,

∂p

∂t
+ κ−1(x)∇ · v = 0.

The domain is surrounded by a perfectly matched layer (PML) method

so that outgoing waves are not reflected at the domain boundary. The

(random) physical coefficients ρ(x) and κ(x) are carefully chosen to verify

prescribed statistical properties.

The FDFT (Finite difference forward in time) method has been paral-

lelized by using the software PETSc developed at Argonne. Forward

calculations for T = 1500 (typical times necessary to validate the diffu-

sive model; for λ = 1 and average sound speed c0 = 1) require 3-4 days

of calculations.
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Details of the macroscopic codes.

In both the direct and time reversal measurements, the data are the

macroscopic energy densities

E(t,x) =
1

2

(
ρ(x)|v|2(t,x) + κ(x)p2(t,x)

)
.

We consider two macroscopic models for E: a radiative transfer equation

and a diffusion equation. The radiative transfer equation is solved by a

Monte Carlo method (requiring in excess of 50M particles to achieve a

reasonable accuracy even with good variance reduction technique con-

ditioning particles on hitting the inclusion). The diffusion equation is

solved by the finite element method.
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A typical configuration for the wave solver

The domain size is roughly 20,000× 10,000 = 200M nodes
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Wave-Transport-diffusion comparison

Experiment with isotropic

scattering (R̂ ≡ 1 for this fre-

quency; the source term is

a localized Bessel function).

The best transport fit is ob-

tained for Σ−1
num = 88.5 versus

Σ−1
th = 83.00. The best fit for

the diffusion coefficient and

the extrapolation length are

Dnum = 43.2 and Lex = 0.80

versus Dth = (2Σ)−1 = 41.5

and Lth = 0.81.

Averaged energy densities on detector as a function of time.
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Effect of void inclusion

Correction (w.r.t. solution without inclusion) generated by a void inclu-

sion, where the random fluctuations are suppressed. Left, radius of 40.

Right, radius of 50. Transport and diffusion generated by best energy

fit. The diffusion fit is valid only for very long times, whereas transport

performs extremely well.
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Effect of increased randomness

Correction generated by an inclusion of radius R = 50 where the random

fluctuations are suppressed. Left: 5% RMS. Right: 8% RMS. Transport

and diffusion generated by best energy fit. The diffusion fit is now much

more accurate.
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Effect of perfectly reflecting inclusion

Correction generated by a perfectly reflecting inclusion (specular reflec-

tion for transport and Neumann conditions for diffusion). Left, radius of

30. Right, radius of 40. Transport and diffusion generated by best energy

fit. Still very good agreement between wave and transport simulations.
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Statistical stability

Statistical stability increases when:

(i) the power spectrum of the hetero-

geneities decreases for a given diffu-

sion coefficient (i.e., the same scat-

tering occurs over larger distances);

(ii) more independent measurements

are taken, for instance by considering

moments of the TR filter.

Bessel Cosine
Detection 30× 30 15× 15 Antenna 30× 30 15× 15 Antenna
STD (%) 4.6 6.8 4.6 5.9 6.6 6.1

Stability of angularly averaged (Bessel) and angularly dependent (Cosine)

filters for different spatial detectors in above configuration.
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4. Applications to Detection and Imaging
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Experimental setting; forward stage
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Experimental setting; backward stage
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Modeling the inclusion

The detection and imaging of buried inclusions (which are large com-

pared to the wavelength) is done as follows. We model the inclusion as a

variation in the kinetic parameters of the radiative transfer equation that

models the wave energy density.

The objective is to reconstruct these kinetic parameters from wave energy

measurements at the boundary of a domain. This is severely ill-posed

problem (in the sense that the reconstruction amplifies noise drastically).

Because the inclusion is assumed to be of small volume (at the macro-

scopic scale), further assumptions are possible. We consider asymptotics

in the volume of the inclusion, which take the form

δa0(t,x,k) = −|B|
∫ t

0
G(t− s,x,xb,k) (Qa0)(s,xb,k)ds+ l.o.t.,

where a0 is the unperturbed solution, G the transport Green’s function,

Q the scattering operator and |B| ∼ Rd the inclusion’s volume.
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Reconstruction of the inclusion

Detection and imaging based on the above asymptotic expansions allow

us obtain the inclusion’s location and volume:

σn/a0 error on R (%) error on xb error on yb
0.25% 12 9.0 3.5
0.5% 25 15 5.0
1% 33 30 10

Very accurate data are required to locate and estimate the inclusion.
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TR in Changing media; forward stage
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TR in changing media; backward stage
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Imaging and changing media
In the diffusive regime, the perturbation caused by a void inclusion is

given approximately by

δuD(t,x) = dπD0R
d

∫ t

0
∇xu0(t− s,xb) · ∇xbG(s,x,xb)ds.

Here d is dimension and G(s,x,xb) the background Green’s function.

When we have access to the measured wave field both in the presence

and in the absence of the inclusion, we can consider the correlation of

the two fields. In the diffusive regime, the corresponding perturbation is

given by

δu(t,x) = −4πR
∫ t

0
u0(t− s,xb)G(s,x,xb)ds+ o(R), d = 3

δu(t,x) =
2π

lnR

∫ t

0
u0(t− s,xb)G(s,x,xb)ds+ o(

1

| lnR|
), d = 2.

Since O(R) � O(R3) in d = 3 and O(| lnR|−1) � O(R2) in d = 2, it is much

easier to detect and image in the presence of differential information.
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Can time-reversal experiments help?

Direct energy and time reversal measurements are hampered by two types

of noise: background noise ne and model noise nm (characterizing the

accuracy of the diffusive model). Let U be the direct measurement

and F the TR filter measurement. Then we have that (after a few

simplifications)

δŨ = δU + nmU0 + nd
δF̃ = δF + nmF0 + εd/2nd; (d is dimension).

Thus both types of measurements are equally affected by the model noise.

However, because background noise does not refocus at the source loca-

tion, it is strongly attenuated in the TR experiment.

In practice, direct measurements are very faint and thus even very small

background noise renders the detection impossible. This is where time

reversal helps (and may justify its equipment cost).
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Conclusions

We have a theory to express the high frequency limit of the refocused

signal in Time Reversal experiments using a Wigner transform. The filter

can also be generalized to account for changing environments.

In certain cases, we can rigorously characterize the high frequency limit

of the Wigner transform and obtain its statistical stability. This has been

done for the parabolic approximation and the Itô Schrödinger approxima-

tion, and in the random Liouville regime.

Radiative transfer was shown to be quite accurate numerically to model

wave propagation in (certain) random media.

Wave propagation is (often) sufficiently stable so that inverse problems

based on transport equation can successfully be solved to detect and

image buried inclusions. Differential data allow us to detect and image

much smaller objects.
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