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Motivations

Imaging in Highly Heterogeneous Media

Statistical Properties of Random Media

Imaging of buried Inclusions
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Probing heterogeneous media
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Detecting Buried Inclusions
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Examples of wave propagation

Waves propagating in highly heterogeneous media






Vancouver, 25 June 2007 AIP 2007

Imaging in Known Media

When heterogeneous medium 
is known: Use Time Reversal:
Time reversed waves back-
propagate to their original 
location.
Inclusion may be seen as 
secondary source.
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Imaging in Unknown Media

When the (random) medium is not known:

Model random medium by a homogeneous 
medium with small random fluctuations. 

Model wave propagation macroscopically: 
what we are interested in today. 
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Homogeneous medium: Kirchhoff migration



Vancouver, 25 June 2007 AIP 2007

High frequency waves in Random Media

Macroscopic model: need an asymptotic 
regime. Here high frequency waves with 
highly heterogeneous media. 
High frequency waves: Liouville equation for 
the wave energy density                   :
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Radiative Transfer Equation

Regime: fluctuations too large for Liouville to 
be valid but too small to prevent transport: 
perturbation that accounts for SCATTERING.
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Regimes of Wave propagation
Weak Coupling regime:

Low Density regime:

For larger fluctuations, waves localize.
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Inverse Problem

Imaging the random media and/or buried 
inclusions becomes an inverse transport
problem:

How stable are the measurements?
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Statistical Stability
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The Energy Density IS Statistically Stable

Result: Under appropriate assumptions, the energy 
density converges, as the wavelength goes to 0, 
weakly and in probability, to its deterministic limit.

Weakly means we have to average energy over a 
sufficiently large region compared to the wavelength.

Result shows that the RTE indeed provides a model 
suitable for inversion: Measurements are 
independent of the unknown realization of the 
random medium.
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Summary so far

Random medium and buried inclusions are 
modeled as constitutive parameters in a 
transport equation, which models the 
(macroscopic) wave energy density.

In the high frequency limit, measurements 
over sufficiently large detectors are 
statistically stable.
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Inverse Transport

With spatial & angular measurements, InvRTE is 
mildly ill-posed (Hölder stability). With only spatial
measurements, InvRTE is severely ill-posed (as in 
Calderón’s problem).

Practical measurements often in latter category.

Important to find imaging scenarios that is as much 
immune to statistical noise as possible (High SNR).
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Energies and Correlations

RTE can be used to model more general 
field-field correlations (these are energies 
when the fields are the same).

Applications: monitor turbulent region as a 
function of time, image time-varying buried 
inclusions.
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Generalized RTE for Correlations
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Imaging Scenarios

Scenario 1: Image from Direct Energy
Measurements (with inclusion)
Scenario 2: Image from Energy
Measurements With and Without
Inclusion 
Scenario 3: Image from Wave Field
Measurements With and Without
Inclusion
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Direct versus Differential Measurements

Scenario 1 suffers from large statistical 
instability caused by our lack of knowledge
of the random medium. 

Scenarios 2&3 suffer from statistical 
instability proportional to changes in the 
differential measurements. 
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Direct Measurements
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Differential Measurements



Vancouver, 25 June 2007 AIP 2007

Energies versus Correlations
Comparison of Scenarios 2&3 in Highly Scattering regime:

In moderately scattering regime, both are of order          .
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Correlations vanish at the inclusion’s boundary
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Numerical Simulations

Waves solved by Finite Differences
Transport solved by Monte Carlo
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Effect of Void inclusions

Transport theory accurately predicts the influence
of an inclusion on the energy measurement.
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Energies versus correlations 

Correlation fluctuations (blue) versus energy fluctuations 
(red) in weakly (left) and strongly (right) scattering media.
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Inverse monochromatic transport
Monochromatic waves
Foldy Lax to model point 
scatterers and solve for 
wave fields
Forward and inverse 
transport problems solved 
by Monte Carlo method
Random medium 
parameterized by mean free 
path:
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Weak Scattering reconstructions

Kirchhoff (middle) versus Transport (right) reconstructions 
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Strong Scattering reconstructions

Kirchhoff (middle) versus Transport (right) reconstructions 
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Reconstruction from Direct Measurements

Inclusion of radius R=30
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Reconstruction from Differential Measurements

Inclusion of radius R=10
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Hidden Inclusions (by known blocker)

Reconstruction of inclusions in the absence of line 
of sight (coherent) measurements.
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Duke U. experimental Setup
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Reconstructions from Experimental Data

Reconstructions based on differential data (Scenario 2).
10 GHz data. Medium is 2.5 mean free paths thick. 



Vancouver, 25 June 2007 AIP 2007

Reconstruction of voids

Reconstructions based on differential data (Scenario 2).
10 GHz data. Medium is 2.5 mean free paths thick.
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Conclusions

Transport equations offer an accurate 
generalization of the Liouville equation in the 
regime of sufficiently small fluctuations.
In that regime, the energy density and the 
field-field correlations are statistically 
stable.
Thus inverse transport a good model to 
obtain the statistical properties of random 
media and image buried inclusions.
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