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Motivations

Imaging in Highly Heterogeneous Media

o Statistical Properties of Random Media

0 Imaging of buried Inclusions
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‘ Probing heterogeneous media

here
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‘ Detecting Buried Inclusions
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Examples ot wave propagation

Waves propagating in highly heterogeneous media
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Imaging in Known Media

When heterogeneous medium
IS known: Use '

Time reversed waves back-
propagate to their original
ocation.

nclusion may be seen as
secondary source.
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Imaging in Unknown Media

When the (random) medium is not known:

2 Model random medium by a
with small random fluctuations.

o Model wave propagation macroscopically:
what we are interested in today.
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‘ Homogeneous medium: Kirchhotf migration

Wealkly Scattering Strongly Scattering
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High frequency waves in Random Media

Macroscopic model: need an asymptotic
regime. Here high frequency waves with
highly heterogeneous media.

High frequency waves: Liouville equation for

the wave energy density a(t,x,k) :
9,
—a’—I—ka~VXa,—wa'Vka:O

ot
w(x, k) = c(x) k]|
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Radiative Transfer Equation

Regime: fluctuations too large for Liouville to
ne valid but too small to prevent transport:
perturbation that accounts for SCATTERING.

da Tw?(x, k)

5 Viw - Vxa — Vxw - Vyia = (274
/ R(x,p - k) (a(p) — a(k))8(w(x. p) — w(x.k))dp

R(x, k) s Power Spectrum of velocity fluctuations
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Regimes of Wave propagation
Weak Coupling regime: §c2(x) = /&5c? (;)

R(K)6(k + p) = ¢ E{5c2(k)dc2(p)}
Low Density regime: Ro = cBE{m°Ing

X -
1-(1 -I- 3)d = — X
2,8 Z B

~1)d

x Poisson P.P. with density (7 no

For larger fluctuations, waves
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Inverse Problem

Imaging the random media and/or buried
Inclusions becomes an inverse transport

problem:
da Tw?(x, k)
5 + Viw - Vxa — Vxw - Via = 2(27r)d

x /Rd R(x,p— k) (a(p) — a(k))8(w(x, p) — w(x.k))
w(x,k) = c(x) k]

How stable are the measurements?
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Statistical Stability

g-ﬂ"

o Statistical
Imﬁammy
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The Energy Density IS Statistically Stable

Result: Under appropriate assumptions, the energy
density converges, as the wavelength goes to O,
weakly and in probability, to its deterministic limit.

Weakly means we have to average energy over a
sufficiently large region compared to the wavelength.

Result shows that the RTE indeed provides a model
suitable for inversion: Measurements are
Independent of the unknown realization of the
random medium.
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Summary so far

Random medium and buried inclusions are
modeled as constitutive parameters in a
transport equation, which models the

(macroscopic) wave energy density.

In the high frequency limit, measurements
over sufficiently large detectors are

statistically stable.
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Inverse Transport

With spatial & angular measurements, InvRTE Is

mildly ill-posed (Holder stability). With only spatial
measurements, INnVRTE Is severely ill-posed (as In
Calderdn’s problem).

Practical measurements often in latter category.

Important to find imaging scenarios that is as much
Immune to statistical noise as possible (High SNR).
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Energies and Correlations

RTE can be used to model more general
field-field correlations (these are energies
when the fields are the same).

Applications: monitor turbulent region as a
function of time, image time-varying buried
Inclusions.
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‘ Generalized RTE for Correlations
Correlation Funetion c(t,x) = fpia(t,x, k)dk

E;; + cok - Va4 (Z(K) + iN(k))a

w2 (k) _
_ -+ 12 B
= ey Ja 1O~ (@5 (@) v () dg
w2 (k) Rl 4 R22 )
S = ST fe sk~ @8(w4 (@) — o (1)) dg
. . (- ~11 =1 Wj(k)w-l—(Q)
Nt = 7,557 b Rd(R _R )(kq)wj(q)w_l_(k)dq
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‘ Imaging Scenarios

= Scenario 1: Image from Direct Energy
Measurements (with inclusion)

= Scenario 2: Image from Energy
Measurements \With and Without
Inclusion

= Scenario 3: Image from Wave Field
Measurements \With and Without
Inclusion
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Direct versus Differential Measurements

Scenario 1 suffers from large statistical
Instability caused by our
of the random medium.

Scenarios 2&3 suffer from statistical
instability In the
differential measurements.
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‘ Direct Measurements

Statistical
Instability
from Medium
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‘ Differential Measurements
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Energies versus Cotrrelations

Comparison of Scenarios 2&3 in Highly Scattering regime:

In highly scattering media (in the diffusive regime), the perturbation in
the energy caused by a void inclusion is given by

t
0E(t,x) = (ZWDOR”'/O Vxug(t — s,Xp) - Vx, G (s, X, Xp)ds.

Here d is dimension and G(s,x,X;) the background Green's function.

T he perturbation of the two-field correlation is given by

0C(t,x) = —47TR/O ug(t — 5,Xp)G(s,X,Xp)ds + O(R) d=3
5C(1.x) = f ot = 5,39)Gls X xp)ds + ol R|) d="2

In moderately scattering regime, both are of order Rd—1
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Correlations vanish at the inclusion’s boundary

f Dispersion Relations
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‘ Numerical Simulations
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= Waves solved by Finite Differences
= Transport solved by Monte Carlo
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‘ Effect of Void inclusions

x 10~ Corrections, R=50, isotropic case 8%
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= Transport theory accurately predicts the influence
of an inclusion on the energy measurement.
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‘ Energies versus correlations

Comparison corrections — standard deviation for R=15
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= Correlation fluctuations (blue) versus energy fluctuations
(red) in weakly (left) and strongly (right) scattering media.
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‘ Inverse monochromatic transport

= Monochromatic waves

» Foldy Lax to model point
scatterers and solve for
wave fields

= Forward and inverse
transport problems solved
oy Monte Carlo method

= Random medium
parameterized by mean free 1
nath: lop(k) &
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Weak Scattering reconstructions

r=47
x=(205,455)

Kirchhoff (middle) versus Transport (right) reconstructions

Vancouver, 25 June 2007 AIP 2007



‘ Strong Scattering reconstructions

r=53
x=(201,447)

= Kirchhoff (middle) versus Transport (right) reconstructions
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Reconstruction from Direct Measurements
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Reconstruction from Differential Measurements

385
380+
oo .. . .
L o &
375 . R s
*
LX) e
370 . . -
L ]
36 ' ' '
365 370 375 380

385

14

121

1071

Inclusion of radius R=10

Vancouver, 25 June 2007

AIP 2007

10

15

20




'Hidden Inclusions (by known blocker)
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= Reconstruction of inclusions in the absence of line
of sight (coherent) measurements.
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'Duke U. experimental Setup

Antenna

Target
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‘ Reconstructions from Experimental Data
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= Reconstructions based on differential data (Scenario 2).
» 10 GHz data. Medium is 2.5 mean free paths thick.
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‘ Reconstruction of voids
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= Reconstructions based on differential data (Scenario 2).
» 10 GHz data. Medium is 2.5 mean free paths thick.
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Conclusions

Transport equations offer an accurate

generalization of the equation in the
regime of sufficiently small fluctuations.
In that regime, the and the

field-field correlations are statistically
stable.

Thus inverse transport a good model to
obtain the of random

media and image buried inclusions.
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