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The objective of quantitative photoacoustic tomography (qPAT) is to reconstruct the diffusion, absorption
and thermal expansion coefficients of heterogeneous media from knowledge of the interior absorbed radiation.
It has been shown [1] that with data acquired at one given wavelength, all three coefficients cannot be
reconstructed uniquely. In this Letter, we study the multi-spectral qPAT problem and show that when
multiple wavelength data are available, all coefficients can be reconstructed simultaneously under minor prior
assumptions. Moreover, the reconstructions are shown to be very stable. We present numerical simulations that
support the theoretical results. c© 2011 Optical Society of America

OCIS codes: 000.4430, 170.0170, 170.3660, 170.5270, 170.7050.

In photoacoustic tomography, near infra-red (NIR) light
propagates into a medium of interest. As a fraction of
the incoming light energy is absorbed, the medium heats
up. This results in mechanical expansion and the gen-
eration of compressive (acoustic) waves. The acoustic
waves propagate to the boundary of the medium where
they are measured. From the knowledge of these (time-
dependent) acoustic measurements, qPAT attempts to
reconstruct the absorption, scattering and thermal ex-
pansion properties of the medium of interest [2, 3].

The reconstruction problem in photoacoustic tomog-
raphy is a two-step process. In the first step, one recon-
structs the absorbed energy map H(x) defined in (2)
below from the measured acoustic signals on the surface
of the medium. This is a relatively well known inverse
source problem for the wave equation that has been ex-
tensively studied in the past [4,5]. In the second step, the
objective is to reconstruct the diffusion, absorption and
Grüneisen thermal expansion coefficients from the recon-
structed energy data H(x). This step has been studied
only more recently [1, 6, 7].

Let us denote by X a bounded domain in Rd (d = 2, 3)
with smooth boundary ∂X, and Λ ⊂ R+ the set of wave-
lengths at which the interior data are constructed. In the
diffusive regime, the density of photons at wavelength λ,
u(x, λ) solves the following diffusion equation

−∇ ·D(x, λ)∇u(x, λ) + σ(x, λ)u = 0, X × Λ
u(x, λ) = g(x, λ), ∂X × Λ

(1)

where D(x, λ) > 0 and σ(x, λ) > 0 are the wavelength-
dependent diffusion and absorption coefficients, respec-
tively, and g(x, λ) is the illumination pattern in photoa-
coustic experiments. The wavelength-dependent interior
data constructed from the inversion of the acoustic prob-
lem are given by

H(x, λ) = Γ(x, λ)σ(x, λ)u(x, λ), (x, λ) ∈ X × Λ (2)

where Γ(x, λ) > 0 is the Grüneisen coefficient that mea-
sures the (non-dimensionalized) thermal expansion rate
of the medium when it heats up.

The problem of qPAT is to reconstruct the coefficients
D(x, λ), σ(x, λ) and Γ(x, λ) from interior data of the
form (2). The results in [1] state that without further
a priori information, we cannot uniquely reconstruct all
three coefficients. In fact, only two quantities related to
the three coefficients, i.e., the functionals µ(x, λ) and
q(x, λ) defined in (5) below can be reconstructed. The
objective of this Letter is to show that when data of
multiple wavelengths are available, we can recover the
uniqueness in the reconstructions with relatively little
additional a priori information. We allow the diffusion
and absorption coefficients to be arbitrary functions of
the wavelength and assume that the Grüneisen coeffi-
cient can be written as the product of a function of space
and a function of wavelength. More precisely, the coeffi-
cients take the following form:

D = D(x, λ), σ = σ(x, λ), Γ(x, λ) = γ(λ)Γ(x) (3)

where γ(λ) is a function assumed to be known. This as-
sumption is not sufficient to guaranty unique reconstruc-
tions. We need to assume a little more on the coefficients.
Our main assumption is:

(A1). There exist two known wavelengths λ1, λ2 ∈ Λ so
that D(x, λ1) = ρD(x, λ2) for some known positive
constant ρ, while σ√

D
(x, λ1) 6= σ√

D
(x, λ2) for all x ∈ X.

This assumption essentially requires that the dependence
of the diffusion and absorption coefficients is different for
at least two wavelengths. We also need some assumptions
on the regularity and boundary values of the coefficients.
We assume, denoting by Cp(X) the space of p-times dif-
ferentiable functions in X, that

(A2). The function 0 < D(·, λ) ∈ C2(X̄), and its
boundary value D|∂X is known. The functions
0 < σ(·, λ), 0 < Γ(·, λ) ∈ C1(X̄).
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We now present the main uniqueness result on recon-
structions with multi-spectral data.

Theorem 1. Let (D,σ,Γ) and (D̃, σ̃, Γ̃) be two sets of
coefficients given in (3), with γ(λ) known, satisfying the
assumptions (A1) and (A2). Then there exists a open
set of illuminations

(
g1(x, λ), g2(x, λ)

)
such that the

equatility of the data

{H1(x, λ), H2(x, λ)} = {H̃1(x, λ), H̃2(x, λ)}

in X × Λ implies that

{D(x, λ), σ(x, λ), Γ(x)} = {D̃(x, λ), σ̃(x, λ), Γ̃(x)}

in X × Λ provided that the boundary values of the dif-
fusion coefficient agree on the boundary: D|∂X = D̃|∂X
for all λ ∈ Λ.

Proof. With the regularity assumptions on the diffusion
coefficient, we can recast equation (1), using the Liouville
transform v =

√
Du, as

∆v(x, λ) + q(x, λ)v(x, λ) = 0, X × Λ

v(x, λ) = g̃(x, λ) :=
√
D(x, λ)g(x, λ), ∂X × Λ

(4)

with the interior data H(x, λ) = v(x, λ)/µ(x, λ), where
µ and q are defined respectively as

µ =

√
D

Γσ
, −q =

∆
√
D√
D

+
σ

D
. (5)

Let us denote by v1(x, λ) and v2(x, λ) the solutions
of (4) with illuminations g̃1(x, λ) and g̃2(x, λ) respec-
tively. Then it is straightforward to check that

−∇ · v2
1∇

v2

v1
= 0, X × Λ

v2
1(x, λ) = g̃2

1 , ∂X × Λ.
(6)

Since v2
v1

= H2

H1
is known, this is a transport equation for

v2
1(x, λ) with the vector field ∇H2

H1
. By the results of [1],

there exist well-chosen illuminations g1 and g2 such that
the vector field is smooth enough with positive modulus
|∇H2

H1
| > 0. This ensures that the transport equation is

uniquely solvable for v2
1 . Once v2

1 is reconstructed, we
can reconstruct µ = v1/H1 and then q = −∆v1/v1.

Now let λ1, λ2 ∈ Λ be two wavelengths as in assump-
tion (A1). We first reconstruct the two pairs of function-
als (µ(x, λ1), q(x, λ1)) and (µ(x, λ2), q(x, λ2)). With the
assumption that D(x, λ1) = ρD(x, λ2), we obtain after
some algebra using the above equations that

∆
√
D(x, λ1) +Q(x)

√
D(x, λ1) = 0, X

√
D(x, λ1) =

√
D(x, λ1)|∂X , ∂X

(7)

where the function Q(x) is defined as Q(x) =
γ(λ1)µ(x, λ1)q(x, λ1)−√ργ(λ2)µ(x, λ2)q(x, λ2)

γ(λ1)µ(x, λ1)−√ργ(λ2)µ(x, λ2)
. Using

the conditions in assumptions (A1) and (A2), the de-
nominator in Q does not vanish and Q is bounded.

The elliptic equation (7) can then be solved uniquely
as shown in [1] to reconstruct

√
D(x, λ1). We then find

σ(x, λ1) = −(Dq)(x, λ1)− (
√
D∆
√
D)(x, λ1), (8)

Γ(x) =

√
D(x, λ1)

µ(x, λ1)σ(x, λ1)
. (9)

Once Γ(x) is reconstructed, then so is Γ(x, λ) =
Γ(x)γ(λ). The results in [1, Corollary 2.3] then allow
us to reconstruct D(x, λ) and σ(x, λ) for all λ ∈ Λ.

The proof is constructive and provides an explicit
procedure to reconstruct the unknown coefficients. The
main step is to solve the transport equation (6) for v2

1 .
It has been shown in [1] that the reconstruction of v1

(and thus that of µ and q as well) is Lipschitz stable for
each fixed wavelength. Because the solution of (7) is sta-
ble with respect to Q, we deduce that the reconstruction
of the D(x, λ1) (and thus Γ(x)) is stable. Precise stabil-
ity estimates similar to those in [1, Theorem 2.4] can be
derived.

The coefficient model (3) is quite general and covers
many of the models used in the literature. For instance,
we may consider the following standard model:

D(x, λ) = α(λ)D(x), Γ(x, λ) = γ(λ)Γ(x)

σ(x, λ) =
∑K
k=1 βk(λ)σk(x)

(10)

where the functions α(λ), {βk(λ)}Kk=1 and γ(λ) are as-
sumed to be known. In other words, all three coeffi-
cient functions can be written as products of functions of
different variables. Moreover, the absorption coefficient
contains multiple components. This is the parameter
model proposed in [2,6,8–10] to reconstruct chromophore
concentrations from photoacoustic measurements. The
following result regarding model (10) is a natural exten-
sion of Theorem 1.

Corollary 2. Let D(x, λ), σ(x, λ) and Γ(x, λ) be as
in (10) and satisfying assumptions ((A1) and (A2). As-
sume further that there exist K wavelengths such that the
matrix B with elements Bkj = βk(λj) (1 ≤ k, j ≤ K) is
non-singular. Then the coefficients

{D(x), {σk(x)}Kk=1, Γ(x)}

can be uniquely reconstructed.

Proof. Theorem 0.1 allows the unique reconstruc-
tion of D(x), Γ(x) and {σ(x, λk)}Kk=1. Since B
is non-singular, we can invert the linear system
σ(x, λj) =

∑K
k=1 βk(λj)σk(x), j = 1, · · · ,K to recover

{σk(x)}Kk=1.

The uniqueness proofs presented above are valid only
for diffusion coefficients that are C2 in space. For prob-
lems with discontinuous diffusion coefficients, we resort
to numerical algorithms that are based on optimization
techniques. We look for the coefficients in the form of (3)
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Fig. 1. Reconstruction of (Γ(x), D(x), σ1(x), σ2(x)). Top
to bottom: true coefficients, reconstructions with clean
data and those with data containing 5% random noise.

that minimize the following mismatch functional

Φ(D,σ,Γ) ≡
2∑
i=1

‖Hi(x, λ)−H∗i (x, λ)‖2L2(X×Λ) (11)

whereHi(x, λ) = Γ(x, λ)σ(x, λ)ui(x, λ) with ui(x, λ) the
solution of the diffusion equation (1) with the ith source,
gi(x, λ) and H∗i (x, λ) is the corresponding “measured”
interior data. Let us denote by wi(x, λ) be the solution
of the adjoint problem

−∇ ·D(x, λ)∇wi(x, λ) + σ(x, λ)wi = ΓσZi, X × Λ
wi(x, λ) = 0, ∂X × Λ

with Zi ≡ Hi(x, λ) −H∗i (x, λ). Then it is easy to show
that the Fréchet derivatives of the objective functional
are given by, respectively

〈 ∂Φ
∂D , D̂〉 =

∑
〈∇ui · ∇wi, D̂〉, 〈∂Φ

∂Γ , Γ̂〉 =
∑
〈Ziσui, Γ̂〉

〈∂Φ
∂σ , σ̂〉 =

∑
〈ΓZiui − wiui, σ̂〉

with 〈·〉 denoting the usual inner product in L2(X ×
Λ). High order Fréchet derivatives can be computed as
well. We then use quasi-Newton algorithm implemented
in [11] to minimize the functional.

We now show some two-dimensional numerical simu-
lations in the square: X = (0, 2)×(0, 2). We attempt to
reconstruct the coefficients given in (10) with two com-
ponents in the absorption coefficient, i.e. K = 2. Other
parameters are given as follows:

α(λ) = λ3/2, γ(λ) = 1, β1(λ) = λ, β2(λ) = λ−1.

Four illuminations are used, two at each wavelength.
We show in Fig. 1 typical reconstructions of the four
smooth coefficients D(x), Γ(x), σ1(x) and σ2(x), and in
Fig. 3 typical reconstructions of piecewise smooth coef-
ficients, the later being done with the numerical mini-
mization algorithm mentioned above. As can be seen in
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Fig. 2. Cross-sections of plots in Fig. 1 along axis y = 1.0.
Shown are true coefficients(solid line), reconstruction
with noise-free data (blue dashed) and reconstructions
with noisy data (red dashed).

the cross-section plots in Fig. 2, the reconstructions are
very accurate, with overall quality very similar to those
presented in [1]. More systematic simulation results will
be presented elsewhere. This work is supported in part

Fig. 3. Same as in Fig. 1 but for discontinuous coeffi-
cients.

by NSF Grants DMS-0804696 and DMS-0914825.
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